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Class Notes:  ATM 552  Objective Analysis 

1.  Review of Basic Statistics 

We will review a few features of statistics that come up frequently in objective 
analysis of geophysical, medical and social data.  The emphasis here is not on 
mathematical sophistication, but in developing an ability to use relatively common 
statistical tests correctly. 

1.1  Some Fundamental Statistical Quantities 

The Mean: 

The sample mean of a set of values, xi, is given by 

 
x = 1

N
xi

i=1

N

∑
 (1.1)

 

This estimate of the true mean µ is unbiased.  The sample mean, or average, is an 
unbiased estimate of the mean. The mean is the first moment about zero.  The mean is to 
be distinguished from the median, which is the value in the center of the population (or 
the average of the two middle values, if the sample contains an even number of 
examples), and the mode, which is the most frequently occurring value. 

The Variance: 

The sample variance of a set of values is given by 

 x'2 = 1
N −1

xi − x( )2
i=1

N

∑  (1.2) 

 
The division by N-1 instead of the expected N is to obtain an unbiased estimate of the 
variance.  To see why this is so check any standard textbook on mathematical statistics, 
where you will find a fairly long derivation that I don’t want to reproduce here.  
Basically, the variance is biased low because the sample mean is uncertain and its 
uncertainty gives the sample variance a low bias.  Using N-1 as the sample size corrects 
for that.  The variance is the second moment about the mean.  It is more efficient 
(because it can be done with one loop and roundoff error is reduced) to compute the 
variance using the following relation: 

 x'2 = N
N −1

x2 − x 2( )  (1.3) 

Where, of course: 
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x2 =

1
N

xi
2

i=1

N

∑  

The Standard Deviation: 
 
The standard deviation is the square root of the variance.  We often denote it with the 
symbol σ , the sample standard deviation is s. 
 

 s = x'2  (1.4) 
 
Higher Moments: 

 We can define an arbitrary moment about the mean as: 

 mr =
1
N

xi − x( )r
i=1

N

∑  (1.5) 

So that m2 is the variance, m3 is the skewness, and m4 is the kurtosis.  These can be non-
dimensionalized by defining 

 ar =
mr
σ r  (1.6) 

Where σ  is again the standard deviation, or the square root of the second moment about 
the mean. 

The moment coefficient of skewness, a3, indicates the degree of asymmetry of the 
distribution about the mean.  If a3 is positive then the distribution has a longer tail on the 
positive side of the mean, and vice versa.  The coefficient of skewness for a Normal 
distribution is zero. 

The moment coefficient of kurtosis (Greek word for bulging), a4, indicates the 
degree to which the distribution is spread about the mean value.  The fourth moment 
about the mean is the Pearson measure of kurtosis and tends to measure the thickness of 
the tails of the distribution. The Normal distribution is in the region called mesokurtic and 
has a coefficient of kurtosis of 3.  Distributions with very flat distributions near the mean, 
with high coefficients of kurtosis, are called platykurtic (Greek platys, meaning broad or 
flat).  Distributions that are strongly peaked near the mean have low coefficients of 
kurtosis and are called leptokurtic (Greek for leptos, meaning small or narrow).  In many 
statistics packages the coefficient of kurtosis has the value for a normal distribution, 3, 
subtracted from it, so that platykurtic distributions have negative coefficients and vice 
versa. 
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1.2  Probability Concepts and Laws 

One view of probability is the frequency view.  If you have some large number of 
opportunities for an event to occur, then the number of times that event actually occurs, 
divided by the number of opportunities for it to occur is the probability. The probability 
varies between zero and one.  The frequentist view has a solid foundation in the Weak 
Law of Large Numbers which states that if you have random number between zero and 
one, the sum of this number divided by the sample size approaches the probability with 
arbitrary precision for large sample size.  Another more subjective view attributed to Rev. 
Thomas Bayes (1701-1761) figures that in many cases one is unlikely to have a large 
sample with which to measure the frequency of occurrence, and so one must take a more 
liberal and subjective view.  Bayesian inference is given that name for its frequent use of 
Bayes Theorem, which it uses to take into account a priori information, that may not be 
derivable from a frequentist point of view. 

 

 

Fig. 1.1  Illustrations of skewness and kurtosis of probability distributions . 
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A nice philosophic discussion of the use of statistics in science from the Bayesian 
point of view can be found in Howson and Urbach(2006), which is available in 
paperback for modest cost.  A more mathematical presentation is given by Jaynes(2003). 

Unions and Intersections of Probability – Venn Diagram 

The probability of some event E happening is written as P(E).  The probability of E 
not happening must be 1 - P(E).  The probability that either or both of two events E1 and 
E2 will occur is called the union of the two probabilities and is given by, 
  P(E1  E2 ) = P(E1)+ P(E2 )− P(E1  E2 )  (1.7) 

where  P(E1  E2 )  is the probability that both events will occur, and is called the 
intersection.  It is the overlap between the two probabilities and must be subtracted from 
the sum.  This is easily seen using a Venn diagram, as below.  In this diagram the area in 
the rectangle represents the total probability of one, and the area inside the two event 
circles indicates the probability of the two events.  The intersection between them gets 
counted twice when you add the two areas and so must be subtracted to calculate the 
union of the probabilities.  If the two events are mutually exclusive, then no intersection 
occurs. 

 

Fig. 1.2  Venn Diagram illustrating the intersection of two probabilities. 

Another important concept is conditional probability.  We write the probability 
that E2  will occur, given that E1  has occurred as the postulate, 

 
 
P(E2 | E1) =

P(E1  E2 )
P(E1)

 (1.8) 

Changing this conditional probability relationship around a little yields a formula 
for the probability that both events will occur, called the multiplicative law of probability 
  P(E1  E2 ) = P(E2 | E1)•P(E1) = P(E1 | E2 )•P(E2 )  (1.9)  

If the two events are completely independent such that P(E1 | E2 )=P(E1) , then 
we get, 

P(E1) P(E2)

P(E1.and.E2)
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  P(E1  E2 ) = P(E1)•P(E2 )  (1.10) 

This is the definition of statistical independence. 

For example, if the probability of getting heads on a coin flip is 0.5, and one coin 
flip is independent every other one, then the probability of getting heads (or tails) N times 
in a row is (0.5)N .   
 

Bayes Theorem: 
 
Bayes Theorem: 
Let Ei, i=1,2,3, … n be a set of n events, each with positive probability, that partition a 
set S, in such a way that. 

 

Ei
i=1

n

 = S        and Ei ∩ Ej =∅ for i ≠ j  

 
This means the events include all the possibilities in S and the events are mutually 
exclusive. 
For any event B, also defined on S, with positive probability P(B) > 0, then, 

 P Ej | B( ) = P(B | Ej ) P(Ej )

P(B | Ei )P(Ei )i=1

n∑
 (1.11) 

 

 
Bayes Theorem can be derived from the following definitions and postulates. 
 
Define the conditional probability of an event E, given that an event B has occurred. 
 

P E | B( ) = P(E∩ B)
P(B)

, which can be rearranged as, P(E∩ B)= P E | B( ) • P(B) , which is 

far more intuitive.   

We also know that, P(B)= P B | Ei( ) • P(Ei )
i=1

n

∑ , which must be true of the sum, if the Ei 

are all the possible outcomes.   Can you see why each of these statements must be true?  
Can you use them to derive Bayes Theorem? 
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Bayes Theorem Example:   

Bayes Theorem has been useful in the medical field.  Consider this example.  You 
have a sensitive test for a disease, which tells whether the patient has the disease or not.  
The probability that any individual has the disease is one in one thousand.  The test never 
gives a false negative result by saying that the patient does not have the disease, when in 
fact the patient does.  The chance of a false positive is also small, say 5%.  If you have 
the test and it is positive, what is the probability that you actually have the disease?  Most 
people answer 95% to this question, since only a 5% chance exists that the test has given 
a false positive.  Let’s use Bayes theorem, though, to get the real answer.  We have 
P(D)=0.001.  We have P(-|D)=0.0, the probability that you get a negative diagnosis when 
you have the disease (D), is zero. We have P(+|notD)=0.05.  Let’s use Bayes theorem 
(1.11) to compute P(D|+),the probability that we have the disease, given a positive test. 

 P(D | +)= P + | D( ) • P(D)
P + | D( ) • P(D)+ P + | notD( ) • P(notD)  (1.12) 

To solve the problem you have to realize that, if a person has the disease, then 
they get either a positive or negative result on the test so that P + | D( ) + P − | D( ) = 1 . 
Therefore, P + | D( ) = 1− P − | D( ) = 1.  Plugging in numbers gives, 

P(D | +)= 1.0 *0.001
1.0 • 0.001+ 0.05 • 0.999

= 0.0196 = 1
51

 

So, whereas in a kneejerk answer you might say the chance that you have the 
disease is 95%, the actual probability is only one in 51!  The failure of the quick reaction 
is to not take into account the probability of this disease in the whole population, or the 
total probability of having the disease.  If you forget about the formulas and think about 
numbers it is easy to see why this is so.  We have been told that one person in a thousand 
has the disease.  Also, because of the false positive rate of 5%, if 1000 people take the 
test 50 will get false positives on the test.  The one person with the disease also gets a 
positive, as the test never gives false negatives.  So of the 51 people who get positive test 
results, only one actually has the disease.  Of course, this result is true only if you average 
over an infinite ensemble of groups of 1000, and one should not expect this result every 
time.  The actual answers that statistics can give must be phrased in terms of intervals at 
some probability level. 

Here’s another example in the same vein, slightly more complicated.  You have a 
large sample of the results of a particular test for breast cancer.  C is the event that the 
patient has cancer, and Cc is the alternative that the patient does not have cancer.  The 
probability of a patient having cancer is P(C) = 0.001.  Event B is a positive biopsy, 
indicating cancer, Bc is its alternative.  The probability of a positive biopsy, when the 
patient actually has cancer is P(B|C) = 0.9.  The probability of a false positive from a 
biopsy is P(B|Cc) = 0.01, so the test gives a false positive in one out of one hundred tries.  
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The question is, what is the probability that the patient actually has cancer, if the test 
gives a positive result?   So we want to know P(C|B).  According to Bayes Theorem, the 
answer is: 
 

 P(C | B)= P B |C( ) • P(C)
P B |C( ) • P(C)+ P B |Cc( ) • P(Cc )  (1.13) 

Plugging in the numbers above gives an answer of P(C|B) = 0.089.  That is, if you 
test positive for cancer, under the conditions of this problem, then the chance that you 
actually have cancer is only 8.9%, less than 1 in 10. Tracking the reasons for this back 
through Bayes Theorem to the numbers shows that the high probability of a false positive 
(91%) arises because of the low probability of the occurrence of cancer, and small false 
positive rate of 1%.  Bayes theorem might also suggest why extremely rare diseases are 
often not well diagnosed and treated.   

What relevance do these examples have to what we do?  Suppose we have a 
theory T, which we wish do test with data D.  Formally, we want to evaluate the 
probability that the theory is true, given the data available.  Let’s look at this with Bayes 
theorem.  

 P(T | D)= P D |T( ) • P(T )
P(D |T ) • P(T )+ P(D |T c ) • P(T c )

 (1.14) 

Here Tc is the null hypothesis and T is the theory that we would like to say is true.  
The statistical tests that we often apply ask, P D |T c( ) , or “What is the probability of 

seeing this data result, D, given our null hypothesis Tc ?”  To evaluate the probability that 
our theory is true, given our data P(T|D), by (1.14) we need to know the probability that 
our theory is true, which we do not.  One can see from the previous examples, that the 
conclusions based on any test can be radically altered by the total probability.  If the 
probability that we see the data we do, given the null hypothesis, is only 5%, but the 
probability of our theory being correct is only one in 100, what is the probability that our 
theory is correct given that our data can reject the null hypothesis with 95% confidence?  
If you have chosen a particularly unlikely theory, then seemingly strong data support for 
it may not make the actual probability that it is true very large.  How do you determine 
the likelihood that a theory is true, P(T)?  This line of reasoning exposes a flaw that 
Bayesian’s see in the frequentist view of probability.  It also suggests why people can 
often find support in data for bizarre theories.  In doing statistical significance tests we 
often think that P(T )= 1− P D |T c( ) , but this is clearly not valid if (1.14) is true.  That is, 

we assume that the probability that the hypothesis is true, is equal to one minus the 
probability that we would see the data, given the null hypothesis.  We have therefore, 
made prior assumptions that we have not considered very carefully.  If you were trained 
as a frequentist, you may find this section disturbing.  Often people talk about ‘assessing 
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your priors’.  In your evaluation of probability, you unconsciously factor in your ‘pre-
conceived notions’.  You should consciously consider accounting for this. 

 

1.3  Probability Distributions 

The probability that a randomly selected value of a variable x falls between the 
limits a and b can be written: 

 P(a ≤ x ≤ b) = f (x) dx
a

b

∫  (1.15) 

This expression defines the probability density function f(x) in the continuous case.  
Note that the probability that the variable x will assume some particular value, say c, is 
exactly zero.  f(x) is not the probability that x will assume the value x1.  To obtain a 
probability one must integrate the probability density function between distinct limits.  
The probability density must have the following characteristics: 
 
 f(x) ≥  0 for all x within the domain of f 

 f (x)dx=1
−∞

∞

∫  (1.16) 

The moments of the distribution can be obtained from the probability density using 
the following formula 

 mr = x − µ( )r f (x)dx
−∞

∞

∫  (1.17) 

where µ  is the true mean, and so the moments are taken about the mean. 

The cumulative distribution function F(x) can be defined as the probability that a 
variable assumes a value less than x: 

 F(x)  = f (t)dt
−∞

x

∫  (1.18) 
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It immediately follows that 
 

 
P a ≤ x ≤ b( )=F(b)− F(a)

dF
dx

= f (x)

 (1.19) 

 

1.4  The Normal Distribution: 

The Normal distribution is one of the most important in nature.  Most observables 
are distributed normally about their means, or can be transformed in such a way that they 
become normally distributed.  It is important to verify in some way that your random 
variable is Normally distributed before using Gaussian-Normal statistical tests, however.  
We can assume that we have a standardized random variable z derived from some 
unstandardized random variable x: 
 

 z=
x − µ( )
σ

 (1.20) 

 
So standardized means zero mean and unit variance.  Then, if z (and x) is normally 
distributed, the cumulative distribution function is: 
 

 F(z)= 1
2π
exp − 1

2
t2⎧

⎨
⎩

⎫
⎬
⎭
dt

−∞

z

∫  (1.21) 

 
With the probability density function given by the part inside the integral, of course. 
 
If we use the unstandardized random variable x, then the form of the probability density 
is: 
 

 f x; µ ,σ( ) =
1
2πσ

exp −
1
2

x − µ
σ

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
2⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 (1.22) 

 
In this formula µ and σ are actually the mean and standard deviation.  Of course, 

the probability density is only defined relative to the cumulative distribution, and this 
explains why the σ appears in the denominator of the constant expression multiplying the 
exponential immediately above.  It arises when the transformation is made in the variable 
of integration.   
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Table of the Cumulative Normal Probability distribution F(z). 
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964 
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974 
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981 
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 
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The probability that a normally distributed variable falls within one standard 
deviation of its mean value is given by: 
 

 P −1≤ z ≤1( )= f (z)dz=68.27%
−1

+1

∫  (1.23) 

 
and similarly for 2 and 3 standard deviations: 
 

 P −2 ≤ z ≤ 2( )= f (z)dz=95.45%
−2

+2

∫  (1.24) 

 

 P −3 ≤ z ≤ 3( )= f (z)dz=99.73%
−3

+3

∫  (1.25) 

 
Thus there is only a 4.55% probability that a normally distributed variable will fall 

more than 2 standard deviations away from its mean.  This is the two-tailed probability.  
The probability that a normal variable will exceed its mean by more then 2σ is only half 
of that, 2.275%, since the Normal distribution is symmetric. 

1.5  Testing for Significance using the Normal Distribution: 

As it turns out, many geophysical variables are approximately normally distributed.  
This means that we can use the theoretical normal probability distribution to calculate the 
probability that two means are different, etc.  Unfortunately, to do this we need to know 
the true mean µ and the true standard deviation σ, a priori. The best that we are likely to 
have are the sample mean x  and the sample standard deviation s based on some sample 
of finite size N.  If N is large enough we can use these estimates to compute the z statistic.  
Otherwise we need to use the Student t statistic, which is more appropriate for small 
samples.  In geophysical applications we can usually assume that we are sampling from 
an infinite population.   

For an infinite population the standard deviation of the sampling distribution of 
means is given by: 

 σ x =
σ
N

= the standard error of estimate of the mean. 

Here σ is the standard deviation of the population and N is the number of data used 
to compute the sample mean.  So as you average together observations from a population 
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of standard deviation σ , the standard deviation of those averages goes down as the 
inverse of the square root of the sample size N.  The standard variable used to compare a 
sample mean to the true mean is thus: 

 z= x − µ
σ x

= x − µ
σ
N

 (1.26)  

The statistic z is thus the number of standard errors that the sample mean deviates 
from the true mean, or the null hypothesis mean.  If the variable is normally distributed 
about its mean, then z can be converted into a probability statement.  This formula needs 
to be altered only slightly to provide a significance test for differences between means: 

 z=
x1 − x2 − Δ1,2

σ1
2

N1
+ σ2

2

N2

 (1.27)  

Here the sample sizes for computing the two means and the two standard deviations 
are different.  Δ1,2 is the expected difference between the two means, which is often zero 
in practice. 

Small Sampling Theory: 

  When the sample size is smaller than about 30 we cannot use the z statistic, above, 
but must use the Student’s t distribution; or when comparing variances, the chi-squared 
distribution.  Since the Student’s t distribution approaches the normal distribution for 
large N, there is no theoretical reason to use the normal distribution in preference to 
Student’s t, although it may be more convenient to do so sometimes. 

The Student’s t distribution is derived in exact analogy with the z statistic: 

 

 

t = x − µ
s
N −1

= x − µ
ŝ
N

 ; ŝ= N
N −1

s

 (1.28)

 

If we draw a sample of size N from a normally distributed population of mean µ, 
we find that t is distributed with the following probability density: 

 f (t)= fo v( )

1+ t
2

v
⎛

⎝
⎜

⎞

⎠
⎟

v+1( )
2

 (1.29) 
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Where ν = N – 1 is the number of degrees of freedom and fo(ν) is a constant that 
depends on ν and makes the area under the curve f(t) equal to unity. 
 

Unlike the  z distribution, the t distribution depends on the size of the sample.  The 
tails of the distribution are longer for smaller degrees of freedom.  For a large number of 
degrees of freedom the t distribution approaches the z or normal distribution.  Note that, 
although we sometimes speak of the t distribution and contrast it with the normal 
distribution, the t distribution is merely the probability density you expect to get when 
you take a small sample from a normally distributed population.  The Student ’s t 
distribution is the most commonly used in means testing, and perhaps in all of applied 
statistics, although non-parametric methods are becoming more standard nowadays. 
 

 
Fig. 1.3  PDF of Z and Student-t with four dof.   

 
Confidence intervals: 
 

Values of the t statistic and the z statistic for specified probability levels and 
degrees of freedom are given in tables.  In such tables, t0.025 is the value of t for which 
only 0.025, 2.5%, of the values of t would be expected to be greater (right-hand tail).   
t-0.025 = -t0.025 is the value of t for which only 2.5% of the values of t obtained from a 
normally distributed sample would be expected to be less.  Note that the t distribution is 
symmetric.  The values of t are the integrals under the probability density function as 
shown below. 
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Fig. 1.4  Illustration of relation of t-statistic pdf  to probability measure alpha. 
 
There is a 95% probability that any sampled t statistic falls in the interval 

 t−.025 <
x − µ

s
⋅ N −1 < t.025  (1.30) 

From this we can deduce that the true mean µ is expected with 95% confidence to lie in 
the interval: 
 x − t.025 ⋅

s
N −1

<µ <x + t.025 ⋅
s

N −1
 (1.31) 

 
In general, confidence limits for population means can be represented by 

 
µ = x ± tc ⋅

s
N −1

 (1.32) 

Where tc is the critical value of the t statistic, which depends on the number of 
degrees of freedom and the statistical confidence level desired. Comparing this with the 
confidence limits derived using the z statistic, which is only appropriate for large samples 
where the standard deviation can be assumed known: 

 µ = x ± zc ⋅
σ
N

 (1.33) 

we see that the small sample theory replaces the z statistic with the t statistic and the 
standard deviation by a modified sample standard deviation: 

 ŝ= s N
N −1

 (1.34) 

 

Differences of Means:  

Suppose two samples of size N1 and N2 are drawn from a normal population whose 
standard deviations are equal.  Suppose the sample means are given by x1 and x2 and the 
sample standard deviations are s1 and s2.  To test the null hypothesis Ho that the samples 
come from the same population (µ1=µ2 as well as σ1=σ2) use the t score given by: 
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t = x1 − x2

σ 1
N1

+ 1
N2

; where σ = N1s1
2 + N2s2

2

N1 + N2 − 2
 (1.35) 

 
 and v=N1 + N2 − 2  

Chi-Squared Distribution:  Tests of Variance 
 

Sometimes we want to test whether sample variances are truly different.  For this we can 
define the Chi-Squared Statistic.  Define:  

 χ2 = N −1( ) s
2

σ 2
 (1.36) 

Draw χ2  from a normal distribution with standard deviation σ.  The samples are 
distributed according to: 

 f χ( )= foχv−2e
−

1
2
χ2

       v= N −1  (1.37) 

Note that the Chi-squared distribution is not symmetric, so that we write the 95% 
confidence limits as: 

 N −1( ) s2

χ0.025
2 <σ 2 <

N −1( )s2

χ0.975
2  (1.39) 

Degrees of Freedom: 

The number of degrees of freedom is the number of independent samples N minus 
the number of parameters in the statistic that is being estimated.  For example in the t 
statistic, 

 t=
x − µ

s
N −1

=
x − µ

ˆ s 
N

   ;    ˆ s =
N

N − 1
s  (1.40) 

we calculate the sample mean x and the sample standard deviation s from the data, but the 
true mean must be estimated, thus ν = N - 1.  Similarly in the Chi-squared statistic, 

 χ2 =
(N − 1) s2

σ 2
 (1.41) 

we know the sample variance s2 and the sample size N, but we must estimate the true 
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variance so that v = N - 1.  Some would argue, however, that we need the sample mean to 
estimate the sample variance, so that in fact ν = N - 2, but this is heresy.  If it makes a 
significant difference, your sample is too small anyway. 

Note:  It is assumed here that the N samples are independent samples.  Often N 
observations of a geophysical variable are not independent and we must try to estimate 
the number of independent observations in the sample.  For example, the geopotential 
height is highly auto-correlated so that each day’s value is not independent from the 
previous or following day’s.  You can’t improve the your ability to know a 5-day wave 
by sampling every 3 hours instead of every 6, for example.  This is discussed further in 
sections 1.9 and 6.1.5. 
 

F Statistic 
 Another statistic that we will find useful in testing power spectra is the F-statistic.  
If s12  and s22  are the variances of independent random samples of size N1 and N2 , taken 
from two Normal populations having the same variance, then 

 F = s1
2

s2
2  (1.42) 

is a value of a random variable having the F distribution with the parameters ν1  = N1  -1 
and ν2 = N2 -1.  This statistic will be very useful in testing the significance of peaks in 
frequency spectra.  The two parameters are the degrees of freedom for the sample 
variance in the numerator, ν1 , and in the denominator, ν2  . 
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Table of the t-statistic critical values for one-tailed test with ν degrees of freedom. 
ν  0.2 0.1 0.05 0.025 0.01 0.005 0.001 0.0005 0.0001 

1 1.3764 3.0777 6.3137 12.706 31.821 63.656 318.29 636.6 3185.3 

2 1.0607 1.8856 2.9200 4.3027 6.9645 9.9250 22.328 31.600 70.706 

3 0.9785 1.6377 2.3534 3.1824 4.5407 5.8408 10.214 12.924 22.203 

4 0.9410 1.5332 2.1318 2.7765 3.7469 4.6041 7.1729 8.6101 13.039 

5 0.9195 1.4759 2.0150 2.5706 3.3649 4.0321 5.8935 6.8685 9.6764 

6 0.9057 1.4398 1.9432 2.4469 3.1427 3.7074 5.2075 5.9587 8.0233 

7 0.8960 1.4149 1.8946 2.3646 2.9979 3.4995 4.7853 5.4081 7.0641 

8 0.8889 1.3968 1.8595 2.3060 2.8965 3.3554 4.5008 5.0414 6.4424 

9 0.8834 1.3830 1.8331 2.2622 2.8214 3.2498 4.2969 4.7809 6.0094 

10 0.8791 1.3722 1.8125 2.2281 2.7638 3.1693 4.1437 4.5868 5.6939 

11 0.8755 1.3634 1.7959 2.2010 2.7181 3.1058 4.0248 4.4369 5.4529 

12 0.8726 1.3562 1.7823 2.1788 2.6810 3.0545 3.9296 4.3178 5.2631 

13 0.8702 1.3502 1.7709 2.1604 2.6503 3.0123 3.8520 4.2209 5.1106 

14 0.8681 1.3450 1.7613 2.1448 2.6245 2.9768 3.7874 4.1403 4.9849 

15 0.8662 1.3406 1.7531 2.1315 2.6025 2.9467 3.7329 4.0728 4.8801 

16 0.8647 1.3368 1.7459 2.1199 2.5835 2.9208 3.6861 4.0149 4.7905 

17 0.8633 1.3334 1.7396 2.1098 2.5669 2.8982 3.6458 3.9651 4.7148 

18 0.8620 1.3304 1.7341 2.1009 2.5524 2.8784 3.6105 3.9217 4.6485 

19 0.8610 1.3277 1.7291 2.0930 2.5395 2.8609 3.5793 3.8833 4.5903 

20 0.8600 1.3253 1.7247 2.0860 2.5280 2.8453 3.5518 3.8496 4.5390 

21 0.8591 1.3232 1.7207 2.0796 2.5176 2.8314 3.5271 3.8193 4.4925 

22 0.8583 1.3212 1.7171 2.0739 2.5083 2.8188 3.5050 3.7922 4.4517 

23 0.8575 1.3195 1.7139 2.0687 2.4999 2.8073 3.4850 3.7676 4.4156 

24 0.8569 1.3178 1.7109 2.0639 2.4922 2.7970 3.4668 3.7454 4.3819 

25 0.8562 1.3163 1.7081 2.0595 2.4851 2.7874 3.4502 3.7251 4.3516 

26 0.8557 1.3150 1.7056 2.0555 2.4786 2.7787 3.4350 3.7067 4.3237 

27 0.8551 1.3137 1.7033 2.0518 2.4727 2.7707 3.4210 3.6895 4.2992 

28 0.8546 1.3125 1.7011 2.0484 2.4671 2.7633 3.4082 3.6739 4.2759 

29 0.8542 1.3114 1.6991 2.0452 2.4620 2.7564 3.3963 3.6595 4.2538 

30 0.8538 1.3104 1.6973 2.0423 2.4573 2.7500 3.3852 3.6460 4.2340 

40 0.8507 1.3031 1.6839 2.0211 2.4233 2.7045 3.3069 3.5510 4.0943 

50 0.8489 1.2987 1.6759 2.0086 2.4033 2.6778 3.2614 3.4960 4.0140 

75 0.8464 1.2929 1.6654 1.9921 2.3771 2.6430 3.2024 3.4249 3.9116 

100 0.8452 1.2901 1.6602 1.9840 2.3642 2.6259 3.1738 3.3905 3.8615 

∞  0.8416 1.2816 1.6449 1.9600 2.3264 2.5758 3.0902 3.2905 3.7189 

 



ATM 552 Notes:                                 Review of Statistics                              Page  18 

Copyright 2016:  Dennis L. Hartmann 1/4/16 11:24 AM 

 Table of the Chi-Squared Distribution. 

ν  0.995 0.990 0.975 0.950 0.900 0.100 0.050 0.025 0.010 0.005 
1 0.000 0.000 0.001 0.004 0.016 2.706 3.841 5.024 6.635 7.879 

2 0.010 0.020 0.051 0.103 0.211 4.605 5.991 7.378 9.210 10.597 

3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.345 12.838 

4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860 

5 0.412 0.554 0.831 1.145 1.610 9.236 11.070 12.832 15.086 16.750 

6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.449 16.812 18.548 

7 0.989 1.239 1.690 2.167 2.833 12.017 14.067 16.013 18.475 20.278 

8 1.344 1.647 2.180 2.733 3.490 13.362 15.507 17.535 20.090 21.955 

9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.023 21.666 23.589 

10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188 

11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.725 26.757 

12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300 

13 3.565 4.107 5.009 5.892 7.041 19.812 22.362 24.736 27.688 29.819 

14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319 

15 4.601 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.578 32.801 

16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267 

17 5.697 6.408 7.564 8.672 10.085 24.769 27.587 30.191 33.409 35.718 

18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156 

19 6.844 7.633 8.907 10.117 11.651 27.204 30.144 32.852 36.191 38.582 

20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997 

21 8.034 8.897 10.283 11.591 13.240 29.615 32.671 35.479 38.932 41.401 

22 8.643 9.542 10.982 12.338 14.041 30.813 33.924 36.781 40.289 42.796 

23 9.260 10.196 11.689 13.091 14.848 32.007 35.172 38.076 41.638 44.181 

24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.558 

25 10.520 11.524 13.120 14.611 16.473 34.382 37.652 40.646 44.314 46.928 

26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290 

27 11.808 12.878 14.573 16.151 18.114 36.741 40.113 43.195 46.963 49.645 

28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.994 

29 13.121 14.256 16.047 17.708 19.768 39.087 42.557 45.722 49.588 52.335 

30 13.787 14.953 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672 

40 20.707 22.164 24.433 26.509 29.051 51.805 55.758 59.342 63.691 66.766 

50 27.991 29.707 32.357 34.764 37.689 63.167 67.505 71.420 76.154 79.490 

75 47.206 49.475 52.942 56.054 59.795 91.061 96.217 100.839 106.393 110.285 

100 67.328 70.065 74.222 77.929 82.358 118.498 124.342 129.561 135.807 140.170 
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Table of the F-statistic for a probability level of 0.01 (Denominator to left, Numerator across  
top) 

d.f. 1 2 3 4 5 6 7 8 9 10 20 30 40 50 75 100 

1 161 199 5404 5624 5764 5859 5928 5981 6022 6056 6209 6260 6286 6302 6324 6334 
2 18.51 19.00 99.16 99.25 99.30 99.33 99.36 99.38 99.39 99.40 99.45 99.47 99.48 99.48 99.48 99.49 
3 10.13 9.55 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 26.69 26.50 26.41 26.35 26.28 26.24 
4 7.71 6.94 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.02 13.84 13.75 13.69 13.61 13.58 
5 6.61 5.79 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.55 9.38 9.29 9.24 9.17 9.13 
6 5.99 5.14 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.40 7.23 7.14 7.09 7.02 6.99 
7 5.59 4.74 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.16 5.99 5.91 5.86 5.79 5.75 
8 5.32 4.46 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.36 5.20 5.12 5.07 5.00 4.96 
9 5.12 4.26 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 4.81 4.65 4.57 4.52 4.45 4.41 

10 4.96 4.10 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.41 4.25 4.17 4.12 4.05 4.01 
11 4.84 3.98 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.10 3.94 3.86 3.81 3.74 3.71 
12 4.75 3.89 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 3.86 3.70 3.62 3.57 3.50 3.47 
13 4.67 3.81 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.66 3.51 3.43 3.38 3.31 3.27 
14 4.60 3.74 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.51 3.35 3.27 3.22 3.15 3.11 
15 4.54 3.68 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.37 3.21 3.13 3.08 3.01 2.98 
16 4.49 3.63 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.26 3.10 3.02 2.97 2.90 2.86 
17 4.45 3.59 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.16 3.00 2.92 2.87 2.80 2.76 
18 4.41 3.55 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.08 2.92 2.84 2.78 2.71 2.68 
19 4.38 3.52 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.00 2.84 2.76 2.71 2.64 2.60 
20 4.35 3.49 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 2.94 2.78 2.69 2.64 2.57 2.54 
21 4.32 3.47 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 2.88 2.72 2.64 2.58 2.51 2.48 
22 4.30 3.44 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 2.83 2.67 2.58 2.53 2.46 2.42 
23 4.28 3.42 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 2.78 2.62 2.54 2.48 2.41 2.37 
24 4.26 3.40 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 2.74 2.58 2.49 2.44 2.37 2.33 
25 4.24 3.39 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.70 2.54 2.45 2.40 2.33 2.29 
26 4.23 3.37 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.66 2.50 2.42 2.36 2.29 2.25 
27 4.21 3.35 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.63 2.47 2.38 2.33 2.26 2.22 
28 4.20 3.34 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.60 2.44 2.35 2.30 2.23 2.19 
29 4.18 3.33 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.57 2.41 2.33 2.27 2.20 2.16 
30 4.17 3.32 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.55 2.39 2.30 2.25 2.17 2.13 
40 4.08 3.23 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.37 2.20 2.11 2.06 1.98 1.94 
50 4.03 3.18 4.20 3.72 3.41 3.19 3.02 2.89 2.78 2.70 2.27 2.10 2.01 1.95 1.87 1.82 
75 3.97 3.12 4.05 3.58 3.27 3.05 2.89 2.76 2.65 2.57 2.13 1.96 1.87 1.81 1.72 1.67 

100 3.94 3.09 3.98 3.51 3.21 2.99 2.82 2.69 2.59 2.50 2.07 1.89 1.80 1.74 1.65 1.60 
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Table of the F-statistic for a significance level of 0.05 (Denominator to left, Numerator across  
top) 

d.f. 1 2 3 4 5 6 7 8 9 10 20 30 40 50 75 100 

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 248.02 250.10 251.14 251.77 252.62 253.04 
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.45 19.46 19.47 19.48 19.48 19.49 
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.66 8.62 8.59 8.58 8.56 8.55 
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.80 5.75 5.72 5.70 5.68 5.66 
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.56 4.50 4.46 4.44 4.42 4.41 
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.87 3.81 3.77 3.75 3.73 3.71 
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.44 3.38 3.34 3.32 3.29 3.27 
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.15 3.08 3.04 3.02 2.99 2.97 
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 2.94 2.86 2.83 2.80 2.77 2.76 

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.77 2.70 2.66 2.64 2.60 2.59 
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.65 2.57 2.53 2.51 2.47 2.46 
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.54 2.47 2.43 2.40 2.37 2.35 
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.46 2.38 2.34 2.31 2.28 2.26 
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.39 2.31 2.27 2.24 2.21 2.19 
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.33 2.25 2.20 2.18 2.14 2.12 
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.28 2.19 2.15 2.12 2.09 2.07 
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.23 2.15 2.10 2.08 2.04 2.02 
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.19 2.11 2.06 2.04 2.00 1.98 
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.16 2.07 2.03 2.00 1.96 1.94 
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.12 2.04 1.99 1.97 1.93 1.91 
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.10 2.01 1.96 1.94 1.90 1.88 
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.07 1.98 1.94 1.91 1.87 1.85 
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.05 1.96 1.91 1.88 1.84 1.82 
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.03 1.94 1.89 1.86 1.82 1.80 
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.01 1.92 1.87 1.84 1.80 1.78 
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 1.99 1.90 1.85 1.82 1.78 1.76 
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 1.97 1.88 1.84 1.81 1.76 1.74 
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 1.96 1.87 1.82 1.79 1.75 1.73 
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 1.94 1.85 1.81 1.77 1.73 1.71 
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 1.93 1.84 1.79 1.76 1.72 1.70 
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 1.84 1.74 1.69 1.66 1.61 1.59 
50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.78 1.69 1.63 1.60 1.55 1.52 
75 3.97 3.12 2.73 2.49 2.34 2.22 2.13 2.06 2.01 1.96 1.71 1.61 1.55 1.52 1.47 1.44 

100 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.68 1.57 1.52 1.48 1.42 1.39 
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1.6  Hypothesis Testing: 

In using statistical significance tests there are five basic steps that should be 
followed in order. 

 

To be honest with yourself, you need to state what level of uncertainty is acceptable 
before you compute any statistics.  People usually choose 95% or 99% certainty.  In the 
first case you are accepting a one in twenty chance of accepting the hypothesis wrongly -
a type II error.  (Type I error – false positive - you reject the null hypothesis incorrectly.  
Type II error - false negative - null hypothesis is not rejected but its alternative H1 is 
actually true).  If you compute the statistic and then state what significance level it passes 
(e.g. 80%), then you are a mush-headed scoundrel, your use of statistics means nothing, 
and you should be ashamed. 

Proper construction of the null hypothesis and its alternative is critical to the 
meaning of statistical significance testing.  Careful logic must be employed to ensure that 
the null hypothesis is reasonable and that its rejection leads uniquely to its alternative.  
Usually the null hypothesis is a rigorous statement of the conventional wisdom or a zero 
information conclusion, and its alternative is an interesting conclusion that follows 
directly and uniquely from the rejection of the null hypothesis.  Usually the null 
hypothesis and its alternative are mutually exclusive.  Examples follow. 

H0:  The means of two samples are equal 
H1:  The means of two samples are not equal 

H0:  The correlation coefficient is zero 
H1:  The correlation coefficient is not zero 

H0:  The variance at a period of 5 days is less than or equal to  the red-noise 
background spectrum 

H1:  The variance at a period of 5 days exceeds the red-noise background spectrum 

1.  State the significance level 

2.  State the null hypothesis H0 and its alternative H1 
3.  State the statistic used 

4.  State the critical region 

5.  Evaluate the statistic and state the conclusion 
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1.6b  Errors in Hypothesis testing 
 
Even though you have applied a test and the test gives a result, you can still be wrong, 
since you are making only a probabilistic statement.  The following table illustrates the 
Type I:  You reject the null hypothesis, but the true value is in the acceptance level, and 
Type II:  You fail to reject the null hypothesis, but the true value is outside the acceptance 
level for the null hypothesis Ho.  In the table below positive means that you reject Ho and 
find something interesting.  Negative means you cannot reject Ho.  Yes, it’s confusing. 
 

 Ho  is true 
(e.g. z < zcrit) 

Ho is false 
(e.g. z > zcrit) 

Fail to reject Null 
Hypothesis Ho 

No Error 
True negative 

Type II Error 
False negative 

Reject Null Hypothesis Ho Type I Error 
False positive 

No Error 
True positive 

 

First Example:   

In a sample of 10 winters the mean January temperature is 42˚F and the standard 
deviation is 5˚F.  What are the 95% confidence limits on the true mean January 
temperature? 

1.  Desired confidence level is 95%. 

2.  The null hypothesis is that the true mean is between 42 ± ΔT.  The alternative is 
that it is outside this region. 

3.  We will use the t statistic. 

4.  The critical region is | t | < t.025, which for n = N - 1 = 9 is | t | < 2.26.  Stated in 
terms of confidence limits on the mean we have: 

 x − 2.26⋅ s
N −1

< µ < x + 2.26 ⋅ s
N −1

 

5. Putting in the numbers we get 38.23 < µ  < 45.77.  We have 95% certainty that 
the true mean lies between these values.  This is the answer we wanted.  If we 
had a guess about what the true mean was, we could say whether the data 
would allow us to reject this null hypothesis at the significance level stated. 
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Another Example:  Dilbert’s Ski Vacation 

Dilbert goes skiing 10 times at Snoqualmie Pass this season.  The average 
temperature on the days he is there is 35˚F, whereas the climatological mean for the same 
period is 32˚F and the standard deviation is 5˚F.  Has he been unlucky? 

Well, let’s suppose being unlucky means that the temps were warmer on the days 
he was there than average, and lets use (1) a significance level of 95%.  The null 
hypothesis (2) is that the mean for his 10 days is no different than climatology, and its 
alternative is that his days were warmer, which would make him unlucky.  The null 
hypothesis is that he is not unlucky.  We will use (3) the t-statistic, for which the two-
sided critical region (4) is t > t0.025, which for 9 degrees of freedom is t > t0.025 = 2.262.  
Now we evaluate the statistic and state the conclusion (5), 

t = 35 − 32
5

9 =1.80 , which is less than the t required to reject the null hypothesis, 

so we cannot conclude that Dilbert was unlucky.  His mean temperature is below the 
maximum that you would expect from a random sample of 10 at the 95% level.  Notice 
how your conclusions about life depend on the level of certainty that you require.  If 
Dilbert were less scientific, he might have concluded that he was unlucky just because 
the sample mean of his visits was greater than the climatological average.  It is reassuring 
to Dilbert to realize that life is probabilistic, and that his experience is within the expected 
range.  Of course if he had a good weather forecast, Dilbert could have planned his ski 
trips for colder weather and better snow, which would not make him lucky, but good. 
 
 
1.7  Combinatorics and the Binomial and Hypergeometric Distributions 
 
The number of ordered permutations of length k that can be drawn from a set of n distinct 
elements, repetition not allowed, is: 
 

 n(n −1)(n − 2). . .(n − k +1) = n!
(n − k)!

 (1.43) 

 
If the order is not important, the number of combinations that can be drawn is: 
 

 
n
k

⎛
⎝⎜

⎞
⎠⎟
= n!
k!(n − k)!

 (1.44) 

The symbol 
n
k

⎛
⎝⎜

⎞
⎠⎟

 gives the binomial coefficients.  They are related to the following 

algebra problem, too. 
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 x + y( )n = n
k

⎛
⎝⎜

⎞
⎠⎟ x

kyn−k

k=0

n

∑  (1.45) 

 
 
Example:  Eight people gather for dinner.  If each person shakes hands with every other 
person only once, how many handshakes are required? 
 
This is like an unordered draw of pairs from an urn containing 8 unique tokens.  So the 
answer is: 
 

 Handshakes =
8
2

⎛
⎝⎜

⎞
⎠⎟
= 8!

2! (8 − 2)!
= 28 handshakes are required  

 
You can also do this calculation by having one person shake hands with everyone(7 
handshakes), then remove that person from the pool and pick another person (6 
handshakes), and so on giving, 7+6+5+4+3+2+1 = 28 handshakes.  If you are the host 
you can make this efficient by having your guests queue up outside.  Then you shake 
each of their hands as they enter the room.  The first person in line takes a place behind 
you in the reception line and shakes hands with everyone behind them in line, and so 
forth.  The last person in line shakes hands with all the other folks now in the receiving 
line. 
 
 
Hypergeometric Distribution: 
 

If you have a bucket with r red balls and w white balls, so that r+w=N, the total 
number of balls in the bucket.  If you draw n balls out of the bucket at random, then the 
probability of getting k red balls is: 
 

 P(k) ==

r
k

⎛
⎝⎜

⎞
⎠⎟

w
n − k

⎛
⎝⎜

⎞
⎠⎟

N
n

⎛
⎝⎜

⎞
⎠⎟

    ; max(0,n-w) ≤ k ≤min(n,r)  (1.46) 

 
Binomial Distribution: 
 

Suppose you have a set of n trials in which the outcome is either “success” or 
“failure”.  The probability of success in one trial is p=P(success in one trial).  If X is the 
total number of successes in n trials, then: 
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 P(X = k) =
n
k

⎛
⎝⎜

⎞
⎠⎟
pk (1− p)n−k , k = 1,2,3,...n  (1.47) 

 
Example:  What is the probability of getting more than 15 heads in 20 tosses of a fair 
coin?  Answer: 

 

 
20
k

⎛
⎝⎜

⎞
⎠⎟
0.5k (1− 0.5)20−k

k=16

20

∑ = 0.006  

 
The binomial distribution is helpful in assessing “field significance”, the 

significance of multiple tests as when an array of variables are tested against the same 
hypothesis.  An example would be correlating the sunspot index with a map of pressure at 
many points over the earth.  How many individual “significant” events do you expect to 
get by chance in such cases.  As an example, consider the plot below, which shows for N 
tries of a test at the p=0.05 significance level, what the binomial distribution (1.47) says 
about how many you should get by chance. 

 

 
Figure  Blue line shows probability of a given number of successes in N tries (N=30 on left and 

N=100 on right) where the probability of each event succeeding is p=0.05.  Green line shows 
the probability of getting the number of successes or more.  

 
Note that the probability of getting 5 successes or more in 30 tries is less than 

0.05 and getting 10 successes or more in 100 tries is less than 0.05.  That is 16.7% are 
successes for 30 tries and only 10% are successes for 100 tries at same probability level.  
For smaller samples, the fraction of total tries that can succeed by chance is greater.  
Even for 100 tries, 10% can succeed by chance, where the probability of each individual 
occurrence is p=5%.  The most likely outcome is shown by the peak of the blue line and 
is what you expect, about 5% of the chances will succeed.  But the chances of getting 
significantly more than that are quite good, and ten or fifteen percent of the field points 
could succeed by chance at the 5% level (See Wilks 2006, and Livezey and Chen 1983). 
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If you did the calculations above by hand you would find it tedious.  This gets 
worse when the sample is larger.  To assist in this it is useful to use the following Normal 
Approximation to the Binomial. 

 
Normal Approximation to the Binomial (DeMoivre-Laplace)   

 
From the central limit theorem, it can be shown that the distribution of sample 

means approaches the Normal Distribution, even if the population from which the means 
are derived is not normally distributed.  This is also true for the Binomial distribution, for 
which values have a probability of being either zero or one, but nothing else.  The 
distribution of sample means from a binomial population is nonetheless normally 
distributed about its mean value of 0.5.  

 
Here is a Java Applet that allows you to play with the Normal Approximation 

http://www.ruf.rice.edu/~lane/stat_sim/normal_approx/ .  Try calculating the probability 
of getting more than 40 hits in a sample of 60 with P=0.5.  That’s 40 or more heads out of 
60 coin tosses.  You can compare the exact and approximate probabilities.  Try this with 
small samples.  For example, try 4 or more heads out of 6 tosses. 

 
DeMoivre-Laplace Theorem. 

 
X is a binomial variable defined on n independent trials each having success 

probability p.  Then for any numbers a and b,  
 

 limn→∞ P a < X − np
np(1− p)

< b
⎛

⎝⎜
⎞

⎠⎟
= 1

2πnp(1− p)
e−x

2 /2dx
a

b
∫  (1.48) 

 

This means that the statistic, X − np
np(1− p)

 , has the Normal distribution.  We can 

use this fact to simplify the solution of binomial problems, as illustrated in the example 
below. 
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Example of the Normal approximation to the Binomial:  An earthquake forecaster has 
forecast 200 earthquakes.  How many times in 200 trials must she be successful so we 
can say with 95% certainty that she has nonzero skill? 

 
The null hypothesis is that she has no skill and the confidence level is 0.05, or 

95%.  We then want, 
 

 P s > s* |H0( ) = 0.025 = 200
s

⎛
⎝⎜

⎞
⎠⎟
1
2

⎛
⎝⎜

⎞
⎠⎟
s

1− 1
2

⎛
⎝⎜

⎞
⎠⎟
200−s

s=s*

200

∑  

 
Solving this equation for s>s*, the number of occurrences necessary to leave only 

a 0.025 probability to the right, is extremely tedious to do by hand, which nobody these 
days would do.  However, we can use the Normal approximation to the Binomial to 
convert this to the problem, 

 

 P s > s* | H0( ) = P s − np
np(1− p)

> s *−np
np(1− p)

⎛

⎝⎜
⎞

⎠⎟
= P Z > s *−np

np(1− p)
⎛

⎝⎜
⎞

⎠⎟
 

 
Now P(Z > 1.96) = 0.025 (two-tailed 95%), so we want,  
 

 s − np
np(1− p)

>1.96, or s >114  

 
Where we have inserted n=200 and p=0.5 to get the numerical value shown.  So to pass a 
no-skill test on a sample of this size, the forecaster must be right 57% of the time.  Of 
course, this level of skill, while significantly different from zero, may not be practically 
useful. 

 
 

1.8  Non-Parametric Statistical Tests 
 
The statistical tests applied above mostly assume that the samples come from 

populations for which the statistical distributions are known, or assumed, a priori.  We 
very often assume that the statistics we are testing are Normally distributed, so we can 
use the shape of the Normal distribution in our tests.  Tests have also been developed that 
do not require the assumption of a theoretical distribution.  These are called ‘non-
parametric’ or ‘distribution-free’ statistical tests.  This approach can be easily illustrated 
with the Signs Test. 
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1.8.1  Signs Test - also called the Wilcoxon Test 
 
Suppose we have paired data (xi, yi).  We want to know if the data have a shift in 

mean location from set xi to set yi.  We have a suspicion that the data are not Normally 
distributed and we don’t want to assume that they are.  Our null hypothesis is that the 
means of the two sets are identical.  The alternative is that they are not.  We will rather 
formulate the problem in terms of the median, 

� 

˜ µ . 
 
  H0 : µ1 = µ2 H1 : µ1 ≠ µ2  
 

Let’s reformulate this in terms of a probability that yi is greater than xi. 
 
 H0 : P(yi > xi ) = 0.5 , H1 : P(yi > xi ) ≠ 0.5  
 
Next replace each pair with a signed integer equal to one according to the 

following rule: 

 
yi > xi → +1
yi < xi →−1

 

 
If the median values of the two sets are the same, then plus and minus signs 

should be equally probable.  Since we’ve taken the magnitude out of the problem, we can 
assume that the + and - correspond to binomially distributed ‘success’ and ‘failure’.  The 
probability of getting a certain number of + and - signs can be calculated from the 
binomial distribution (1.47).   

 
Example:  Cloud Seeding Experiment   Ten pairs of very similar developing cumulus 
clouds were identified.  One from each pair was seeded, and the other was not.  Then the 
precipitation falling from the clouds later was measured with a radar.  The data in the 
following table resulted: 

 
Cloud Pair Precip. (untreated) Precip. (treated) 

� 

yi > xi ?  
1 10 12 + 
2 6 8 + 
3 48 10 - 
4 3 7 + 
5 5 6 + 
6 52 4 - 
7 12 14 + 
8 2 8 + 
9 17 29 + 
10 8 9 + 
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So we get 8+ and 2-.  Is this statistically significant at the 95% level, so that we 
can say the median values of the two samples are different??  So we plug into the 
binomial distribution to see what the chances of getting 8 sucesses in 10 tries. 

 

 P(k ≥ 8) =
10
k

⎛
⎝⎜

⎞
⎠⎟k=8

10

∑ 1
2

⎛
⎝⎜

⎞
⎠⎟
k

1− 1
2

⎛
⎝⎜

⎞
⎠⎟
10−k

= 0.055  

 P(k ≤ 2) =
10
k

⎛
⎝⎜

⎞
⎠⎟k=0

2

∑ 1
2

⎛
⎝⎜

⎞
⎠⎟
k

1− 1
2

⎛
⎝⎜

⎞
⎠⎟
10−k

= 0.055  

 
Since if things were random the chance of getting two or less successes is equally 

probable we have to add these two probabilities in a two-sided test and we find that the 
probability of the result we got was P=0.11, which fails a 95% confidence test.  We 
expect to toss 8 out of ten heads or tails about 11% of the time.  So our sample needs to 
be bigger to do much with the data set. 

 
There are many more complicated distribution-free tests that you can look up in 

textbooks, like the ‘Wilcoxon signed rank test’ and the ‘Wilcoxon-Mann-Whitney test’ 
(e.g. Mendenhall, et al 1990). 

 
 

1.8.2  Rank Sum Test 
 
Another common and classical non-parametric test is the Rank-Sum Test, or 

Wilcoxon-Mann-Whitney Test.  Suppose we have two samples S1 and S2, of sizes n1 and 
n2 that we want to test for location.  Our null hypothesis is that they come from the same 
population with the same distributions, and we want to see if we can reject this H0.  
Combine them into a single sample N=n1+n2 and rank them from smallest (R=1 to 
largest R=N).  Next compute the rank sums of each sample, which is the sum of the ranks 
for each subsample S1 and S2, which will be R1 and R2.   

 
R1 + R2 = 1+ 2 + 3+ ..+ N = n(n +1) / 2  

R1/n1 and R2/n2 should be similar if H0 is true and they are from the same 
population.  Consider our particular values of R1 and R2 as drawn from a large number of 
possible random combinations from the sample N.  There would be N!/( n1! n2! ) possible 
such combinations.  We could try to do the calculation combinatorically, but it is easier to 
use the U statistic introduced by Mann-Whitney. 

 

 
U1 = R1 −

n1
2
(n1 +1)

U2 = R2 −
n2
2
(n2 +1)

 (1.48) 
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Where, then, U1 +U2 ==
n1n2
2

. 

The U-statistic is approximately Normally distributed with mean and standard 
deviation, 

 

 
µU = n1n2

2

σU = n1n2 (n1 + n2 +1)
12

⎡
⎣⎢

⎤
⎦⎥
1/2  (1.49) 

 
With this theoretical mean and standard deviation, the statistical significance of U 

can then be tested with the standard cumulative normal distribution tables for F(z). 
 

1.9  A Priori, A Posteriori and Degrees of Freedom 

Applying statistical significance tests can be tricky, and it is very easy to get 
fooled.  Two of the most difficult concepts are evaluating the true number of degrees of 
freedom in your data set, and knowing when you are entitled to use a priori statistical 
significance tests.  These concepts are perhaps best illustrated with examples.  Let’s start 
with the number of degrees of freedom, then follow with an example of the a posteriori 
problem. 

Degrees of Freedom:  The Autocorrelated Time Series Problem: 

 The number of degrees of freedom is the number of independent measurements of 
the quantity or event of interest that is included in the sample.  If we have a time or space 
series it is sometimes difficult to assess the number of independent realizations that we 
have, and the answer may depend on the time or space scale of the phenomenon of 
interest.  Some quantitative techniques or rules of thumb have been developed for 
evaluation the number of degrees of freedom in spatial or temporal data sets.  Discussion 
of these is best left until we have reviewed some background material in regression and 
time series analysis.  If you can’t wait, have a look at Leith(1973) and Bretherton et 
al.(1999).  Below is an illustrative example. 

Joe has the following data sets that are monthly anomalies of the Tahiti-Darwin sea 
level pressure difference and anomalies of SST over two regions in the equatorial eastern 
Pacific.  The data run from 1951 to 1996, so he has 46 years of monthly data, or 46x12 = 
552 data points.  When he tests for the statistical significance of the correlation between 
these two time series, he uses 552 as the number of independent data.  Is he right? 
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He has overestimated the number of degrees of freedom in his time series, because not all 
of the points are independent.  The inherent time scale of the largest variations in these 
time series seems to be much longer than one month.  If you did an auto-regression 
analysis of these time series you would find that you can predict each month’s value 
pretty well by using the two values adjacent to it, the month before and the month after.  
A method of estimating the true number of degrees of freedom for an autocorrelated time 
series is discussed in Section 6.15 of these notes. 

How Many Chances:  The a priori Problem: 

 Next Joe decides to test which day in December has the most rain in Seattle.  
December is one of the rainiest months, but Joe wants to know if there is any day in the 
month with more rain than the others.  To test this he calculates the mean and standard 
deviation for each day in December from a 120 year record.  December precipitation is 
uncorrelated from day to day, pretty much, so he actually has 120 independent data points 
for each day in December.  The standard deviations for each day are pretty similar, so he 
uses the grand mean standard deviation for his statistical significance tests.  He tests for 
the difference between the mean for each day and the grand mean for all the days to see if 
any day stands out.  He finds that the mean for December 10 exceeds the grand mean of 
all the days in the month sufficiently to pass a 99% confidence limit.  He then hastily 
begins writing a paper and speculating on the reasons why Dec 10 should be the rainiest 
day of December, since it is more rainy than the other days at the 99% level.  Is he right? 

 Of course Joe has missed something.  He gave the daily mean precipitation 31 
chances to exceed the 99% probability, since each of the 31 days of December is an 
independent sample drawn, presumably, from a very similar population.  To estimate the 
chance of this you take the probability of one event exceeding the criterion, 99% and 
raise it to the power that is the number of independent chances you have given the events 
to exceed this probability.  Here we are assuming each event is independent and using 
(1.10).  If we go back to section 1.2 and take a look at (1.10), then we can calculate that 

-8

-6

-4

-2

0

2

4

6

8

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

1950 1960 1970 1980 1990 2000

Tahiti-Darwin SLP Index Nino_3&4_Anomaly
Ta

hi
ti-

Da
rw

in
 S

LP
 In

de
x

Nino_3&4_Anom
aly

Year



ATM 552 Notes:                                 Review of Statistics                              Page  32 

Copyright 2016:  Dennis L. Hartmann 1/4/16 11:24 AM 

the probability that none of our 31 independent estimates will pass the 99% significance 
level is (0.99)31 = 0.73, so our 99% significance is really 73% significance, which is not 
a number on which most people would bet their life savings or their reputations.  Of 
course, if a significance level of 95% had been chosen, . . . well I leave the calculation to 
you (20% confidence level, the odds are 5-1 that one day will exceed 95% confidence.).   

In order to score with this analysis, Joe would have to have an a priori reason for 
expecting the 10th day of the month to be special.  Usually this would require some 
reasonable theory for why this day would be special.  In this case he has no a priori 
reason to think Dec. 10 is special, so he must use a posteriori statistical analysis, and his 
result is not good enough to reject the null hypothesis that all the days are drawn from the 
same population with the same mean and standard deviation.  It is just too likely that one 
out of his 31 days would pass the 99% significance level by chance. 

Modify the Hypothesis: 

 This time Joe decides that the solar cycle must have some control over weather.  
So he starts looking for correlations between weather variables and solar cycle variables.  
He tries three solar variables; sunspot number, solar diameter, and Lyman alpha flux.  He 
correlates them all with 10 weather variables;  global mean surface temperature, global 
mean precipitation, zonal mean wind speed, blocking frequency, . . . , tree ring width in 
Wyoming, vorticity area index.  Finally he finds a correlation between solar diameter and 
vorticity area index (the area of the Northern Hemisphere with vorticity greater than 3 
times the standard deviation above the average value) that is significant at the  95% level.  
He again begins to prepare a paper.  Of course, we now know to comment that he tried all 
sorts of things before he tried the pair of things that pass 95%, and that he is not entitled 
to use a priori statistical tests.  Of course, Joe may neglect to include in his paper the fact 
that he tried all this other stuff, and in fact maybe he didn’t.  Maybe someone else did, 
and he came up with the idea of vorticity area index against solar diameter after reading 
their papers.  If people believe a relationship should exist between two classes of things 
and keep trying different alternatives for showing that relationship, their chances of 
eventually finding something that passes a priori tests is pretty good.   

Elaborate the Hypothesis 

 Eventually, more data are gathered and Joe’s correlation between solar diameter 
and vorticity area index falls apart.  Undaunted, he decides that something about the 
weather has changed, perhaps global warming, and that this is significant.  His paper to 
Nature on this topic is rejected.  Then he goes back to the drawing board.  He decides to 
divide the sample into years when the Quasi-Biennial Oscillation of the stratosphere is 
easterly and years when the QBO is westerly.  To his satisfaction, the correlation returns 
to the 95% level for the westerly years and appears not at all in the easterly year sample.  
In this case he is committing the egregious sin of elaborating the hypothesis, or dividing 
the sample until he gets the result he wants, unless he has a good reason for expecting 
only the westerly years to produce the result.  If he has no physical theory behind his 
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dividing and elaborating, then he is not being scientific and is likely to produce a lot of 
rubbish. 

Final Words on Data Exploration 

 If you follow all the rules against applying a priori statistical tests to a posteriori 
conclusions, don’t modify hypotheses, and don’t elaborate hypotheses – you may never 
discover anything new through exploratory data analysis.  Most of the interesting things 
in meteorology and oceanography have been observed first and then explained with 
theory later.  Often the data used in the initial discovery are inadequate in quality or 
volume. Some combination of art and science is needed to find new things that are true 
using statistics as a tool.  One needs some combination of firm grounding in probability 
and statistics, plus physical intuition, plus common sense, to be successful. 

Frequentist versus Bayesian Views of Statistics: 

Here we discuss the frequentist view of statistics, which is to approximate probabilities 
from observations using a large sample.  This works if you have a large sample and the 
question you are asking is well defined.  Bayesian statistics are another method that 
allows for taking into account prior information and working with small samples. 

Weak and Strong Laws of Large Numbers 

Suppose P(E) is the probability of some event E.  P(ET) = 1 – P(E) is the probability of 
the complementary event ET. 

xn =
1
n

xi
i=1

n

∑   is the sample mean based on size n for which the true mean is µ. 

Weak 

lim
n→∞

P( xn − µ < ε ) = 1  

Strong 

P lim
n→∞

xn = µ
⎛
⎝⎜

⎞
⎠⎟
= 1  

This indicates that we can get arbitrarily close to the true mean with a large enough 
sample.   

For probability: 

Suppose we have a random number xi that is either zero or one.  P(xi = 1) = p.   
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yn = xi
i=1

n

∑   and then  P ( yn
n
− p < ε )→1 forε > 0  

That is, if you have a large enough sample, you can measure the true probability to an 
arbitrary precision.  This is the basis of the frequentist view of probability. 

Uncertainty:  What are statistics good for? 

Statistics test whether something could have occurred by chance, subject to some 
assumptions and prior assumptions.  Statistics test only one kind of uncertainty, of which 
we can define three. 

Aleatory Uncertainty:  This is random uncertainty that we can measure with statistics. 

Epistemic Uncertainty:  This is uncertainty associated with lack of knowledge about 
things we could in principle know about.  We know the physics, but are uncertain about 
the parameters. 

Structural Uncertainty:  This is uncertainty arising from things we don’t know about.  
Unknown unknowns.  We thought the world was flat, but it is really spherical. 

2.0  Monte Carlo Methods 

In the age of computers, sometimes it is easier to let the computer do the work, do many 
intelligently designed calculations, and then infer a fact or statistical conclusion from the 
aggregate of these calculations.  The name Monte Carlo comes from the famous casino, 
not from the inventor of the method.  It is a term that has no precise definition and covers 
a wide variety of techniques, which share in common the idea expressed in the first 
sentence.  One famous example is the calculation of pi, the 
ratio of the circumference of a circle to its diameter.  It can be 
calculated by inscribing a circle within a square, then drop 
pebbles randomly on the square.  Count the ratio of the 
pebbles in the square to those that fall within the area.  If the 
pebbles are dropped randomly, then this ratio should be the 
ratio of the areas of the circle to the square, which is pi/4.  If 
you do this many times you can get an arbitrarily good 
approximation to pi. 

Another example of a Monte Carlo method might be if a compositing procedure in which 
a division of the sample by some criterion leads to a particular quantitative result.  For 
example, you take a selection of 10 items out of a sample of 25 using some criterion and 
get a measure that is different from some expectation.  Take random samples of 10 from 
those 25 many, many times, and see how likely it is to get that measure or greater by 
chance.  You can do this by either replacing each realization drawn, so that a given 
realization can appear more than once in a sample, or by removing the realization from 
the set of 25 when it is drawn so that it can appear only once in a subsample of 10.  The 
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advantage of this method is that you don’t have to choose a model PDF and you can 
evaluate the number of successes in exceeding the criteria using the binomial distribution. 

Monte Carlo methods, defined broadly, are also being used in ensemble weather and 
climate predictions, where multiple numerical forecasts are done using initial conditions 
and/or forcings that vary within the range that they are known.  The results of many such 
calculations can be used to assess the likelihood that the prediction will be reliable and 
often also provide a more precise definition of the most-likely reality.  For example, 
averages of forecasts are often more accurate than any individual ensemble member. 

Monte Carlo methods can also be used in strategy for games like Go or Chess.  A 
program is given a little intelligence about chess playing.  Individual moves are chosen 
randomly from a set of possible and plausible moves.  The game is played many times to 
see which move produces the most likelihood of a good outcome.  The move is made, the 
response is chosen and the simulation can be done again. 
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Exercises: 

1.1  What are the 95% confidence limits on the variance in the first example above? 

1.2  What are the 95% confidence limits on the mean if you (wrongly) use the z statistic 
in the first example? 

1.3  In a composite of 10 volcanoes the average monthly mean temperature anomaly 
three months after the eruption is 0.5˚C colder than the monthly mean temperature 
anomaly one month before the eruption.  The standard deviation of the monthly 
anomalies is 2.0˚C.  Is this result significant? 

1.4  The average snowfall at Stevens Pass is 415 inches.  This has a standard deviation of 
100 inches and is based on 30 yearly observations.  What are the 99% confidence 
limits on the true mean? 

1.5  Annual mean precipitation in Seattle averages 894 mm, with a standard deviation of 
182 mm over a sample of 111 years.  The 20 years from 1920-1939 had an average 
of 785mm and a standard deviation of 173mm.  Were the 20’s and 30’s different 
from the overall record? 

1.6  Of swordfish taken by the Hannah Boden, 0.5% have cancerous lesions.  If the fish 
has cancerous lesions 90% also have high levels of PCP.  If the fish do not have 
lesions, 30% nonetheless have high PCP.  Use Bayes theorem to estimate how many 
of the fish with high PCP have lesions.  Also, what is the probability that a swordfish 
has high PCP? 

1.7  A student takes a 20-question multiple-choice exam where every question has 5 
choices.  Some of the answers she knows from study, some she guesses.  If the 
conditional probability that she knows the answer, given that she answered it 
correctly, is 0.93, for how many of the questions did she know the answer? 

1.8  An earthquake forecaster forecasts 20 earthquakes.  How many of these forecasts 
must be successes in order to pass a 95% confidence that the forecaster has nonzero 
skill?  What percentage is this?  Compare to the case of 200 forecasts given above. 

1.9  Historically, major midwinter warmings of the Northern Hemisphere stratosphere 
occur every other year (i.e. the probability of getting one in any year is p=0.5).  
During the decade of the 1990’s, seven successive years without major warmings 
occurred.  What is the probability of this event occurring by chance?  What if it was 
not seven consecutive non-warming years, but merely 7 out of 10 in any order?  
What is the probability of getting 7 or more warmingless winters out of 10? 

1.10  You are a contestant  on The Price is Right.  Monte Hall shows you three doors.  
Behind one door is a Tesla Roadster.  Behind the other two doors are goats.  After 
you choose your door, but before it is opened, Monte opens another door to reveal a 
goat.  He offers you the opportunity to switch to the other unopened door.  Should 
you switch?  What is the probability that your first choice is the car?  What is the 
probability that the alternative offered is the car?  You can assume that Monte is 
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unbiased and does this goat reveal on every occasion.  Explain your answer using 
statistics covered in this chapter. 

1.11  You correlate a seasonal mean el Niño index against the seasonal anomalies of 
precipitation at 24 locations in the western USA.  Eight of the twenty four locations 
show a relationship with el Niño that is significant at the 95% level.  Assuming that 
each of the 24 locations is independent of the others, what is the probability that this 
result occurred by chance?  Later you discover that the 24 stations are not 
independent.  Using an objective method, you group the 24 stations into three 
groupings that are independent of each other.  You find that one of these three 
groupings is significantly related to el Niño.  How likely is it that this second result 
occurred by chance? 
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