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6. Time (or Space) Series Analysis 
 

In this chapter we will consider some common aspects of time series analysis 
including autocorrelation, statistical prediction, harmonic analysis, power spectrum 
analysis, and cross-spectrum analysis. We will also consider space-time cross spectral 
analysis, a combination of time-Fourier and space-Fourier analysis, which is often used in 
meteorology.  The techniques of time series analysis described here are frequently 
encountered in all of geoscience and in many other fields. 

We will spend most of our time on classical Fourier spectral analysis, but will 
mention briefly other approaches such as Maximum Entropy (MEM), Singular Spectrum 
Analysis (SSA) and the Multi-Taper Method (MTM).  Although we include a discussion 
of the historical Lag-correlation spectral analysis method, we will focus primarily on the 
Fast Fourier Transform (FFT) approach.  First a few basics  
 
6.1  Autocorrelation 
 
6.1.1 The Autocorrelation Function 
 
 Given a continuous function x(t), defined in the interval t1 < t < t2, the 
autocovariance function is 
 

 φ τ( ) = 1
t2 − t1 − τ

x' t( )x' t + τ( )dt

t1

t2−τ

∫  (6.1) 

where primes indicate deviations from the mean value, and we have assumed that τ >0.  
In the discrete case where x is defined at equally spaced points, k = 1,2,.., N, we can 
calculate the autocovariance at lag L. 
 

 φ L( ) = 1
N − 2L

x 'k
k=L

N−L

∑ x 'k+L = x 'k x 'k+L; L = 0,±1,±2,±3,...  (6.2) 

 
The autocovariance is the covariance of a variable with itself (Greek autos = self) at some 
other time, measured by a time lag (or lead) τ.  Note that φ 0( ) = x' 2 , so that the 
autocovariance at lag zero is just the variance of the variable.   
 
The Autocorrelation function is the normalized autocovariance function   φ(τ)/φ(0) = r(τ); 
-1 < r(τ) < 1; r(0) = 1; if x is not periodic r(τ) → 0, as τ → ∞.  It is normally assumed that 
data sets subjected to time series analysis are stationary.  The term stationary time series 
normally implies that the true mean of the variable and its higher-order statistical 
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moments are independent of the particular time in question.  Therefore it is usually 
necessary to remove any trends in the time series before analysis. This also implies that 
the autocorrelation function can be assumed to be symmetric, φ(τ) = φ(-τ).  Under the 
assumption that the statistics of the data set are stationary in time, it would also be 
reasonable to extend the summation in (6.2) from k=L to N in the case of negative lags, 
and from k=1 to N-L in the case of positive lags. Such an assumption of stationarity is 
inherent in much of what follows. 
 
Visualize the computation of the autocorrelation from discrete data 
 
Suppose you have data at N discrete times, equally spaced in time, separated by a time 
interval Δt .  It would look something like this: 
 

 
Fig. 6.1  The time axis from past (left) to future(right), sampled at intervals of Δt  about 
some central, but otherwise arbitrary time of ti.  
 
In Fig. 6.1 ti represents one of the possible N times at which we have data.  If we want to 
compute the autocovariance at one lag, we use the formula,  
 

cov(Δt) = 1
N −1

x '(ti )
i=1

N−1

∑ × x '(ti + Δt) ... or ... cov(Δt) = 1
N −1

x '(ti )
i=2

N

∑ × x '(ti − Δt)  

where x ' = x − x , and  

x = 1
N

xi
i=1

N

∑  

It should be clear that these equations are approximations to the covariance and the mean, 
but that they get better as N increases, so long as the time series is stationary.  One can 
compute the autocovariance at any arbitrary lag, nΔt , by modifying the equation to read, 

cov(nΔt) = 1
N − n

x '(ti )
i=1

N−n

∑ × x '(ti + nΔt) ... or ... cov(nΔt) =
1

N − n
x '(ti )

i=n+1

N

∑ × x '(ti − nΔt)  

 
 
6.1.2  Red Noise:  Noise with memory 
 

We define a “red noise” time series as being of the form: 
 
 x(t) = a x(t − Δt) + (1− a2)1/2 ε(t)  (6.3) 
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where x is a standardized variable x = 0, x' 2 =1⎛ 
⎝ 

⎞ 
⎠  ,  a is on the interval between zero 

and one and measures the degree to which memory of previous states is retained (0 < a < 
1),  ε is a random number drawn from a standardized normal distribution, and Δt is the 
time interval between data points.  This is also called a Markov Process or an Auto-
Regressive, or AR-1 Process, since it remembers only the previous value. 
 
Multiply (6.3) by x(t-Δt) and average to show that a is the one-lag autocorrelation, or the 
autocorrelation at one time step, Δt. 
 

 

x t − Δt( )x t( ) = ax t − Δt( )x t − Δt( )+ 1− a2( )1/2
ε x t − Δt( )

= a ⋅ 1 + 1− a2( )1/2
⋅ 0

x t − Δt( )x t( ) = r Δt( ) = a
; i.e., a is the autocorrelation atΔt

 

 
Projecting into the future, we obtain 
 

x t + Δt( ) = ax t( ) + 1 − a2( )1/ 2ε
= a2x t − Δt( ) + a 1 − a2( )1/ 2ε + 1− a2( )1/2ε
= a2x t − Δt( ) + a +1( ) 1− a2( )1/2 ε

 

 
Now  x(t+2Δt) = ax(t+Δt) + ε. Consistent with (6.2), multiply by x(t) and average using 
the definitions above. 

x t( )x t + 2Δt( ) = ax t + Δt( )x t( ) + εx t( )
r 2Δt( ) = a r Δt( ) + 0

r 2Δt( ) = r Δt( )( )2
 

or by induction 
r nΔt( ) = rn Δt( )  

 
So for a red noise (AR-1) time series, the autocorrelation at a lag of n time steps is equal 
to the autocorrelation at one lag, raised to the power n.  A function that has this property 

is the exponential function, enx = ex( )n , so we may hypothesize that the autocorrelation 
function for red noise has an exponential shape.   
 
 r nΔt( ) = exp −nΔt T{ } . 
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or if τ = nΔt, 
 
 r τ( ) = exp −τ T( ) where T = -Δt lna  (6.4) 

 
The autocorrelation function for red noise. 
 
 

  
Figure 6.2  The autocorrelation function of an AR-1 or red noise process, is one at lag 
zero and decays exponentially away to zero with an e-folding time of T. 
 
In summary, if we are given a red noise time series, or Auto-Regressive -1 (AR-1), 
process, 
 

 x t( ) = ax t − Δt( ) + 1 − a2( )1/ 2ε(t)  (6.5) 
 

then its autocorrelation function is, 
 r τ( ) = exp −τ T( )  (6.6) 

 
where the autocorrelation e-folding decay time is given by, T = -Δt lna  
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Figure 6.3  Comparison of time series (left) and autocorrelation functions for various cases. 
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6.1.3  Statistical Prediction and Red Noise 
 
 Consider a prediction equation of the form 
 
 ˆ x t + Δt( ) = a' x t( ) + b' x t − Δt( )  (6.7) 
 
where x = 0 . a' and b' are chosen to minimize the rms error on dependent data. Recall 
from our discussion of multiple regression that for two predictors x1 and x2 used to 
predict y , 

r x2, y( ) ≥ r x1,y( )r x1,x2( )  
 

In the case where the equality holds, r(x2,y) is equal to the “minimum useful correlation” 
discussed in Chapter 3 and will not improve the forecasting skill beyond the level 
possible by using x1 alone.  In the case of trying to predict future values from prior times,  
r(x2,y)  =  r(2Δt),  and r(x1,y) = r(x1,x2) = r(Δt)  so that we must have  
 

r 2Δt( ) > r Δt( )2  
 

in order to justify using a second predictor at two time steps in the past.  Note that for red 
noise 
 

r 2Δt( ) = r Δt( )2  
 
so that the value at two lags previous to now always contributes exactly the minimum 
useful, and nearly automatic, correlation, and there is no point in using a second predictor 
if the variable we are trying to predict is red noise.  All we can use productively is the 
present value and the autocorrelation function, 
 

x t + Δt( ) = x t( ) with an R2 = a2 = r Δt( )2  
 
This is just what is called a persistence forecast, we assume tomorrow will be like today. 
 
 
6.1.4  White Noise 
 
 In the special case r(Δt) = a = 0, our time series is a series of random numbers, 
uncorrelated in time so that r(τ) = δ(0) a delta function.  For such a “white noise” time 
series, even the present value is of no help in projecting into the future.  The probability 
density function we use is generally normally distributed about zero mean, and this is 
generated by the ‘randn’ function in Matlab.  We might call a time series “pink noise” if 
the autocorrelation is weak. 
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6.1.5  Degrees of Freedom/Independent Samples 
 
 Leith [J. Appl. Meteor., 1973, p. 1066] has argued that for a time series of red 
noise, the number of independent samples N* is given by 
 

 

� 

N* =
NΔt
2T =

total length of record
two times e - folding time of autocorrelation  (6.9) 

 
where N is the number of data points in the time series, Δt is the time interval between 
data points and T is the time interval over which the autocorrelation drops to 1/e.  In other 
words, the number of degrees of freedom we have is only half of the number of e-folding 
times of data we have. The more autocorrelated our data is in time, the fewer degrees of 
freedom we get from each observation.   
 
For Red Noise: 

r τ( ) = e−τ T ln r τ( )( ) = −τ T  
thus 

T = −τ ln r τ( )( )  
 

e.g., for τ = Δt         T = -Δt/ln[r(Δt)], so that 
 

 
N *
N

= −
1
2
ln r Δt( )[ ] ; N *N ≤1

 
(6.10) 

 
 
Table 6.1  Ratio of degrees of freedom to observations (N*/N) for a regularly 

spaced time series with one-lag autocorrelation of r(Δt). 
 

r(Δt) < 0.16 0.3   0.5  0.7 0.9 

 N*/N  1 0.6    0.35     0.18 0.053 
_______________________________________________________________________ 

 
Leith’s formula (6.9) is consistent with Taylor(1921) for the case of a red noise 

process.  Taylor said that  

 

� 

N *
N =

1
2L  

(6.11) 

 
Where L is given by,  

 

 

� 

L = r(τ ') dτ '
0
∞
∫  

(6.12) 

 



ATM 552 Notes:         Time Series Analysis    - Section 6a Page 135 

Copyright  2016   Dennis L. Hartmann 2/3/16  12:08 PM 

 

135 

If we substitute the formula for the autocorrelation function of red noise, (6.4) into 6.12), 
then we get that L=T, and Taylor’s formula is the same as Leith’s.  You may see a 
dimensional inconsistency in (6.11), but this disappears if you consider that Taylor is 
using time in non-dimensional units of the time step, t’=t/Δt, τ’=τ/Δt, so that L=T/ Δt. 

 
The factor of two comes into the bottom of the above expression for N* so that the 
intervening point is not easily predictable from the ones immediately before and after.  If 
you divide the time series into units of e-folding time of the auto-correlation, T, One can 
show that, for a red noise process, the value at a midpoint, which is separated from its 
two adjacent points by the time period T, can be predicted from the two adjoining values 
with combined correlation coefficient of about 2e-1, or about 0.52, so about 25% of the 
variance can be explained at that point, and at all other intervening points more can be 
explained.  This may seem a bit conservative. 
 
Indeed, Bretherton et al, (1999) show that, assuming that one is looking at quadratic 
statistics, such as variance and covariance analysis between two variables x1 and x2, and 
using Gaussian red noise as a model then a good approximation to use is: 
 

 N *

N
=
1− r1(Δt)r2 (Δt)( )
1+ r1(Δt)r2 (Δt)( )  (6.13a) 

where, of course, if we are co-varying a variable with itself, r1(Δt)r2(Δt) = r(Δt)
2 .  This 

goes back as far as Bartlett(1935).  Of course, if the time or space series is not Gaussian 
red noise, then the formula is not accurate.  But it is still good practice to use it. 
 
So you can see that the Bretherton, et al. quadratic formula, which is appropriate for use 
in covariance problems, is more generous than Leith’s conservative formula, allowing 
about twice as many degrees of freedom when the autocorrelation at one lag is large. 
 
However if one is looking at a first order process, such as the calculation of a mean value, 
or the computation of a trend where the exact value of the time is know, then the formula 
used should be,   
 

 N *

N
=
1− r1(Δt)( )
1+ r1(Δt)( )  (6.13b) 

 
This looks more like Leith’s formula without the behavior near zero autocorrelation.  
This form goes back to at least 1935. 
 
If we compare the functional dependence of N*/N from Bretherton et al.(1999), formulas  
(6.13a,b) with that of Leith/Taylor from formula (6.10) we can make the plot below.   
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Figure 6.3  Comparison of N*/N for Leith and Bretherton et al formulas as a 

function of r(Δt). 
 

6.1.6  Degrees of Freedom:   And EOFs. 
 
Estimates of degrees of freedom discussed here generally rely on a statistical model.  
This long history has been summarized by Bretherton et al. (1999).  Bretherton discusses 
a spatial data set of dimension m that is stationary on the time interval for which it is 
sampled.  Define a quadratic functional of some vector variable X(t), where the vector is 
of length m. 

 E(t) = [X(t), X(t)]= Xi
2(t)

i=1

m

∑  (6.14) 

 
The number of spatial degrees of freedom m* is defined to be the number of uncorrelated 
random normal variables ak , each having zero mean and the same population variance 

a2 , for which the χ2  distribution for the specified functional most closely matches 
the PDF of the functional of X(t).  In order to approximate this one can require that the 
χ2  distribution match the observed distributions ensemble mean value E  and the 
temporal variance about this mean,   
 

 var(E) = E '2 = E − E( )2  (6.15) 
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For the χ2  distribution E = m* a2  and var(E) = 2m* a2
2

.  We can then solve for 
the spatial degrees of freedom that matches the first two moments of the normal 
distribution of variance. 
 

 mmm
* =

2 E 2

var(E)
   a2

mm
= var(E)
2 E

 (6.16) 

 
These estimates can be obtained from the m x m covariance matrix of X, Cxx., if X(t) is 
normally distributed and we know C well enough.  Suppose we have the eigenvalues λk  
and the standardized principle components zk (t)  of C.  We can now calculate m* from 
the eigenvalues in the following way. 
 

 E(t) = λk zk
2(t)

k=1

m

∑  E = λk
k=1

m

∑  (6.17) 

and  

 var(E) = λk
2 var zk

2(t)( )
k=1

m

∑ = λk
2 var zk

2 − zk
2( )2

k=1

m

∑  

 = λk
2 zk

4 − zk
2 2

k=1

m

∑  

Since we are assuming that the PCs are standardized Gaussian normal variables their 
variance is one and their kurtosis is 3, and we have that  
 

 var(E) = λk
2 zk

4 − zk
2 2

k=1

m

∑ = λk
2 3−1

k=1

m

∑ = 2 λk
2

k=1

m

∑  (6.18) 

 
We can now write down an eigenvalue based estimate for the effective number of spatial 
degrees of freedom by substituting (6.17) and (6.18) into (6.16). 
 

 meff
* =

λk
k=1

m

∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

λk
2

k=1

m

∑
=

mλ( )2
mλ2

 (6.19) 

 
This formula can also be written in terms of the covariance matrix from which the 
eigenvalues were derived. 
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 meff
* =

Cii
i=1

m

∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2

Cij
2

i, j=1

m

∑
=
trC( )2
tr(C2 )

 (6.20) 

 
The formula (6.13a) can be obtained by using the correlation function for an AR-1 

red noise process in (6.20) and truncating the expansion after one term.  In that way we 
can see that (6.13) requires both an assumption of Gaussian Red Noise and an assumption 
that the one lag autocorrelation is small in the sense that  r(Δt)

2 1 . 
 
One can also easily use (6.19) and (6.20) to estimate spatial degrees of freedom in 

a time series by computing covariance matrices in time, or a lagged covariance matrix.  
In this case the covariance is between the time series and itself lagged in time.  One has 
to choose a suitable interval for the maximum lag.  This is also called singular spectrum 
analysis and will be discussed later. 
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6.1.6  Verification of Forecast Models 
 
 Consider a forecast model that produces a large number of forecasts xf of x.  The 
mean square (ms) error is given by  

 
error = x − x f( )2  (6.21) 

The skill of the model is related to the ratio of the ms error to the variance of x about its 
climatological mean.  Suppose that the model is able to reproduce climatological 

statistics in the sense that  

x f = x , x ' f
2 = x '2  

 
 If the model has no skill then 

x' x' f = 0  
so that  

 x − x f( )2 = x' −x' f( )2 = x' 2 − 2 x' x' f + x' f2 = 2x'2  (6.22) 

This result may seem somewhat paradoxical at first.  Why is it not simply x '2 ? , why 
twice this? 
 
The average root mean squared difference between two randomly chosen values with the 
same mean is larger by √2' than that of each of these values about their common mean. 
 

 
Figure 6.4  Two random time series to illustrate why the standard error of a skill-less 

prediction is actually twice the variance of the time series.  Once the skill falls below 
a certain level, it is better to assume climatology than to use a skill-less prediction. 

 
The following figure shows a plot of the rms error versus prediction time interval τ for a 
hypothetical forecast model whose skill deteriorates to zero as τ →∞. 
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Figure 6.5  RMS error for a simple forecast (solid) and a forecast that optimally weights 

the forecast scheme and climatology. 
 
For  τ  >τc  the model appears to have no skill relative to climatology, yet it is clear 

that it must still have some skill in an absolute sense since the error has not yet leveled 
off. 
The model can be made to produce a forecast superior to climatology if we use a 
regression equation of the form. 
 

ˆ x f = ax f + 1− a( )x  
 
As an exercise you can show that east-squares regression to minimize x − ˆ x f( )2  
yields,  

a =
x' x' f
x '2

≡ The multiple correlation factor, R,  for the original regression  

 
So we should choose  a = R(τ). 
 
As the skill of the prediction scheme approaches zero for large τ  the ˆ x f  forecast is 
weighted more and more heavily toward climatology and produces an error growth like 
the dotted curve in the figure above. 
 
 
Problem:   
 
Prove that at the point where the rms error of a simple forecast xf, passes the error of 
climatology (the average), where τ = τc,  a = 0.5, and at that point the rms error of ˆ x f  
equals 0.87 times the rms error of xf. 
 
 

ττc

rms
error
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6.2  Harmonic Analysis 
 
 Harmonic analysis is the interpretation of a time or space series as a summation of 
contributions from harmonic functions, each with a characteristic time or space scale.  
Consider that we have a set of N values of y(ti) = yi.  Then we can use a least-squares 
procedure to find the coefficients of the following expansion 
 

 

� 

y t( ) = Ao + Ak cos2πk
t
T

+ Bk sin2πk
t
T

⎛ 
⎝ 

⎞ 
⎠ k=1

N
2

∑  (6.24) 

 
where T = the length of the period of record.  y(t) is a continuous function of t.  Normally 
on a computer we would have discrete data and y(t) would be specified at a set of times 
t = t0 + iΔt . Note that Bk = 0 when k=N/2 , since you cannot determine the phase of the 
wave with a wavelength of two time steps.  If the data points are not evenly spaced in 
time then we must be careful.  The results can be very sensitive to small changes in y(ti). 
One should test for the effects of this sensitivity by imposing small variations in yi and be 
particularly careful where there are large gaps.  Where the data are unevenly spaced it 
may be better to eliminate the higher harmonics.  In this case one no longer achieves an 
exact fit, but the behavior may be much better between the data points.   
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Useful Math Identities: 
 
It may be of use to you to have this reference list of trigonometric identities: 
 
 cos(α − β ) = cosα cosβ + sinα sin β ; tanγ =

sinγ
cosγ

 (6.25) 

 
You can use the above two relations to show that: 
 

C cosθ + S sinθ = A cos θ −θo( ) ; where A = C2 + S2 ; θo = Arc tan
S
C
⎛ 
⎝ 

⎞ 
⎠  (6.26) 

 
where you need to note the signs of S and C to get the phase in the correct quadrant. 
The complex forms of the trig functions also come up importantly here. 
 
 eiθ = cosθ + i sinθ where i = −1  (6.27) 
 
Also, from this you can get; 
 

 sinθ =
eiθ − e−iθ

2i
; cosθ =

eiθ + e−iθ

2
 (6.28) 

 
If you need more of these, check any book of standard mathematical tables. 
 
 
6.2.1  Evenly Spaced Data →  Discrete Fourier Transform  

 On the interval 0 < t < T chosen such that t1=0 and tN+1 = T  where N is an even 
number. The analytic functions are of the form 

 

 cos 2πk iΔ t T( ), sin 2πk iΔ t T( )  (6.29) 
 

Δt is the (constant) spacing between the grid points.  In the case of evenly spaced data we 
have: 

a)  ao =  the average of y on interval 0<t<T. 

b)  The functions (predictors) are orthogonal on the interval  0 < t < T so that the 
covariance matrix is diagonal and the coefficients can be determined one at a 
time (see Section 4.2). Hence  
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ak = x 'k y' x' k

2
 (6.30) 

 
 c)  The functions each have a variance  

x' k
2 =

1
2

 

except for AN/2 and BN/2 whose variances are 1 and 0 respectively. 
These results can also be obtained by analytic integration if the data points define the sine 
and cosine waves exactly. 
 
Hence we derive the rather simple algebraic formulas for the coefficients: 

 

Ak =
2
N

yi
i=1

N
∑ cos2πkiΔ t T

Bk =
2
N

yi
i−1

N
∑ sin2πkiΔ t T

k =1,N2 −1

AN 2 =
1
N

yi
i=1

N
∑ cosπNiΔ t T

ao =
1
N

yi∑
bo = 0  (6.31) 

 
or 

 
y t( ) = y + Ak cos 2πk t

T
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ + Bk sin 2πk t

T
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ ⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ k =1

N
2
−1

∑ + AN 2 cos πN t
T

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

 (6.32)
 

 
or, alternatively 

 

y t( ) = y + Ck
k =1

N
2
−1

∑ cos 2πk
T

t − tk( )⎧ ⎨ ⎩ 
⎫ ⎬ ⎭ 

+ AN 2 cos
πNt
T

⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

Ck
2 = Ak

2 + Bk
2 and tk =

T
2πk

tan−1
Bk
Ak

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 (6.33) 
 
Of course, normally these formulas would be obtained analytically using the a priori 
information that equally spaced data on a finite interval can be used to exactly calculate 
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the Fourier representation on that interval (assuming cyclic continuation ad infinitum in 
both directions). 
The fraction of the variance explained by a particular function is given by 

 

r2 y, xk( ) = x' k y'
2

x' k
2 y'2

=
Ak 2 + Bk2

2y'2
,for k =1,2,...

N
2

−1

AN 2
2

y' 2
for k = N

2  (6.34)

 

 
The variance explained by a particular k is 

 
Ck2

2
for k =1,2, ... N

2
−1; AN 2

2 for k = N
2  (6.35)

 

6.2.2  The Power Spectrum 
 
 The plot of  Ck

2
  vs. k is called the power spectrum of y(t) - the frequency 

spectrum if t represents time and the wavenumber spectrum if t represents distance.  
Strictly speaking Ck

2
  represents a line spectrum since it is defined only for integral 

values of k, which correspond to particular frequencies or wavenumbers.  If we are 
sampling a finite data record from a larger time series, then this line spectrum has serious 
drawbacks. 

1.  Integral values of k do not have any special significance, but are simply 
determined by the length of the data record T, which is usually chosen on 
the basis of what is available, and is an important design parameter of the 
analysis.  The frequencies that are resolved are a direct result of the 
length of the time series chosen for Fourier Transform. 

ω k =
2πk
T

, k = 0,1,2,3,4, ...N / 2  

2.   The individual spectral lines each contain only about 2 degrees of freedom, 
since N data points were used to determine a mean, N/2 amplitudes and N/2 
- 1 phases (a mean and N/2 variances).  Hence, assuming that a reasonable 
amount of noise is present, a line spectrum may (should) have very poor 
reproducibility from one finite sampling interval to another; even if the 
series is stationary (i.e., its true properties do not change in time).  To 
obtain reproducible, statistically significant results we need to obtain 
spectral estimates with many degrees of freedom. 
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The number of degrees of freedom for each spectral estimate is just twice the 
number of realizations of the spectrum that we average together. 

3.   With the notable exceptions of the annual and diurnal cycles and their 
higher harmonics, most interesting “signals” in geophysical data are not 
truly periodic but only quasi-periodic in character, and are thus better 
represented by spectral bands of finite width, rather than by spectral lines. 

 
Continuous Power Spectrum:  Φ(k) 
 
 All of the above considerations suggest the utility of a continuous power spectrum 
which represents the variance of y(t) per unit frequency  (or wavenumber) interval such 
that 

 
y'2 = Φ k( )

0

k*

∫ dk
 

(6.36)  

So that the variance contributed is equal to the area under the curve  Φ(k), as shown 
below. 

 
Figure 6.6  Hypothetical continuous power spectrum as a function of frequency or 

wavenumber index, k. 
 
k* corresponds to one cycle per 2Δt, the highest frequency in y(t) that can be resolved 
with the given spacing of the data points.  This k*  is called the Nyquist frequency.  If 
higher frequencies are present in the data set they will be aliased into lower frequencies. 
0  ≤  k  ≤ k*.    This is a problem when there is a comparatively large amount of variance 
beyond k*, or at frequencies greater the Nyquist frequency. 
 

Φk

kkk
k

1 2
*
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  true period             aliased period 
  t = 2/3 Δt                    t = 2.0Δt 
 
       true wavenumber       aliased wavenumber 
                         k = 3.0k*                 k = 1.0k* 
Figure 6.7  A schematic showing how a wave with a period of 2/3 Δt, will be aliased into 

a variance at a period of 2Δt. 
 
 
Degrees of Freedom—Resolution Tradeoff: 
 
 For a fixed length of record, we must balance the number of degrees of freedom 
for each spectral estimate against the resolution of our spectrum.  We increase the 
degrees of freedom by increasing the bandwidth of our estimates. Smoothing the 
spectrum means that we have fewer independent estimates but greater statistical 
confidence in the estimate we retain. 
 
 High resolution     Lower resolution 
 High Information ⇒    Smooth/Average  ⇒ Lower Information 
 Low Quality      High quality in a statistical  
            sense 
 
"Always" insist on adequate quality or you could make a fool of yourself. 
 
 The number of degrees of freedom per spectral estimate is given by N/M* where 
M* is the number of independent spectral estimates and N is the actual number of data 
points yi(t) regardless of what the autocorrelation is.  As long as we use a red-noise fit to 
the spectrum as our null hypothesis, we don’t need to reduce the number of degrees of 
freedom to account for autocorrelation, since we are testing whether the spectrume 
deviates from a simple red noise spectrum which is completely defined by the 
autocorrelation at one lag and the total variance of the time series.   

•

•

•
Δt Δt

t
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6.2.3  Methods of Computing Power Spectra 
 
 
Direct Method:  
 

The direct method consists of simply performing a Fourier transform or 
regression harmonic analysis of yi(t) to obtain Ck2 .  This has become economical 
because of the Fast Fourier Transform (FFT).  Because the transform assumes cyclic 
continuity, it is desirable to "taper" the ends of the time series yi(t), as will be discussed in 
section 6.2.5.  When we do a Fourier analysis we get estimates of the power spectrum at 
N/2 frequencies, but each spectral estimate has only two degrees of freedom.  A spectrum 
with so few degrees of freedom is unlikely to be reproducible, so we want to find ways to 
increase the reliability of each spectral estimate, which is equivalent to a search for ways 
to increase the number of degrees of freedom of each estimate. 

 
How to obtain more degrees of freedom: 

a.)  Average adjacent spectral estimates together.  Suppose we have a 900 day 
record.  If we do a Fourier analysis then the bandwidth will be  1/900 day-1,  
and each of the 450 spectral estimates will have 2 degrees of freedom. If we 
averaged each 10 adjacent estimates together, then the bandwidth will be 
1/90 day-1 and each estimate will have 20 d.o.f. 

 

In this case we would replace the value of the power at the central frequency 
fi , with an average over the band centered on fi .  The frequencies 

represented are separated by the bandwidth of the spectral analysis, Δf .  We 
would replace P( fi )  by P( fi ) , defined thusly. 

 P( fi ) =
1

2n +1
P( fi + nΔf )

−n

n

∑  (6.37) 

This spectrum, thus smoothed, now has 2(2n+1) degrees of freedom, rather 
than 2 degrees of freedom.  The bandwidth of this new spectrum is 
Δf (2n +1) , which means that the effective frequency resolution has been 
degraded by a factor of (2n +1) .  Ideally, we would like the bandwidth to be 
narrow, with the spectral estimates closely spaced in frequency, but in this 
case we have smoothed the spectrum to get more degrees of freedom. 
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b.)  Average realizations of the spectra together.  Suppose we have 10 time series 
of 900 days.  If we compute spectra for each of these and then average the 
individual spectral estimates for each frequency over the sample of 10 
spectra, then we can derive a spectrum with a bandwidth of 1/900 days-1 
where each spectral estimate has 20 degrees of freedom. 
 

In this case we leave the resolution of the spectrum unchanged and averaged 
together realizations, rather than adjacent frequencies.  So if we have a set of 
spectral estimates Pi ( f ) , each with bandwidth Δf , and that we have N of 
these.  Then we compute the averaged spectrum, 

 P( fi ) =
1
N

Pi ( f )
i=1

N

∑  (6.38) 

Now the bandwidth is unchanged, but the averaged spectrum is one spectrum 
with 2N degrees of freedom per spectral estimate, rather than N spectra, each 
with 2 degrees of freedom.  Get it? 

So how do we estimate the degrees of freedom in the direct – FFT method?  If we 
have N data points from which we compute the Fourier transform and subsequent 
spectrum, then the resulting spectrum provides a variance at N/2 frequencies and we have 
two degrees of freedom per spectral estimate.  If we smooth the spectrum, then we must 
estimate the effect of this smoothing on the degrees of freedom, which would be 
increased.  If we average two adjacent spectral estimates together, then we could assume 
that the number of degrees of freedom are doubled.  In general, a formula would be 

 

� 

d.o. f = N
M *

 (6.39) 

Where N is the total number of data points used to compute the spectrum estimate, and 
M* is the total number of degrees of freedom in the spectrum.  For example, if you used 
1024 data points to estimate a spectrum with 64 independent spectral estimates, then the 
number of degrees of freedom would be 1024/64 = 16. 

Later we will describe a method in which we take some data record of length N and 
break it up into chunks of length Mch .  These chunks are chosen to make the 
computation of the bandwidth we want efficient.  Then we average together 
approximately N /Mch  of these spectra, giving us about 2N /Mch  degrees of freedom.  
Do you understand where the 2 comes from?  Because we use Mch  data points to 
produce Mch /2 spectral estimates, each estimate gets two degrees of freedom.  We throw 
away the phase information, so each power estimate at each frequency uses two pieces of 
data. 
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Table 6.2 A table that illustrates the relationship between the chunk length, T, the time 
step Δt, the sample size N, and the approximate degrees of freedom for a case with a total 
sample of 512 days, with time steps of 1 or ½ days and a chunk length of 128 days. 

Time chunk = T 128 days 128 days 

Time  step = Δt 1 day ½ day 

Time Steps in chunk = Mch 128 256 

Bandwidth = Δf=1/T 1/128 1/128 

Nyquist Frequency = 1/2 Δt 1/2 1/1 

Number of Spectral Estimates = Mch /2 64 128 

Samples in 512 days = N 512 1024 

Degrees of Freedom ~ N/ Mch /2 8 8 

Table 6.2 illustrates that if you have a finite record of 512 days, which you divide into 
128 day segments, the degrees of freedom per spectral estimate does not change when 
you halve the time step Δt, and the spacing between frequencies does not change. All that 
happens is that you resolve double the number of frequencies and all of the new ones are 
at higher frequencies than the original Nyquist frequency.  You double the size of the 
Nyquist interval by adding new frequencies at higher frequencies without changing the 
original set obtained with twice the Δt. 

Lag Correlation Method: 

According to a theorem by Norbert Wiener, that we will illustrate below, the 
autocovariance (or autocorrelation, if we normalize) and the power spectrum are Fourier 
transforms of each other.  So we can obtain the power spectrum by performing harmonic 
analysis on the lag correlation function on the interval -TL  ≤ τ  ≤ TL.  The resulting 
spectrum can be smoothed, or the number of lags can be chosen to achieve the desired 
frequency resolution. The Fourier transform pair of the continuous spectrum and the 
continuous lag correlation are shown below. 
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Φ k( ) = r τ( )
−TL

TL

∫ e−ikτdτ

r τ( ) = 1
2π

Φ k( )
−k*

k*

∫ eikτdk
 

(6.47)  

 
The maximum number of lags L determines the bandwidth of the spectrum and the 
number of degrees of freedom associated with each one.  The bandwidth is 1 cycle/2TL, 
and frequencies 0, 1 cycle/2TL, 2/2TL, 3/2TL, ..., 1/2∆t.  There are  
 

 

� 

1
2Δt
1
2TL

=
TL
Δt

 

(6.48) 

 
 of these estimates.  Each with 
 

 

TL
Δt
N

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

−1

=
N
L

degrees of freedom.

 
(6.49) 

 
 

The lag correlation method is rarely used nowadays, because Fast Fourier Transform 
algorithms are more efficient and widespread.  The lag correlation method is important 
for intellectual and historical reasons, and because it comes up again if you undertake 
higher order spectral analysis.    
 


