
ATM 552 Notes:  Chapter 3: Regression Hartmann Page   42 

Copyright 2016: Dennis L. Hartmann  1/13/16  4:16 PM 42 

3.  Regression 
In this section some aspects of linear statistical models or regression models will be 

reviewed.  Topics covered will include linear least-squares fits of predictands to predictors, 
correlation coefficients, multiple regression, and statistical prediction.  These are generally 
techniques for showing linear relationships between variables, or for modeling one variable 
(the predictand) in terms of others (the predictors).  They are useful in exploring data and in 
fitting data.  They are a good introduction to more sophisticated methods of linear statistical 
modeling. 

3.1  Linear Least-square Curve Fitting 

3.1.1  Independent Variable Known 

Suppose that we have a collection of N paired data points (xi, yi ) and that we wish to 
approximate the relationship between x and y with the expression: 

 
 ŷ = ao + a1 ⋅ x + ε  (3.1) 

 
It must be noted that we assume x is known with precision, and that we wish to 

estimate y, based on known values of x.  The case where both y and x contain uncertainties 
will be discussed later.  The error ε can be minimized in the least square sense by defining an 
error function, Q, in the following way: 

 

 Q =
1
N

εi
2

i=1

N

∑ =
1
N

ŷ − yi( )2
i=1

N

∑  (3.2) 

So that the error function is the sum of the squared differences between the data and 
our linear equation, when this is minimized by choosing the parameters ao and a1 in (3.1) we 
will have the least-squares linear fit to the data. 

Squaring the error has several consequences.   

1. The result is positive definite. 

2. The minimization results in a linear problem to solve. 

3. Large errors are weighted more heavily than small departures. 

The first two are very good consequences.  The last can be good or bad depending on what 
you are trying to do.  All the linear regression analysis techniques we will discuss later (EOF, 
SVD, PCA, etc.) share these same properties of linear least squares techniques. 

We want to select the constants ao and a1  such that the error or risk functional Q is 
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minimized.  This is achieved in the usual way by finding the values of these constants that 
make the derivatives of Q with respect to them zero.  Since the error is always positive and 
the error function has a parabolic shape, we know that these zeros must correspond to 
minima of the error function 

 
∂Q
∂ao

= 0;
∂Q
∂a1

= 0 ⇒The “normal” equations 

It is easy to show that these result in the following forms. 
 

 ∂Q
∂ao

= 2aoN + 2a1 xi∑ − 2 yi∑ = 0  (3.3) 

 ∂Q
∂a1

= 2ao xi∑ + 2a1 xi
2∑ − 2 xiyi∑ = 0  (3.4) 

These in turn can be written in the form of a matrix equation for the coefficients. 

 
1 x 
x x2
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

ao
a1

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ =

y 
xy
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  (3.5) 

The solutions for the coefficients are: 

 a1 =
xy − x y 

x2 − x 2
=

x' y'
x' 2

; where( )' = ( ) − ( )  (3.6) 

Where we have used the covariance for the first time, I believe. 

 

� 

x ' y '≡ 1
N

xi − x ( )
i =1

N
∑ yi − y ( )  

We see that a1  is just the covariance of x with y divided by the variance of x.  And: 

 ao = y − a1x  (3.7) 

As an exercise, demonstrate that the minimum value of the error functional that is 
obtained when the linear regression is performed is given by: 

 Qmin = y'2 −
x' y'( )2
x'2

= y' 2 − a1
2 x' 2  (3.8) 

From (3.8) we see that the minimum error, is the total variance, minus the explained 
part, which is related to the squared slope coefficient a1  and the variance of the predictor.   

Many other curves besides a straight line can be fitted to data using the same 
procedure.  Some common examples are power laws and polynomials, shown in (3.9). 
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y = axb ⇒ ln y = lna + bln x

y = aebx ⇒ ln y = lna + bx

y = ao + a1x + a2x
2 + a3x

3 + ... + anx
n

 (3.9) 

 

3.1.2  Both Variables Uncertain 
 

Quite often the first attempt to quantify a relationship between two experimental 
variables is linear regression analysis.  In many cases one of the variables is a precisely 
known independent variable, such as time or distance, and the regression minimizes the root 
mean square (rms) deviation of the dependent variable from the line, assuming that the 
measurements contain some random error.  It often happens that both variables are subject to 
measurement error or noise, however.  In this case, to perform simple linear regression 
analysis one must choose which variables to define as dependent and independent.  The two 
possible regression lines obtained by regressing y on x or x on y are the same only if the data 
are exactly collinear. 

 
An alternative to simple regression is to minimize the perpendicular distance of the 

data points from the line in a two-dimensional space.  This approach has a very long history 
scattered through the literature of many scientific disciplines (Adcock 1878; Pearson 1901; 
Kermack 1950; York 1966).  The method can be elaborated to any degree desired, to take 
into account the different scales of the two variables in question, their uncertainty, or even 
the confidence one has in individual measurements.  

 
One of the better, and more elegant, methods of doing linear fits between two 

variables is EOF/PC analysis, which is discussed in a later chapter of these notes.  It turns out 
that, at least in two dimensions, doing EOF analysis minimizes the perpendicular distance 
from the regression line and is much more elegant than the methods used by Kermack and 
Haldane (1950) and York (1966), so I would regard these methods now merely with 
historical interest.  EOF/PC analysis is also easily generalized to many dimensions. 

 
3.1.3  Uncertainty estimates of linear fits. 
 
We want to fit a straight line to a time series of N observations yi at N times xi.  The linear fit 
is given by, 
 
 yi = a + bxi + ei , i = 1,⋅⋅⋅,N  () 
 
where ei represents the residual error of the linear fit at each time xi.  From section 3.1.1  of 
the notes we know that the ordinary least squares solutions to the linear regression problem 
for the parameters a  and b  are, 
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 b̂ =
xi − x( ) yi − y( )i=1

N∑
xi − x( )2i=1

N∑
= x ' y '
x '2

          â = y − b̂x  () 

 
then the errors of the fit, also called the residuals, are, 
 
 êi = yi − â + b̂xi( ), i =1, ⋅⋅⋅,N  () 

 
Let’s assume that the a  and b  that we get are random variables for which we would like to 
assign probability ranges.  We can start with an unbiased estimate of the standard error 
variance of the residuals as  
 

 σ̂ e
2 = 1

N − 2 i=1

N

∑ êi
2 = N

N − 2
1− rxy

2( )y '2  () 

 
where we divide by N-2 to account for the fact that two degrees of freedom were used to 
estimate a  and b .  The expression in terms of the correlation coefficient rxy  follows from 
the derivations in the next section 3.2.  For the time being we will assume that all these 
residuals are independent, but if they are autocorrelated, then we could use a model of red 
noise to estimate the true number of degrees of freedom as (see Chapter 6 for discussion of 
degree of freedom estimates for autocorrelated data, see Santer et al. 2008 for an application 
of this method to temperature trend estimation), 
 

 N*

N
=
1− r(Δt)( )
1+ r(Δt)( )  () 

 
Then we would replace N with N* in the formula for σ̂ e

2 , and in the t-statistic test that we 
will use later.   
 
We can estimate the uncertainty in the slope estimate b, using the following approximation 
(e.g. Sveshnikov, 1968 p 325-7). 
 

 σ̂b =
σ̂ e
Nσ x

, σ x
2 = 1

N
(xi − x )

2

i=1

N

∑  () 

Note: we have assumed that x is precisely known.  Then the variable 

 B = b̂ − b
σ̂b

 () 

is distributed like a t-statistic with N-2 degrees of freedom.  Therefore, we can put limits on 
the true slope b , in the following way, 
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 b̂ − tα
N−2 σ̂b < b < b̂ + tα

N−2 σ̂b  () 
 
where tα

N−2  is the critical value of the t statistic for confidence level α  and degrees of 
freedom N-2. 

 
We can apply these techniques to the record of combined land and ocean global mean 

surface temperature from the Goddard Institute of Space Studies (GISS) for the period 1901-
2012.  The results are shown in the following graph. 

 

 
Figure 3.1  The GISS combined global surface temperature timeseries with linear trends for various 
periods.  95% confidence limits (2.5 and 97.5% limits) are shown on the top, along with the degrees 
of freedom obtained from the residuals to the linear fits. Units of trends are ˚C per year. 

 
Note that the lower limits on the trends are all positive, so we can say with confidence 

(95%) that the trends on any interval are positive.  Note, however, that the trends for both 
shorter periods are greater than the trend over the full 1901-2012 period.  That is because of 
the flat period between about 1940 and 1970 when the temperature appears not to have 
increased at all.  Also note that the period from 1951 to 2012 has almost as many degrees of 
freedom as the full period.  This is also because of the stair step structure in the timeseries, 
which gives the residuals from the longest record very large persistence and reduces the 
number of degrees of freedom to 28, compared to a full data length of 112 years. 
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3.2   Theory of Correlation 

Suppose we wish to answer the question, “How ‘good’ is our least-squares fit?”  We 
can define a measure of the ‘badness’ of the fit as the ratio of the error to the total variance: 

 error
total variance

=

1
N

ŷ − yi( )2
i=1

N

∑
1
N

yi − y( )2
i=1

N

∑
=

1
N

ŷ − yi( )2
i=1

N

∑
y '2

 (3.10) 

 
Here, of course, ˆ y  is the value obtained from the fit.  The smaller this ratio is, the better the 
quality of the regression. 

For the case of the simple linear fit we can write the individual values in a useful form 
using the following sequence of steps: 

 

 

yi = yi − ŷ + ŷ

= yi
* + ao + a1xi where yi

* = yi − ŷ

= yi
* + y − a1x + a1xi

yi = y + a1x 'i+ yi
*

 (3.11) 

 
This allows us to write: 
 yi

' = yi − y ( ) = a1xi
' + yi

*  (3.12) 
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From whence we get the variance in the interesting form: 

 

 y'2 = a1
2 xi
' 2 + yi

*2 + 2a1 xi
' yi
*  (3.13) 

As an exercise, you can demonstrate that the last term on the right above is identically 
zero, so that the variance has been decomposed into the explained part and the unexplained 
part.  The last part is zero because we have chosen a1 to minimize the error of a linear fit.  If 
the covariance in the last term of (3.13) is not zero, then the linear fit is not optimum because 
the error is correlated with the independent variable.  Dividing through by the variance of y, 
we obtain: 

 

 a1
2 xi
' 2

y' 2
+
yi
*2

y'2
=1  (3.14) 

 
In words, 

 
fraction of explained variance +  fraction of unexplained variance =1 

 
But from the linear least-squares solution we know that: 

x' y'

x' 2 = a1; so that we find  

 a1
2 x' 2

y'2
=

x' y'( )2
x' 2 y'2

= r2 = the fraction of explained variance (3.15) 

and where 

 r =
x' y'

σ xσ y
= the correlation coefficient; −1 < r < 1 (3.16) 

 
 Note that if σ x = σ y = 1 and x = y = 0 , then the linear, least-square solution is y = r 
x. 

The correlation coefficient-squared is equal to the fraction of variance explained 
by a linear least-squares fit between two variables. 

 

r2 = ExplainedVariance
TotalVariance

; 1 − r2 = UnexplainedVariance
TotalVariance

 

Consider the following example.  Suppose that the correlation coefficient between 
sunspots and five-year mean global temperature is 0.5 ( r = 0.5 ).  Then the fraction of the 
variance of 5-year mean global temperature that is “explained” by sunspots is r2 = 0.25.  The 



ATM 552 Notes:  Chapter 3: Regression Hartmann Page   49 

Copyright 2016: Dennis L. Hartmann  1/13/16  4:16 PM 49 

fraction of unexplained variance is 0.75.  The root-mean-square (rms) error, normalized by 
the total variance is thus: 

 

MSError
TotalVariance

⎛
⎝⎜

⎞
⎠⎟

1/2

= 1− r2 = 0.75 = 0.87  

 
Thus only a 13% reduction in rms error results from a correlation coefficient of 0.5.  The 
implications of this are further illustrated in the following table: 
 

r rms error 
0.98 20% 
0.90 43% 
0.80 60% 
0.50 87% 
0.30 96% 

 

As this table illustrates, statistically significant correlations are not necessarily useful 
for forecasting.  If you have enough data you may be able to show that a measured 0.3 
correlation coefficient proves that the true correlation coefficient is different from zero at the 
99% confidence level, but such a correlation, however real, is often useless for forecasting.  
The rms error would be 96% of the variance.  The exception to this statement about the 
uselessness of small correlations comes where you have a very large number of trials or 
chances.  If you have a large volume of business ($billions) spread over a large number of 
transactions and you shade your trades properly using the 0.3 correlation prediction, then you 
can actually make a lot of money, sometimes. 

The correlation coefficient r is often used as a measure of whether data sets are 
“related” or not and, as we will describe below, it can be tested for statistical significance. A 
number of pitfalls exist that one should avoid when using correlation coefficients for this 
purpose: 

1.  It will only show the linear relationships clearly.  Nonlinear relationships may exist for 
which the correlation coefficient will be zero.  For example, if the true relationship is 
parabolic, and the data are evenly sampled, the correlation coefficient would be close 
to zero, even though an exact parabolic relationship may exist between the two data 
sets. 

2.  It cannot reveal quadrature relationships (although lagged correlations often will).  For 
example, meridional wind and geopotential are approximately uncorrelated along 
latitudes even though the winds are approximately geostrophic and easily 
approximated from the geopotential. They are in quadrature (90 degrees out of phase). 

3.  The statistical tests apply to independent data. Often the sample is not independent.  
The actual number of degrees of freedom may be much smaller than the sample size. 
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4.  Watch out for nonsense correlations that may occur even though the two variables have 
no direct relation to each other.  The correlations may occur by chance or because the 
two variables are each related to some third variable.  These must be regarded as 
spurious correlations from the standpoint of seeking to find real relationships between 
variables that might lead to physical insight or be useful in prediction.  For example, 
over the past 50 years the number of books published and professional baseball games 
played have both increased, so that they are positively correlated.  Does this mean that, 
if there is a players’ strike, book publishing will take a nose dive?  During the period 
between 1900-1990, the height of hemlines on dresses in the US very closely followed 
the Dow-Jones Average, or vice versa.  An analysis published by Baardwijk and 
Franses of the Econometric Institute of the Erasmus School of Economics in 2010 
suggests that hemlines do follow the economy with about a three-year lag.  They made 
the prediction that hemlines would be floor length around 2012 following the 2009 
recession. 
 

We illustrate below some of the problems of linear regression and the correlation 
coefficient by plotting four sets of variables, each of which has a linear fit with a correlation 
of 0.7 or an explained variance of 49%.  You can see that in one case linear regression looks 
like a useful fit, but in the other cases we have a jump in the data not a linear trend, a 
parabola and an outlier. 

 

Figure of four sets of data, each with a linear correlation of 0.7 with the x-axis. 
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3.3   Sampling Theory of Correlation 

In this section we will review the techniques for testing the statistical significance of 
correlation coefficients.  We will suppose that we have N pairs of values (xi, yi) from which 
we have calculated a sample correlation coefficient, r.  The theoretical true value is denoted 
by ρ.  We will assume that we are sampling from a bivariate Normal distribution and use the 
Normal probability distribution. 

When the true correlation coefficient is zero, the distribution is symmetric and we can 
make a fairly direct application of Student’s t distribution.  For example, suppose that we 
wish to test the hypothesis that ρ  = 0, given a sample size of 18 and a sample correlation 
coefficient, r = 0.32.  The steps in the process are: 

1.  The significance level desired is 0.05 (95%). 

2.  H0:  ρ = 0 
 H1:  ρ = not 0 

3.  The statistic used is 

t = r N − 2
1 − r2

 

 
     which has a Student’s t distribution with ν = N–2 degrees of freedom. 

4.  If t  > t0.025 = 2.12 (for ν = 16), then we reject H0. 

5.  Substituting the numbers we have into the statistic, we obtain: 
 

  
t =
0.32 18 − 2
1 − 0.32( )2

=1.35 < t0.025 = 2.12  

     so we cannot reject the null hypothesis that the true correlation coefficient is zero.  
Note that we use a two-sided test, even though the sample correlation coefficient is 
positive.  This is because if we had followed the steps correctly we wouldn’t know 
what the sample correlation coefficient is before we started, and have no a priori 
expectation of whether it should be positive or negative. 
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Fisher1 Z-Transformation: 

When the true correlation coefficient is not expected to be zero, we cannot assume a 
symmetric, normal distribution, since ρ ≠  0 distributions are skewed.  Fisher’s Z 
transformation will convert the distribution of r into something that is normally distributed. 

 

 Z =
1
2
ln 1 + r
1 − r
⎧ ⎨ ⎩ 

⎫ ⎬ ⎭ ; µZ =
1
2
ln 1+ ρo
1− ρo

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
; σ Z =

1
N − 3

 (3.17) 

 
Here µZ is the expected mean of the Z statistic and σZ is its standard deviation.  Fisher's Z 
transformation must be used for testing the significance of the difference between sample 
correlation coefficients drawn from a population acknowledged to be different from zero. 

Example:  Suppose N = 21 and r = 0.8.  Find the 95% confidence limits on ρ. 
 

Z =
1
2
ln 1 + 0.8
1 − 0.8
⎧ ⎨ ⎩ 

⎫ ⎬ ⎭ = 1.0986  

 
If Z is normally distributed, then 95% of all values must fall within 1.96 standard deviations 
of Z (from two-tailed normal curve test).  Therefore, 95% of the time the true mean must fall 
on the interval, 
 

� 

Z −1.96 σZ < µZ < Z +1.96σ Z
0.6366 < µZ <1.5606  

 
where the expression for the standard deviation of Fisher’s Z has been used.  These limits on 
the Z statistic can next be converted into limits on the true correlation. 
 

µz = 0.6366 =
1
2
ln 1 + ρ
1 − ρ
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
⇒ ρ = 0.56  

A handy transformation to get from µz to ρ is  

ρ =
e2µz −1( )
e2µz +1( ) =

eµz − e−µz( )
eµz + e−µz( ) = tanh(µz )  

 
We can state with 95% confidence that the true correlation falls on the interval,  
0.56 < ρ < 0.92, given that a sample of size 21 yields a sample correlation r = 0.8. 

                                                
1 Sir Robert Aylmer Fisher, 1890-1962. 
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Tests for the significance of the difference between two non-zero correlation 
coefficients are made by applying the Z statistic and using the fact that it is normally 
distributed.  Suppose we have two samples of size N1 and N2 which give correlation 
coefficients of r1  and r2 .  Then we test for the significance of the difference between the 
correlation coefficients by first calculating the two Z transformations, 

 

Z1 =
1
2
ln 1+ r1
1− r1

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
; Z2 =

1
2
ln 1 + r2
1 − r2

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 

 
From these we can calculate a z statistic, for normal probability curve, 
 

 z =
Z1 − Z2 − Δ z1−z2

σz1−z2
; whereΔz1− z2 = µz1 − µz2  

 and σ z1− z2 = σ z1
2 + σz2

2 =
1

N1 − 3
+

1
N2 −3

. 

 
 

3.4   Generalized Normal Equations – Multiple Regression 

Suppose we have a predictand, y, that we wish to fit to a group of known predictors xi, 
using the linear form: 

 y = ao + a1x1 + a2x2 + .... + anxn  (3.18) 

In what follows we will assume that the mean has been removed from all of the 
variables, y and xi.  The least-squares solution for the coefficients ai requires: 

 

 

a1x1
2 + a2 x1x2 + a3 x1x3 + .... + an x1xn = x1y

a1x1x2 + a2 x2
2 + a3 x2x3 + .... + an x2xn = x2y

a1x1x3 + a2 x2x3 + a3x3
2 + .... + an x3xn = x3y

 (3.19) 

Which can be written in matrix form: 
 

x1
2 x1x2 x1x3 ..

x2x1 x2
2 x2x3 ..

x3x1 x3x2 x3
2 ...

... ... ... ...

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

a1
a2
a3
...

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

=

x1y
x2y
x3y
...

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

 

or in the subscript notation:  
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 xix j aj = xiy . (3.20) 

Note that since we have removed the means of all variables, the overbarred quantities 
in the above expression are actually covariances.   

The covariance is closely related to the variance calculation described in Chapter 1.  If 
x and y are scalars, then the covariance Co  is: 

 Coxy =
1
N

xi − x ( )
i=1

N
∑ yi − y ( )    so if x = y = 0 , xy = Coxy  

We obtain the correlation by dividing the covariance by the standard deviations of both 
variables: 

 Cxy =
Coxy
σ xσ y

 

All these manipulations can be done much more neatly in vector/matrix notation, and the 
extension to the case where y is a vector is straightforward in that context. 

The covariance matrix of xi is on the left in (3.20) and the covariance vector of the 
predictors xi with the predictand y, is on the right.  If we further divide each variable by its 
standard deviation, so that we are working with standardized variables of mean zero and unit 
variance, then we can write: 

 Cxix j aj = Cxiy  (3.21) 

Where the C’s are correlation matrices and vectors, respectively, on the left and right.  
Canned subroutines are available for doing this sort of linear modeling.  The coefficients aj 
are obtained by inverting the real, symmetric matrix on the left, and multiplying the inverse 
times the vector on the right, at least in theory.  It may be quicker to use Gaussian elimination 
or some other numerical technique to solve for the a’s.  Many of these methods require that 
Cxix j  be invertible and not singular.  We will discuss below how singular value 
decomposition can be used to derive a very robust solution for the aj's that is optimal even 
when the problem is over-determined and Cxix j  is singular. 

3.4.1  Derivation of Normal Equations using Matrix Notation: 

Matrix notation is very powerful and compact for doing complex minimization 
problems and we will need to use it a lot to do more powerful methods later.  As an example, 
then, let’s derive (3.19) using matrix algebra.  First some definitions: 
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Let’s think of y and a as row vectors of length N and m, respectively, and the data 
matrix X as an N x m matrix, where N is the sample size and m is the number of predictors, 
xm. 

y = y1 y2 y3 y4 ....yN[ ]  

a = a1 a2 a3 a4 ....am[ ]  

X =

x11 x21 x31 .. .. xN1
x12 x22 x32 .. .. xN 2
x13 x23 x33 .. .. xN3
.. .. .. .. .. ..
x1m x2m x3m .. .. xNm

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

 

Now we can express our desired regression equation as,  

ŷ = aX  

Where we get the vector of predicted values of y, ŷ , by multiplying the vector of 
coefficients a times the data matrix X.  So far, we don’t know what the values of the 
coefficients, a, should be, but we are going to get these from minimizing the squared error.  
The error is, Error = y − aX , and in matrix notation we compute the squared error functional 
by taking the inner product of the error vector with itself.   

Q = y − aX( ) y − aX( )T  

Here superscript T indicates a transpose of the matrix, and we will use the fact that  
AB( )T = BTAT .  Now we can expand the right hand side, to get, 

Q = yyT − yXTaT − aXyT + aXXTaT  

The next step is to differentiate the error functional with respect to the coefficients a, to 
obtain the equation for the values of a that minimize the error.  By experimenting with 
differentiating with respect to each individual coefficient, you can convince yourself that the 
normal rules of algebraic differentiation apply for vectors and matrices, too.  Then we can 
write,  
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∂Q
∂a

= 0 − yXT − XyT + XXTaT + aXXT

= aXXT − yXT( ) + aXXT − yXT( )T
 

Note that the right hand side of the above equation can be organized into two terms that 
are the transposes of each other.  If a quantity is zero, then its transpose is also zero.  
Therefore we can use either of the two forms above to express the minimization.  We will 
carry along both forms in the next couple of equations, although they mean the same thing.  
We obtain the optimal solution for the a’s that minimizes the error, Q, by setting the right 
hand side to zero, or  

aXXT = yXT or XXTaT = XyT  

from which,   

a = yXT XXT( )−1 or aT = XXT( )−1XyT  

Looking back at (3.20) and (3.21)we can see that it is equivalent to aT = XXT( )−1XyT , 
since  

XXT = NCxi x j , and XyT = NCxi y . 

In this way we have derived the Normal equations using matrix algebra. 

3.4.2 Fourier Analysis as a Regression Problem 

You may consider Fourier harmonic analysis to be a special case of a linear least-
squares model.  In this case the predictors are sines and cosines in some spatial dimension z, 
for example: 

 x1 = sin
2πz
L
; x2 = cos

2πz
L
; x3 = sin

4πz
L
; x4 = cos

4πz
L
; ........  (3.22) 

If we use the regression approach, this technique will work for unevenly spaced zi, 
whereas standard Fourier Transform techniques will not.  Since these xi are an orthogonal 
basis set, however, if the zi are evenly spaced, the off-diagonal terms of the covariance 
matrix will be zero so that the aj can be obtained algebraically, without the need for a matrix 
inversion.  We have for evenly spaced data and orthogonal predictors: 

 aj =
x jy

x j
2

; but x j
2 = 1

2
for all N > 0.  So that  (3.23) 
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aj =
2
N

yi ⋅ x j zi( ){ }
i=1

N
∑ ; Or for example,

 

a1 = 2
N

yi ⋅sin
2πzi
L

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ i=1

N
∑  

This also demonstrates that Fourier analysis is optimal in a least-squares sense.  If you are 
unfamiliar with Fourier analysis, you may want to come back to this section after studying 
the description of Fourier analysis in Chapter 6. 

 

Orthogonality: 

Vectors:  If we have two vectors fn and gn of length N, we say that they are orthogonal if 
their inner product is zero: 

 (f ,g) = fn
n=1

N

∑ • gn = 0  

If N=2, these two vectors define lines that are at 90 degree angles to each other. 

Continuous Functions:  If we have two functions f(x) and g(x), we say that they are 
orthogonal on the interval 0<x<L if: 

 ( f , g) = f (x)g(x)dx
0

L

∫ = 0   

Orthonormal Function Sets:  If we have a set of functions fn(x), we say that it is an 
orthonormal set of functions if: 

 ( fn , fm) = fn(x) fm (x)dx
0

L

∫ =
0 if m ≠ n
1 if m = n
⎧ 
⎨ 
⎩ 

  

Thus the inner product of orthogonal vectors or functions is zero, and the inner product of an 
orthonormal vector or function with itself is one, and with its fellows is zero.   
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3.4.3  Multiple Regression – How many variables to use? 

Multiple regression is the regression of more than two variables.  Quite often a single 
variable is expressed in terms of a set of other variables.  For example, future stock market 
indices are based on present and past values of the stock market and various indices of 
current economic activity.  In this section let’s consider standardized variables whose means 
are zero and whose standard deviations are one. 

 xi
* =

xi − xi
σxi

; y* =
y − y 
σy

 (3.24) 

Here xi is a vector of predictors and y is the predictand.  Dropping the stars that 
indicate standardized variables, for convenience, we can then write the “normal equations” 
for a linear least-squares fit, following directly from (3.20) as, 
 
 r xi , x j( )ai = r xj , y( ); where r =  correlation coefficient  (3.25) 
 
r xi , x j( )represents the correlation coefficient between two of the predictors, xi and xj. 
Equation (3.25) is a linear algebra problem, which we could have written in subscript 
notation as, 
 
   rijai = rj

y  
 
where the right hand side is a correlation vector between y and the predictors xj. 

We can solve for the coefficients ai, and find expressions for the explained and 
unexplained variance as we did before for the case of a single predictor.  These are again 
related to the correlation coefficients between the variables.  For simplicity, and to gain a 
little insight, let’s consider the case of just 2 predictors.  The normal equations can be 
expanded as, 

 
r x1, x1( )a1 + r x1, x2( )a2 = r x1, y( )
r x2, x1( )a1 + r x2,x2( )a2 = r x2, y( )

 (3.26) 

or, since r11 = r22  = 1.0, and r12= r21, we can write, 
 

 
1 r12
r12 1
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
a1
a2
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ =

r1y
r2y
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  (3.27) 
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 So that, a1 =
r1y − r12r2y

1 − r12
2 ; a2 =

r2y − r12r1y
1 − r12

2  (3.28) 

 
If ˆ y  is a linear least-squares fit, then we can write the explained and unexplained variance, 
 

 y' 2 = yi − ˆ y ( )2 + ˆ y − y ( )2

Total Variance = Unexplained Variance +  Explained Variance
 (3.29) 

  
Can you prove that (3.29) is true?  You will need to use ŷ = y, y = ŷ + ε, and yε = 0  to do 
so. 
 
Using ˆ y = a1x1 + a2x2  it can be shown that 

 
 1 = Q

y' 2
+ R2  (3.30) 

where the fraction of explained variance R2 is given by, 
 

 R2 =
r1y2 + r2y2 − 2 r1y r2y r12

1− r12
2  (3.31) 

In analogy with the case of simple regression, R can be defined as the multiple correlation 
coefficient, since its square is the fraction of explained variance.  As an exercise, derive the 
above formula for R2. 

 

3.4.4  Stability of Linear Regression Equations 

It turns out that in multiple regression, it is necessary to decide how many predictors 
to use. If too many are used, then the predictions associated with the regression will perform 
badly on independent data—worse than if fewer predictors were used in the first place.  This 
is because using too many predictors can result in large coefficients for variables that are not 
actually highly correlated with the predictand.  These coefficients help to fit the dependent 
data, but make the application to independent data unstable and potentially wildly in error.  
That is because you start to fit the noise, and when the noise changes the prediction is really 
bad.  Also, sometimes these variables are better correlated with each other than they are with 
the predictand, which will also produce unstable predictions when used with independent 
data.  In this case the covariance matrix you formally invert is nearly singular. 

Assume that all of the correlation coefficients in the two-predictor cases are equal to 
0.5, and use (3.31) to compute R2.  Then with one predictor the fraction of explained 
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variance, R2, is 0.25.  Adding a second predictor raises R2 to 0.33.   Now suppose that r2y  is 
only 0.25, but that the other correlations retain the value of 0.5.  Now the fraction of 
explained variance with two predictors is 0.25, the same as if only x1  was used.  r2y  equal to 
0.25 is the minimum correlation of x2  with y that is required to improve the multiple R2 
given that x2  is correlated with x1 .  This level of correlation is guaranteed, given that x1 is 
correlated with y at the 0.5 level and x1  and x2  are correlated at the 0.5 level.  Adding x2  as 
a predictor under these circumstances does not increase the explained variance.  No benefit is 
derived from additional predictors, unless their correlation coefficient with the predictand 
exceeds the “minimum useful correlation” - the critical correlation required for a beneficial 
effect increases with the number of predictors used.  Unless predictors can be found that are 
well correlated with the predictand and relatively uncorrelated with the other predictors, the 
optimum number of predictors will usually be small. 

Minimum Useful Correlation:   The minimum useful correlation is the correlation of 
x2  with y that must exist in order that adding x2  to the regression will improve the R2 for y. 

 
 

  
r x2 ,y( )

min useful
> r x1, y( )⋅r x1, x2( )  (3.32) 

We can show this by substituting r2y  = r2ymin useful   = r1y  • r12 into the expression for 
the explained fraction of the variance in the two-predictor case. 
 

 R2 =
r1y
2 + r2y

2 − 2 r1y r2yr12
1− r12

2  

 
R2 =

r1y
2 + r2y

2 − 2 r1y
2 r12

2

1− r12
2

= r1y
2

 (3.33) 

Thus we have proven that when r2y  equals the minimum useful correlation, including 
the second predictor has no influence on the explained variance.  What is not obvious at this 
point is that including such a useless predictor can actually have a detrimental effect on the 
performance of the prediction equation when applied to independent data, data that were not 
used in the original regressions.  Note that the lower the value of r12 , that is, the more 
independent the predictors are, the better chance that both predictors will be useful, assuming 
that they are both correlated with the predictand.  Ideally we would like completely 
independent predictors, r12 = 0.  Completely dependent predictors, r12 = 1.0, are useless, 
only one of these is enough, although you can usually reduce the noise by adding them 
together with some judicious weighting. The desire for independent predictors is part of the 
motivation for empirical orthogonal functions (EOFs), which will be described subsequently. 

Similar, but more complicated considerations apply when deciding to use a third 
predictor.  In general, the more predictors used, the fewer degrees of freedom are inherent in 
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the coefficients ai, the lower the statistical significance of the “fit” to the data points, and the 
less likely that the regression equations will work equally well on independent data.  If 
predictors are added indiscriminately, you come to a point where adding predictors makes the 
regression work less well on independent data, even though you are “explaining” more of the 
variance of the dependent data set.  It is a good idea to use as few predictors as possible, 
while still getting most of the skill you can.  Later we will describe how to pick the optimal 
set of predictors. 

 

3.4.3  Use of Singular Value Decomposition in Multiple Regression 

 There are three extremely useful general decompositions of matrices (e.g. Strang, 
1988).  The first is the triangular factorization, LU, or lower-upper, decomposition, in which 
a matrix A is written as a product of lower triangular matrix L and an upper triangular matrix 
U.   

 A = LU  (3.34) 

L has ones on its diagonal and U has the pivots on its diagonal. 

A second important decomposition is the QR factorization.  Every m by n matrix A 
with linearly independent columns can be factored into 

 A =QR  (3.35) 

The columns of Q are orthonormal, and R is upper triangular and invertible.  When m=n, all 
matrices are square and Q becomes orthogonal2.. 

A third decomposition, with many powerful applications, and which has therefore 
fostered a raging growth industry, is the singular value decomposition.  It is more powerful 
than the others, because it places no restrictions on A, and its factors have very useful 
properties. 

 

 

 

 

 

 
                                                
2 An orthogonal matrix is defined to be one whose columns are orthonormal (Strang, 1988) 

Singular Value Decomposition: Any n by m matrix A can be factored into 
 
  (3.36) 

where U and V are orthogonal and  is diagonal.  The columns of U (m by m) are the 
eigenvectors of AAT, and the columns of V (n by n) are the eigenvectors of ATA.  
The r  singular values on the diagonal of Σ (n by m) are the square roots of the 
nonzero eigenvalues of both  AAT and ATA. . 
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The regression problem (3.20) can be written as a general matrix problem. 

 Ax = b  (3.37) 

Here x represents the vector of unknown coefficients.  The formal solution is easy to 
write down. 

 x = A−1b  (3.38) 

But in practice this formal solution is unattainable if the matrix A has certain properties.  

(1)  If the rows of A are dependent, then the equations have no solution.  This happens when 
b is outside the column space of A.  One can remedy this by projecting b onto the column 
space3 of A to produce a new vector p and then solving the problem Ax'=p.   

(2)  If A has dependent columns, then the solution for x is not unique, and we have to add 
some additional criterion to pick one solution from among the possible ones.   

One can force the solution to be unique in general by choosing the solution of Ax'=p that has 
minimum length (the inner product of the coefficient vector with itself is minimized).   
Singular value decomposition can produce this optimal solution and provide diagnostics of 
the subspaces of A along the way.  But let’s first do an example to make things more 
concrete.   

Suppose we want to solve Ax = b , for x,  where the problem is given by, 

 
a1 0 0 0
0 a2 0 0
0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

x1
x2
x3
x4

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=
b1
b2
b3

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

 

In the column space of A, 
a1 0
0 a2
0 0

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

 the closest vector to b =
b1
b2
b3

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

 is 
b1
b2
0

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
= p. 

So we solve for Ax = p .  But we still have the problem that the solution for x is not unique.  

                                                
3 The column space of a matrix is the space defined by the columns of the matrix used as coordinate vectors.  If 
b is not contained within the column space of A, then there is no solution to the problem Ax=b.  
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The nullspace of A is 

0
0
x3
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

0
0
0
x4

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

, so to get a unique solution we set these components to zero.  

Now the problem has become,  

 
a1 0 0 0
0 a2 0 0
0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

x1
x2
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

b1
b2
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

and the solution is obviously, x1 =
b1
a1
, x2 =

b2
a2

.  This could have been written as the solution 

to the pseudoinverse problem, x+ = A+p , or numerically, 

 

b1 / a1
b2 / a2
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

=

1/a1 0 0 0
0 1/a2 0 0
0 0 0 0
0 0 0 0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

b1
b2
0
0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

 

 

One aspect of singular value decomposition is that it provides a complete assessment of 
the subspaces of the matrix A of rank r.  In particular, the columns of U and V give the 
orthonormal bases for all four fundamental subspaces: 

 The first r columns of U =  the column space of A 
 The last m-r columns of U =  the left nullspace of A 
 The first r columns of V =  the row space of A 
 The last n-r columns of V =  the nullspace of A 

In the problem  Ax = b, the set of all possible combinations of the columns of A is the 
subset of attainable b's.  This is the column space of A.  Since A takes every x into its column 
space (a fundamental theorem of linear albegra), then Ax=b can be solved only if the b 
specified is in the column space of A.  The nullspace is the set of all vectors x such that 
Ax=0.  Of course, the rows and columns of a matrix define different spaces, unless the matrix 
is symmetric.   

Let’s consider a simple example of a 2x2 singular matrix  A= 
1 2
3 6
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ , which has 
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m=n=2, and r=1.  The column space of A is all multiples of 
1
3
⎡ 
⎣ ⎢ 
⎤ 
⎦ ⎥ , a line.  The nullspace of A 

is 
−2
1

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ because A takes any vector with this direction into zero.  The row space is all 

multiples of 1 2[ ] , which is also the column space of AT.  The left null space, defined by 

ATx = 0 , is given by 
−3
1

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ .  Let’s now look at the SVD of A.  

 A = UΣVT  

 
1 2
3 6
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ =

0.316 −0.948
0.948 0.316
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
7.07 0
0 0

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 
0.447 0.894
−0.894 0.447
⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥  

There is one non-zero singular value (7.07) and so the rank of A is one.  The first 
column of U is the unit vector that describes the column space of A, and the second column 
of U is the left nullspace, normalized, and so forth. 

So as you can see, the SVD provides lots of important information about a matrix, and 
much of this is directly applicable to the problem Ax=b.   First of all we need to condition b 
by projecting it onto the column space of A, which is given to us from SVD.  Second, we 
need to find the shortest of all possible solutions if the solution is not unique.  Any vector x 
can be split into its rowspace component x'r   and its nullspace component  x' n , so that 

  x' = x'r +x'n .  The row component provides a solution to   Ax'r = p , and   Ax'n = 0 .  Since the 
row space and null space vectors are orthogonal, the shortest solution vector is achieved by 
setting    x' n = 0 .  All of this is handled pretty much automatically in SVD.  We define the 
pseudoinverse as the matrix which finds the shortest solution vector x+ within the column 
space of A,   x+ =A +b .  This pseudoinverse is given in terms of the SVD, by 

 A+ = VΣ+UT  (3.39) 

where Σ+   is (n by m) and is formed by putting the reciprocals of the singular values 
on the diagonal.  It works. 

 

Exercises: 

3.1)  Show that (3.8) is true. 

3.2)  Show that (3.29) is true. 

3.3)  Show that (3.30) and (3.31) are true. 
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3.4)  A sample of 32 pairs measurements gives a correlation between temperature and 
precipitation of -0.5.  Can a null hypothesis of zero correlation be rejected at the 95% 
level? 

3.5)  What are the 95% confidence limits on the true correlation if the sample correlation is 
0.7 on the basis of 50 pairs of measurements. 

3.6)  What is the minimum useful correlation of y with z, if y is correlated with x at the 0.6 
level, and x is correlated with z at the 0.7 level. 

3.7)  Use Matlab or some other canned program to find the rank and all the subspaces of the 
matrix:  

 A =
1 2 3
3 4 5
5 6 7

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
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