Contrasting spring and summer large-scale environments associated with mesoscale convective systems over the U.S. Great Plains

Fengfei Song¹, Zhe Feng¹, L. Ruby Leung¹, Robert A. Houze, Jr.¹², Jingyu Wang¹, Joseph Hardin¹, Cameron R. Homeyer³

1. Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
2. Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA
3. School of Meteorology, University of Oklahoma, Norman, Oklahoma, USA

Submitted to Journal of Climate

Corresponding author:

Fengfei Song (Fengfei.Song@pnnl.gov)
Abstract

Mesoscale convective systems (MCSs) are frequently observed over the U.S. Great Plains during boreal spring and summer. Here, four types of synoptically-favorable environments for spring MCSs and two types each of synoptically-favorable and unfavorable environments for summer MCSs are identified using self-organizing maps (SOM) with inputs from observational data. During spring, frontal systems providing a lifting mechanism and an enhanced Great Plains low-level jet (GPLLJ) providing anomalous moisture are important features identified by SOM analysis for creating favorable dynamical and thermodynamic environments for MCS development. During summer, the composite MCS environment shows small positive convective available potential energy (CAPE) and convective inhibition (CIN) anomalies, which are in stark contrast with the large positive CAPE and negative CIN anomalies in spring. This contrast suggests that summer convection may occur even with weak large-scale dynamical and thermodynamic perturbations so MCSs may be inherently less predictable in summer. The two synoptically-favorable environments identified in summer have frontal characteristics and an enhanced GPLLJ, but both shift north compared to spring. The two synoptically-unfavorable environments feature enhanced upper-level ridges, but differ in the strength of the GPLLJ. In both seasons, MCS precipitation amount, area and rate are much larger in the frontal-related MCSs than non-frontal MCSs. A large-scale index constructed using pattern correlation between large-scale environments and the synoptically-favorable SOM types is found to be skillful for estimating MCS number, precipitation rate and area in spring, but its explanatory power decreases significantly in summer. The low predictability of summer MCSs deserves further investigation in the future.
1. Introduction

Mesoscale convective systems (MCSs), the largest convective storms, develop and become organized when convection aggregates and induces mesoscale circulation features to become significantly different from isolated convection events (e.g., Zipser 1982; Fritsch and Forbes 2001; Houze 2004, 2018). The U.S. Great Plains, east of the Rocky Mountains, is home to some of the most intense MCSs on earth. MCSs are very active over the Great Plains during boreal spring and summer, producing ~30%-70% of total rainfall (Feng et al. 2016; Fritsch et al. 1986; Nesbitt et al., 2006) and ~60-75% of extreme rainfall (Maddox et al. 1979; Schumacher and Johnson 2005, 2006) in the region. Hence, better understanding of MCSs is important for improving precipitation prediction over the Great Plains.

The role of large-scale environments in the initiation and development of MCSs over the Great Plains has been extensively studied (e.g., Maddox 1994; Anderson and Arritt 1998; Coniglio et al. 2004, 2010). Based on composites of sounding data around the MCSs, Maddox (1983) found that intense MCSs are often initiated ahead of large-scale troughs in the westerlies, where large-scale upward motion occurs. Coniglio et al. (2010) compared the large-scale environments between rapidly and slowly developing MCSs, and between the long- and short-lived MCSs over the Great Plains and found differences in the environments, such as the Great Plains low-level jet (GPLLJ), instability, frontal zone, moisture depth, vertical wind shear and potential vorticity. Peters and Schumacher (2014) suggested that heavy-rain-producing MCSs over the Great Plains exhibit distinct large-scale environments for warm-season versus synoptic storms. They found that synoptic-type MCSs often occur downstream of an upper-level trough, while warm-season-type MCSs often occur near the entrance region of an upper-level jet. Yang et al. (2017) also found that
large-scale environments including the GPLLJ and upper-level trough are more prominent at the
time of MCS initiation for long-lived than short-lived MCSs. Although previous studies obtained
large-scale environments for certain types of MCSs, the relative importance of different large-
 scale environments has not been quantified. Furthermore, while many studies focused on the
favorable large-scale environments for different types of MCSs, some studies noted that MCSs
over the Great Plains can occur under weak synoptic forcing or unfavorable large-scale
environment, especially during the summertime (e.g., Johns 1982, 1984, 1993; Wang et al. 2011a,
b; Pokharel et al. 2018). In the case of weak forcing, MCSs occur in northwesterly flow associated
with a high-pressure ridge to the west and a low-pressure trough to the east. Although large-scale
upward motion is suppressed or weak under such large-scale environments, a shortwave
perturbation embedded in the large-scale flow may nevertheless support convection. It is still
unclear to what extent MCSs over the Great Plains are associated with favorable or unfavorable
large-scale environments. Hence, one goal of this study is to systematically identify the extent to
which MCSs over the Great Plains are associated with particular large-scale environments during
the warm season, especially contrasting springtime vs. summertime. To this end, we have
conducted self-organizing map (SOM; Kohonen 2001) analysis to characterize the large-scale
environments associated with MCSs observed during a 10-year period (2004-2013). This
methodology allows us to identify different kinds of large-scale environments associated with
MCSs, which may be either favorable or unfavorable. Furthermore, we quantified the predictive
power of the synoptically-favorable environments during MCS initiation for different aspects of
MCSs during their lifecycle. Isolating the large-scale environments at initiation minimizes the
effect of feedback from the MCSs to the large-scale environments (e.g., Ninomiya 1971; Maddox
1980; Fritsch and Maddox 1981; Perkey and Maddox 1985; Smull and Augustine 1993; Keyser
and Johnson 1984; Fritsch et al. 1994; Wolf and Johnson 1995; Stensrud 1996; Fritsch et al. 1994; Houze 2004, 2018; Yang et al. 2017; Feng et al. 2018), which can mask causality or predictability. We developed a large-scale index (LI) from the SOM types to estimate the occurrence and characteristics of MCSs during 2014-2016. We find that the LI can explain a significant fraction of MCSs during spring but there is lower skill during summer.

The remainder of this paper is organized as follows: Section 2 introduces the MCS observations, reanalysis datasets and SOM method. Section 3 discusses the main results, which include the common features and different types of large-scale environments associated with MCSs, the MCS characteristics associated with different types of large-scale environments, and prediction of MCS characteristics based on the large-scale environments at initiation. Section 4 provides a summary and discusses limitations of the study and future work.

2. MCS observations and analysis methods

2.1 MCS identification and tracking

In this study, we make use of three operational datasets to identify and track MCSs in the U.S. Great Plains region: 1) a global merged geostationary satellite infrared brightness temperature (T_b) data (Janowiak et al. 2017) produced by National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center and archived at NASA GES DISC; 2) a 3-dimensional mosaic National Weather Service Next-Generation Radar (NEXRAD) radar reflectivity data known as GridRad (Homeyer and Bowman 2017; Cooney et al. 2018); and 3) the Stage IV multi-sensor hourly precipitation dataset produced by the 12 River Forecast Centers in the continental United States (CONUS, Lin et al. 2011). The satellite T_b data is available at 30 min and ~4 km, the GridRad reflectivity data is provided at hourly and ~2 km in the horizontal and 1 km in the vertical,
and the Stage IV precipitation data is available at hourly and ~4 km. Both the GridRad and Stage IV data are regridded onto the satellite 4 km grid using the Earth System Modeling Framework (ESMF) regridding software (https://www.ncl.ucar.edu/Applications/ESMF.shtml).

All three datasets cover a common 13-year period (2004-2016), so we focus on this period for MCS tracking covering a majority of the continental U.S. east of the Rocky Mountains between 110°W to 70°W and 25°N to 50°N. A recently developed MCS tracking algorithm called the FLEXible object TRacKeR (FLEXTRKR) is used to identify and track long-lived and intense MCSs (Feng et al. 2018). The method first makes use of satellite Tₘ data to track large cold cloud systems (CCSs) associated with deep convective clouds, and subsequently uses the 3-D radar reflectivity data to identify large precipitation features (PFs) that contain intense convection. In this study, MCS is defined as a large CCS (area > 6 × 10⁴ km²) containing a PF with major axis length > 100 km and convective radar reflectivity > 45 dBZ, and persists for at least 6 hours. MCSs in the study domain are tracked from March to October each year, and we focus on MCSs occurring over the Great Plains (25°-50°N, 90°-105°W) during March-April-May (MAM) and June-July-August (JJA). More details about the MCS spatiotemporal characteristics revealed from the 13-year MCS database can be found in Feng et al. (2019, submitted).

For each tracked MCS, FLEXTRKR defines four life cycle stages: convective initiation, MCS genesis, mature and dissipation stages. Convective initiation occurs during the first hour a CCS is detected in the satellite Tₘ data that eventually becomes an MCS. MCS genesis occurs during the first hour after the major axis length of a convective feature exceeds 100 km. The mature stage is defined as the period when the convective feature maintains its major axis length of 100 km and the stratiform rain area exceeds its mean value averaged over the entire duration of the
MCS. The dissipate stage occurs when the convective feature is less than 100 km wide or the stratiform rain area decreases to below the mean value of the MCS. A small fraction of MCSs (~10%) does not have convective features larger than 100 km and hence not all life cycle stages can be defined. In this study, we only select MCSs that go through all the life cycle stages defined above. FLEXTRKR also provides many statistical properties of each tracked MCS, including its duration, precipitation feature area, mean precipitation rate, and accumulated precipitation amount. These MCS properties are used in section 3.4 to construct the LI and evaluate its predictive power.

2.2 MCS large-scale environments

We separate the MCS database into two periods: 2004-2013 is used to train the SOM to identify different types of large-scale environments and 2014-2016 is used to examine the predictive power of the large-scale environments on MCSs. During 2004-2013, we identify a total of 494 and 812 MCSs in spring and summer over the Great Plains, respectively. During 2014-2016, there are 176 and 271 MCSs in spring and summer, respectively. Long-lived and intense MCSs have significant feedbacks to the large-scale environments through their top-heavy diabatic heating profiles that generate potential vorticity (e.g., Ninomiya 1971; Maddox 1980; Fritsch and Maddox 1981; Perkey and Maddox 1985; Smull and Augustine 1993; Keyser and Johnson 1984; Wolf and Johnson 1995; Stensrud 1996; Yang et al. 2017; Feng et al. 2018). To study the large-scale environment conducive to MCS development, only the large-scale environments at the time of MCS initiation are used in our analysis to minimize the effects of MCS feedback to the large-scale environment. For the same reason, we adopt the fixed-space (Eulerian) rather than the MCS-relative (Lagrangian) compositing method to analyze the persistent large-scale features while
smoothing out recurrent MCS-following mesoscale features (Augustine and Howard 1991; Anderson and Arritt 1998).

We use 3-hourly data of zonal and meridional winds (925, 500, 200 hPa), specific humidity (925 and 500 hPa), vertical velocity (500 hPa), geopotential height (200 hPa), convective available potential energy (CAPE) and convective inhibition (CIN) from the North American Regional Reanalysis (NARR) dataset (Mesinger et al. 2006) to represent the large-scale environments. Gensini et al. (2014) noted that CAPE is biased high in NARR based on analysis of more than 100,000 soundings regardless of whether there is convection. However, King and Kennedy (2019) found that the CAPE in NARR is most comparable with the observations among several reanalysis datasets when they focused on the convective environments. Hence, biases in the thermodynamic variables in NARR may have limited effects on the composite of CAPE and CIN when MCSs occur. For each MCS identified by the tracking method, we include the large-scale environments at or 1-2 hours prior to the initiation moments of MCSs to reconcile the different temporal resolutions of the MCSs data (1-hourly) and reanalysis data (3-hourly). For example, for a given MCS initiated between 00-02 UTC, the large-scale environments at 00 UTC are selected. We also use the 6-hourly ERA-Interim reanalysis dataset (Dee et al. 2011) to conduct the same analysis to confirm that the results are not sensitive to the reanalysis datasets (Fig. S1 and Fig. S2 for spring and summer, respectively).

2.3 SOM analysis

We conduct an analysis using SOM to identify different types of large-scale environments associated with MCSs over the Great Plains. SOM is a clustering method developed in the field of artificial neural networks and has been widely used in atmospheric science (e.g., Reusch et al.
2007; Johnson et al. 2008; Lee et al. 2011; Bao and Wallace 2015; Wang et al. 2019). Similar to other clustering methods, SOM projects high-dimensional input data onto a low-dimensional (here two-dimensional) space. An open-source SOM Python package SOMPY (https://github.com/sevamoo/SOMPY) is used in this study. Before the machine learning process, the initiation nodes are assigned by randomly or more efficiently selecting them from the leading Empirical Orthogonal Functions (EOFs). Then we calculate the Euclidean distance between each input pattern and the initiation nodes to begin an iterative procedure, which is also called “training” of SOM. The best-matching node or the “winning” node is the one with the smallest distance between the initiation nodes and the input pattern. Finally, the winning node and the neighborhood nodes around the winner are all updated to adjust themselves towards the input pattern. Since this process is iterated and fine-tuned, the nodes are self-organizing. We call the final SOM nodes the large-scale environment types associated with MCSs. Here, we use the zonal and meridional winds at three levels (925, 500 and 200 hPa) and the specific humidity at two levels (925 and 500 hPa) over the domain (20°-55°N, 70°-110°W) during MAM and JJA in 2004-2013 to construct a training dataset for spring and summer, respectively. All variables are normalized by removing their time mean and divided by their standard deviation over all times with MCS initiation. The cosine latitude weighting is adopted when the spatial dimensions of the variables are collapsed into a single dimension. We tested a slightly larger domain (15°-60°N, 60°-130°W) and smaller domain (25°-50°N, 90°-105°W) to confirm that our main results are not affected by the domain size. We also tested the use of more variables, such as including CAPE and CIN, and the results are also found to be quite similar. The choice of how many SOM nodes to prescribe is a trade-off between distinctiveness and robustness. As shown in Fig. S3 and Fig. S4 for six nodes of the SOM analysis for spring and summer, respectively, it is apparent that some nodes are still redundant.
Here, we choose four nodes for both spring and summer, which allow distinct large-scale environments to be captured while minimizing redundant nodes that are similar.

3. Results

3.1 Common features of large-scale environments associated with MCSs

The large-scale environments over the Great Plains share some similarity as well as distinct features during boreal spring (MAM) and summer (JJA). In both seasons, low-level southerly wind, namely the GPLLJ, transports abundant water vapor from the warm Gulf of Mexico to the Great Plains, resulting in a meridional moisture gradient between the northern and southern Great Plains and a zonal moisture gradient between the Rocky Mountains and the Great Plains (Fig. 1a-b). Despite a slightly weaker GPLLJ, the moisture transport during summer is comparable to spring because the low-level moisture during summer is much higher than spring due to the warmer temperature. At the upper levels, the Great Plains is located ahead of a large-scale trough during MAM, which is favorable for upward motion to develop (Fig. 1c). In contrast, the region is occupied by a high-pressure ridge and westerly flow during summer (Fig. 1d). When MCSs occur during spring, low-level moisture transport is substantially enhanced via a stronger GPLLJ and a positive moisture anomaly maximum is found over the Great Plains (Fig. 1e). But in summer, the GPLLJ and moisture anomalies associated with MCSs are not significant (Fig. 1f). During spring when MCSs occur, there is a negative and positive eddy geopotential height anomaly at the upper-level west and east of Great Plains (Fig. 1g), respectively, suggestive of a stronger trough and ridge that favor stronger large-scale upward motion. In summer, the pair of upper-level negative and positive geopotential height anomaly becomes much weaker and exhibits...
a northeast-southwest orientation that induces anomalous southwesterly wind over the Great Plains (Fig. 1h).

We further examine the large-scale dynamical and thermodynamic factors associated with MCSs over the Great Plains during spring and summer (Fig. 2). In spring, anomalous low-level convergence and mid-level upward motion are prevalent over the Great Plains when MCSs occur (Fig. 2a and 2c). These conditions are also found in summer but the anomalies are much weaker especially for the mid-level upward motion, and they occupy smaller areas and are shifted northward corresponding to the northward shift of MCS occurrence in summer relative to spring (Fig. 2b and 2d). In the thermodynamic fields, the northward shift of CAPE and CIN is also evident in summer compared to spring (Fig. 2e-h). The CAPE anomaly is much stronger during spring than summer, consistent with the seasonal difference of the low-level moisture anomalies (Fig. 1e-f). In contrast to the magnitude difference in the variables discussed so far, there is a sign difference in CIN between the two seasons (Fig. 2g-h). In spring, the CIN anomaly is negative in the Great Plains, but it changes to positive in summer. The change in the CIN anomaly means that during spring, the thermodynamics of the boundary layer suppresses convective development, so stronger dynamical lifting (e.g., low-level convergence) and low-level moistening are needed to destabilize the boundary layer. But during summer, the boundary layer is unstable (positive CIN), so weak dynamical and thermodynamic large-scale perturbations are enough to trigger convection.

3.2 Different types of large-scale environments associated with MCSs

The composites of large-scale environments associated with all MCS initiation moments shown in Fig. 1 and Fig. 2 suggest that the large-scale forcing of MCSs over the Great Plains during boreal spring is much stronger than that during summer. Here we study different types of
large-scale environments associated with the large number of MCSs observed during 2004-2013. Using SOM analysis, we identify four types of large-scale environments associated with MCSs over the Great Plains for each season during spring and summer.

During spring, four types of large-scale environments that support MCSs are distinct. In the first type (Type-1; Fig. 3a and Fig. 4a), anomalous southerly winds dominate most of the Great Plains, with weak northerly winds in the northwestern edge. Between the northerly and southerly winds is a synoptic front with large moisture gradient (dry northwest - wet southeast). There is also an enhanced moisture gradient between the Great Plains and Rocky Mountains in Type-1, compared to all MCSs mean (Fig. 1e). Most MCSs initiate on the moist side of the front but broadly distributed in the Great Plains due to the penetration of the GPLLJ into the northern Great Plains.

In the second type (Type-2; Fig. 3b and Fig. 4b), anomalous southeasterly instead of southerly winds occupy almost the entire domain, creating a sharp moisture gradient along the Rocky Mountains. In Type-2, MCSs tend to initiate more on the western side of the Great Plains. Strong low-level jets in these two types produce moisture greater than 4 g/kg in the whole Great Plains (Fig. 3). These two types correspond to MCSs that are widely distributed in the whole domain, which are known to be the typical spring MCS environments in many previous studies (e.g., Maddox 1983; Coniglio et al. 2004, 2010; Peters and Schumacher 2014). The third type (Type-3; Fig. 3c and Fig. 4c) also corresponds to a synoptic front, but different from Type-1, the front is located more southeastward. The synoptic front structure is found by Coniglio et al. (2010) as a typical environment that supports long-lived MCSs. Type-3 also corresponds to the largest west-east gradient in moisture anomaly, resembling a dryline commonly seen over the Great Plains (Hoch and Markowski 2005). Notably the anomalous northerly-southerly winds are of comparable strength, coinciding with dry and wet anomalies, respectively. Hence, Type-3 features conditions
of a more distinct moisture front compared to Type-1 and Type-2. Similar to Type-1, most MCSs initiate on the moist side of the front, but the initiation evidently concentrates more along the frontal zone where the moisture gradient is sharp rather than spread out more broadly in the other types. The last node (Type-4; Fig. 3d and Fig. 4d) features the northern Great Plains ahead of a mid-/upper-level ridge while the southern Great Plains co-located with a mid-level ridge. At the same time, a low-level jet moisture transport, with a weak anomalous cyclonic circulation, is confined primarily to the southern Great Plains, producing a positive moisture anomaly center in Texas. This type resembles the zonal pattern defined in Coniglio et al. (2004). In this type, most MCSs initiate over the southern Great Plains. Type-3 and Type-4 prefer to occur more during April than the other two months.

These four types of large-scale environments during spring also differ substantially in the middle and upper levels (Fig. 5). In both Type-1 and Type-3, there is an anomalous upper-level anticyclone east of the Great Plains and an anomalous cyclone west of the Great Plains (Fig. 5a and 5c), so the Great Plains is located ahead of the upper-level trough (Fig. 3a and c). Similar to the low-level circulation, the pair of cyclone and anticyclone is also located more southeastward in Type-3 compared to Type-1. There is a strong mid-level upward motion in almost the entire Great Plains between the cyclone and anticyclone in these two types of environment. The pair of cyclone and anticyclone is more compact in Type-3 than Type-1, implying a shorter wavelength in Type-3. Consistently, the upward motion occupies a smaller region but has a stronger magnitude in Type-3 than Type-1. In Type-2, the Great Plains is occupied by an upper-level ridge, with the ridge line dividing the region into two parts, corresponding to mid-level upward motion to the northwest and downward motion to the southeast (Fig. 3b and Fig. 5b). This also explains why the MCSs in Type-2 are mostly confined to the northwestern side of the Great Plains. In Type-4, the
southern Great Plains is located ahead of a trough, with an anomalous upper-level anticyclone to the east, which is not statistically significant and thus does not show up in Fig. 5d, and an anomalous cyclone to the west, respectively (Fig. 3d and Fig. 5d). However, the anomalous anticyclone and cyclone are much weaker compared to that of Type-1 and Type-3. Consistently, the upward motion and MCS initiation is also more confined to the southern Great Plains.

Similar to Figs. 3-4, Figures 6-7 shows four types of low-level and middle-level large-scale environments associated with MCSs but for summer. The large-scale environment patterns are substantially different from spring. Type-1 in summer also has a synoptic front, similar to Type-3 in spring, but the front extends further northward (Fig. 6a and Fig. 7a) into the northern Great Plains. In this type, there is no preference for MCSs to initiate on the moist side of the front and the initiation locations are more widely distributed over the entire Great Plains compared to Type-3 in spring. Moisture availability is likely not a strong constraint on MCS initiation during summer because of the moisture abundance so MCS initiation is not as confined to the moist frontal zone as in Type-3 in spring. This type has much higher frequency during June and August than July. Type-2 corresponds to a strengthened GPLLLJ converging in the northern Great Plains, with a moisture anomaly center over there (Fig. 7b). The southern Great Plains is influenced by the westward extension of the North Atlantic subtropical high in the mid-level (Fig. 6b). Hence, most MCSs occur in the northern Great Plains and this type prefer to occur more during July and August when the subtropical high is most westward extended. Type-3 also exhibits a strengthened GPLLLJ in the northern Great Plains but the anomalous southerly wind is more southeast-northwest oriented, collocating with the positive moisture anomaly (Fig. 7c). This type tends to occur more during July and August. Type-4 exhibits a weakened GPLLLJ with anomalous northeasterly wind and deficient moisture in the entire Great Plains. This type is most frequent during June. In both
Type-3 and Type-4, the relationship between the large-scale environments and MCS occurrences is less clear, although MCS initiation appears to concentrate more in regions with positive (Type-3) and zero (Type-4) moisture anomalies. In the middle-level, Great Plains are ahead of a ridge in both Type-3 and Type-4 (Figs. 6c-d).

The middle- and upper-level large-scale environments associated with MCS initiation during summer are further investigated in Fig. 8. In Type-1, the pattern noticeably resembles Type-3 in spring (Fig. 5c), with an anomalous cyclone to the west and anomalous anticyclone to the east of the Great Plains (Fig. 8a). Similar to the low-level front, the pair of cyclone and anticyclone is also located further north in summer compared to spring. In such configuration, mid-level large-scale upward motion dominates over the Great Plains, favoring MCS occurrence. In Type-2, there is a northeast-southwest oriented anticyclone over the northern Great Plains, with a cyclone to the northwest of the Great Plains. Hence, the northern Great Plains is dominated by large-scale upward motion, and the southern Great Plains is occupied by large-scale downward motion. Therefore, Type-2 favors MCS development in the northern Great Plains. In contrast to Type-1 with a strong cyclone over the Rocky Mountains, there is a weak anticyclone over the mountains and a strong cyclone in northeastern CONUS in Type-3 (Fig. 8c). Type-4 also features a pattern opposite to Type-2, with a cyclonic anomaly over the Great Plains and an anticyclonic anomaly northwest of the Great Plains (Fig. 8d). Combined with the mean-state shown in Fig. 1d, it is evident that the Great Plains is located ahead of a ridge in both Type-3 and Type-4, with northwesterly winds blowing across the Great Plains (Figs. 6c-d). Although there are scattered areas of upward motion where MCSs are initiated in Type-3 and Type-4, the upward motions are not as organized as shown in Type-1 and Type-2. As pointed out in previous studies (Johns 1982, 1984, 1993; Wang et al. 2011a, b), the presence of a large-scale upper-level ridge similar to that of Type-3 and Type-4 is
not favorable for MCSs to develop as it suppresses upward motions. However, smaller-scale perturbations such as middle-tropospheric short-wave forcing may support MCS initiation (Wang et al. 2011a, b; Pokharel et al. 2018). To further confirm this possibility, we calculate the 500 hPa vertical velocity at the moment when an MCS is initiated in a 5°x5° box centered at the MCS initiation location. We found that 80.4% and 73.6% of MCSs occur with an upward motion averaged over the 5°x5° box in Type-3 and Type-4, respectively. Hence, MCS initiations in Type-3 and Type-4 are most likely triggered by perturbations that are smaller than the synoptic-scale, such as the mid-tropospheric (e.g. 600 hPa) perturbations suggested by Wang et al. (2011a, b), or a host of possible local circulations.

3.3 MCS characteristics associated with different types of large-scale environments

The SOM analysis suggests that there are four types of synoptically-favorable environments for MCSs in spring, but in summer, only two types are synoptically-favorable (Type-1 and Type-2) while the other two types are not synoptically-favorable environments for MCSs (Type-3 and Type-4). What are the MCS characteristics associated with the different types of large-scale environments? Figure 9 shows the diurnal cycle, life cycle stages and duration of MCSs for each type of large-scale environment in spring and summer. For both seasons, MCSs initiate more often in the early afternoon, with a maximum frequency around 15 LT and minimum at late night (black line in Fig. 9a-b). All environment types follow a similar diurnal cycle, but also exhibit some differences. Type-1 in spring shows the strongest diurnal cycle, with the largest occurrence contrast between afternoon and late night. Considering the life cycle of MCSs in both spring and summer, MCSs generally spend the least amount of time at the initiation stage (~5%) and approximately the same amount of time in the other three stages (~25%-35%; Fig. 9c-d). For the
frontal-related MCSs in spring (Type-1 and Type-3), they spend more time in the mature stages (i.e., when the stratiform rain area is large) and less time in the dissipation stage, compared to the other two types (Fig. 9c). In summer, the synoptic-related MCSs (Type-1 and Type-2) also spend more time in the mature stage and less time in the dissipation stage than the non-synoptic-related MCSs (Type-3 and Type-4). These results suggest that synoptic-scale forcing tends to support larger MCSs with more pronounced convective features and more expansive stratiform rain area. The duration of MCSs peaks at 18 and 14 hours in spring and summer, respectively (black lines in Fig. 9e-f). For MCSs in Type-1 and Type-2 in spring, which are related to the enhanced GPLLLJ in the northern Great Plains, the duration also peaks at 18 hours, but it is shorter than the other two types (22 hours) with MCSs occurring in the southern Great Plains (Fig. 9e). This is expected because the mean background moisture in the northern Great Plains is much smaller than the southern Great Plains during spring (Fig. 1a). For summer, the non-synoptic-related MCSs (Type-3 and Type-4) often last longer than the synoptic-related MCSs (Type-1 and Type-2), especially for Type-4 (Fig. 9f). This suggests the summertime large-scale environments have less control over the MCS longevity than that in springtime.

MCSs often produce well over 50% of total rainfall in a large area over the Great Plains (Feng et al. 2019 submitted). Figure 10 shows the probability distribution of the mean MCS precipitation rate, precipitation area and precipitation amount for each type of large-scale environment during spring and summer. Generally, the frontal-related types (Type-1 and Type-3) in spring have higher precipitation rate and precipitation area than the other two types (Figs. 10a-b). Hence, MCSs of Type-1 and Type-3 generate more precipitation amount during their lifetime than the other two types (Fig. 10c). During summer, precipitation rate of the frontal-related type (Type-1) is slightly larger and the difference among the other three types is quite small (Fig. 10d).
The frontal-related MCSs (Type-1) also exhibit much larger precipitation area than the other three types (Fig. 10e), resulting in the largest total precipitation amount (Fig. 10f). The larger precipitation rate, area and amount in the front-related MCSs may be due to the higher and more spatially-extensive moisture and stronger lifting.

3.4 Estimating MCS characteristics based on the large-scale environments

Using SOM analysis, we obtained four types of synoptically-favorable environments for spring MCSs and two types of synoptically-favorable environments for summer MCSs (Type-1 and Type-2) using data for 2004-2013. An important question is how well each type of synoptically-favorable environment we identified can be used to estimate and explain the variability of MCS characteristics. Establishing the statistical relationship between the synoptically-favorable environment and MCSs is useful for understanding the predictability of MCSs and the implications for changes in the large-scale environment to MCS changes. Using 3 years of MCS-tracking data for 2014-2016, we evaluate the explanatory power of each synoptically-favorable environment type for estimating MCS occurrence and MCS characteristics. To achieve this goal, we developed a large-scale index (LI) based on pattern correlation between the large-scale environments of 2014-2016 and the large-scale environment of the synoptically-favorable types obtained from 2004-2013 as follows:

\[
LI = \sum_{i=1}^{n} PCC(i) \times N(i)
\]

Here, \(n \) is the total number of synoptically-favorable types, which is 4 in spring and 2 in summer, \(i \) represents the type number, \(PCC(i) \) is the pattern correlation between the large-scale environments averaged over certain time intervals and those from Type-\(i \), \(N(i) \) is the MCS property (i.e., MCS number, MCS precipitation rate and MCS precipitation area) of Type-\(i \).
averaged over the same time interval as $PCC(t)$. The large-scale environments used here include zonal and meridional winds at three levels (925 hPa, 500 hPa and 200 hPa) and specific humidity at two levels (925 hPa and 200 hPa), same as those used for the SOM analysis. We first normalized each variable over time, then these variables for each node and the observed large-scale environments are mapped to a 1-D array after spatial weighting, following the same procedure as used in the SOM analysis. We calculate LI using different time intervals (i.e., 3-hour, 1-day, 1.5-day, 3-day, 6-day and 12-day) for averaging the large-scale environments and the MCS properties to examine the sensitivity of the estimation to the time scale. Besides the large-scale environments, MCSs are influenced by other factors such as smaller scale atmospheric and surface flux perturbations. We expect the large-scale environments to produce higher skill for longer averaging periods as the impacts of smaller-scale perturbations that are more stochastic in space and time tend to average out. In other words, while estimation of individual MCS events may require both large-scale environments and smaller-scale perturbations as precursors, the explanatory power of the mean large-scale environments for the mean MCS properties may increase over longer time periods.

Based on Eq. (1), we use LI to estimate the MCS number, precipitation rate and precipitation area averaged every 3 days during spring and summer shown in Fig. 11. During spring, the large-scale index estimates the MCS number, precipitation rate and precipitation area very well, with correlation of 0.50, 0.39 and 0.54, respectively, which are statistically significant at the 1% level based on Student’s t-test. Note that here MCS precipitation rate and precipitation area are calculated when there is at least one MCS in the domain. Hence, there are some missing values when there is no observed MCS in the domain. This way, we ensure that these three predictand variables are mostly independent, with near zero correlation between each other. Since
both precipitation rate and area are well predicted based on the large-scale environments, precipitation amount is also well estimated, with correlation of 0.50 in spring. During summer, the correlation decreases significantly, indicating the weakening role of the large-scale environments in MCS activity in the Great Plains. The correlation between the large-scale environments and MCS number, precipitation rate and precipitation area is 0.21, 0.28 and 0.08, respectively. Except for precipitation area, the other two correlations are still significant at the 5% level, based on Student’s t-test. The significantly lower correlations in summer mean that other smaller-scale forcings such as the mid-tropospheric perturbations (Wang et al. 2011a, b) embedded in the large-scale environments and/or surface flux perturbations may play a more important role in the predictability of MCSs. Note that we use different types of large-scale environment only based on the initiation moment of MCSs to predict MCS characteristics during the entire MCS duration to minimize the feedback of MCSs to the large-scale environments (e.g., Yang et al 2017; Feng et al. 2018). When we use different types of large-scale environments based on all stages of the MCSs to estimate MCSs and their characteristics, the correlations between LI and MCS characteristics are much higher in both spring and summer. For example, the correlations between LI and MCS numbers in spring and summer reach 0.81 and 0.42 at 3-day intervals, respectively, significant at the 1% level based on Student’s t-test. The increased skill when the large-scale environments during all MCS lifecycle stages are included is consistent with the strong feedback of MCSs to the large-scale environments reported in previous studies.

Figure 12 displays the correlation between the estimated and actual MCS characteristics based on averaging at 12-day, 6-day, 3-day, 1.5-day, 1-day and 3-hour intervals. During spring, the correlation increases considerably as the averaging period increases, especially for MCS number and MCS precipitation rate. The correlation is 0.15, 0.24 for MCS number and MCS
precipitation rate, respectively, at 3-hour interval but it increases steadily to 0.57 and 0.61,
respectively, at 12-day interval. The correlation of MCS precipitation area also gradually increases
from 0.41 at 3-hour interval to 0.58 at 12-day interval. These results suggest that the large-scale
environments provide more useful estimation of MCSs at longer time scale during spring. During
summer, the correlation also increases with the time interval for MCS number and precipitation
rate, with correlation increasing from 0.05 and 0.13 at 6-hour interval to 0.32 and 0.42 at 12-day
interval, respectively. Therefore, large-scale environments also exert increasing influence on the
MCS number and precipitation rate at longer time scales during summer, albeit to a smaller extent
compared to spring. For MCS precipitation area, the correlation remains almost unchanged from
3-hour to 6-day, and it almost vanishes at 12-day interval. This consistently low skill suggests that
summertime MCS precipitation area has almost no relationship with the large-scale environments.
To examine the accuracy of the estimation, we also calculate the normalized root-mean-square-
error (NRMSE) between the estimated and actual MCS features. The NRMSE is lower in spring
than summer, indicating more accurate estimation in spring. With increased time interval, the
NRMSE generally decreases, indicating more accurate estimation for longer term averages.

4. Summary and Conclusions

In this study, we identified four types of synoptically-favorable environments for spring
MCSs and two types of synoptically-favorable environments and two types of synoptically-
unfavorable environments for summer MCSs over the Great Plains by conducting analysis using
self-organizing map on North American Regional Reanalysis data and 10 years of MCS tracked
using observations (2004-2013). During spring, two synoptically-favorable environments are
frontal systems and enhanced GPLLJ (Figs. 3-4). The former provides a lifting mechanism and the
latter provides anomalous moisture for MCS development. There are two types of frontal environments (Type-1 and Type-3) and both of them feature an anomalous cyclone to the west and an anomalous anticyclone to the east of the Great Plains in the upper-levels, favoring extensive mid-level upward motion over the Great Plains (Figs. 5a, e). The main difference between the two types is the more southward location of Type-3 compared to Type-1. Therefore, MCSs in Type-3 is more concentrated over the southern Great Plains. Type-2 corresponds to an enhanced GPLLJ in the low-levels (Figs. 3b and 4b) and an anticyclone in the upper-level over the Great Plains (Fig. 5b). Hence, upward motion is favorable near the western boundary of the Great Plains, where most MCSs in this type are located. A weak low-level cyclone in the southern Great Plains is observed in Type-4, with enhanced GPLLJ in the southern Great Plains (Figs. 3d and 4d). In the upper-level, there is a cyclone to the west and an anticyclone to the east of the southern Great Plains, which favor upward motion and MCS initiation in the southern Great Plains (Fig. 5d).

During summer, the small positive CAPE and CIN anomalies when MCSs occur are quite different from the large positive CAPE and negative CIN anomalies during spring (Fig. 2). This finding suggests that even weak large-scale dynamical and thermodynamic perturbations may trigger MCSs in summer (Fig. 1). In other words, the MCS environments in summer may be either synoptically-favorable or synoptically-unfavorable. The two synoptically-favorable types are also frontal situations (Type-1; Figs. 6a-8a) and enhanced GPLLJ (Type-2; Figs. 6b-8b), but more northward shift relative to spring. An enhanced upper-level ridge is observed in two types of the large-scale environments identified by SOM (Type-3 and Type-4; Figs. 6c-d). Such an environment does not have synoptic-scale vertical air motion favorable for MCS development. With the abundance of mean-state moisture in summer, small-scale perturbations, too small to be evident on the synoptic scale, may generate upward motion sufficient to trigger MCSs. Therefore,
for Type-3 and Type-4, MCS initiation can occur even with small or absence of positive moisture anomalies on the synoptic scale (Fig. 7c-d).

Generally, MCSs initiate more frequently in the afternoon, with a maximum at ~15 LT and a minimum at late night in both spring and summer (Fig. 9a-b). The MCSs for all four types show similar diurnal cycles, but MCSs for Type-1 in spring, which is related to the enhanced GPLLJ, show larger diurnal cycle amplitude than the other types. MCSs spend the least amount of time in the initiation stage (~5%) and similar amount of time in the other three stages (~25%-35%). The synoptic-front-related MCSs in spring and summer spend more time in the mature stage and less time in the dissipation stage than the other two types, suggesting that synoptic-scale forcing tends to support larger MCSs with more pronounced convective features and more expansive stratiform rain area (Fig. 9c-d). In spring, MCSs concentrated in the southern Great Plains (Type-3 and Type-4) often last longer than MCSs concentrated in the northern Great Plains (Type-1 and Type-2) (Fig. 9e), which may be related to the meridional gradient of CAPE (Fig. 2e). In summer, the non-synoptic-related MCSs (Type-3 and Type-4) often last longer than the synoptic-related MCSs (Type-1 and Type-2), especially for Type 4 (Fig. 9f). The MCS precipitation rate, precipitation area and precipitation amount are much larger in frontal-related MCSs in spring and summer than the other types, which may be due to higher and more spatially-extensive moisture anomalies and stronger lifting in these types (Fig. 10).

We have constructed a large-scale index (LI) based on the pattern correlation between the large-scale environments at certain time intervals during 2014-2016 and the synoptically-favorable types (all four types in spring and the first two types in summer) obtained based on training of the SOM using NARR and MCSs data for 2004-2013. LI calculated at 3-day interval predicts the MCS
number, precipitation rate and precipitation area with high skill during spring, with correlation of 0.50, 0.39 and 0.54 for MCS number, precipitation rate and precipitation area, respectively. However, the prediction skill is low during summer, with correlations of 0.21, 0.28 and 0.08 for MCS number, precipitation rate and precipitation area, respectively. The correlation increases with longer time interval and averaging period with the correlations during spring increasing from 0.15, 0.24 and 0.41 for MCS number, precipitation rate and area, respectively, at 3-hour intervals to 0.57, 0.61 and 0.58, respectively, at 12-day intervals. During summer, the correlations are quite weak at 3-hour interval, at only 0.05, 0.13 and 0.12 for MCS number, precipitation rate and area, respectively. The correlations for MCS number and precipitation rate increase gradually to 0.32 and 0.42 at 12-day interval, respectively. These results indicate that the large-scale environment tends to exert larger influence on the MCSs at longer time scale (6-day or 12-day), while other factors (e.g., surface fluxes, mid-tropospheric perturbation) become much less important due to their inherent shorter time/space scales. It should be noted that even at 6-day or 12-day interval, MCS variance explained by the large-scale environment is rather small during summer, suggesting the need to better understand what limits the predictability of summer MCSs in the future.

Due to the coarse resolution and limitations in various physical parameterizations, current global climate models mostly fail to simulate MCSs, thus limiting their ability to simulate the precipitation and surface temperature in the U.S. Great Plains and their diurnal variability (Gao et al. 2017; Lin et al. 2017; van Weaverberg et al. 2018). Analyses of the type presented here, based on observations, can be extended to climate modeling to evaluate how well current climate models simulate the MCS-favorable large-scale environments and to understand what aspects of the various environment types may be deficient in model simulations and the reasons for the biases. Knowledge of the relationship between the large-scale environments and MCS occurrence and
characteristics also provides a key foundation for understanding how changes in the large-scale environments may influence MCSs and their properties in the future.
Acknowledgement

This research is supported by the U.S. Department of Energy Office of Science Biological and Environmental Research as part of the Regional and Global Modeling and Analysis program. PNNL is operated for the Department of Energy by Battelle Memorial Institute under contract DE-AC05-76RL01830. Robert A. Houze was supported by master agreement 243766 between the University of Washington and PNNL. The Global Merged IR dataset is obtained at NASA Goddard Earth Sciences Data and Information Services Center (https://dx.doi.org/10.5067/P4HZB9N27EKU), the GridRad radar dataset is obtained at the Research Data Archive of the National Center for Atmospheric Research (NCAR) (https://rda.ucar.edu/datasets/ds841.0/), the StageIV data is obtained at the NCAR Earth Observing Laboratory (https://data.eol.ucar.edu/dataset/21.093), and the NARR dataset is obtained at NOAA Earth System Research Laboratory Physical Science Division (https://www.esrl.noaa.gov/psd/data/narr/).
References

the Three-Dimensional Gridded NEXRAD WSR-88D Radar (GridRad) Dataset, Technical Report.

Houze, R. A., Jr., 2018: 100 Years of research on mesoscale convective systems. Meteorological

Janowiak, J., B. Joyce, and P. Xie, 2017: NCEP/CPC L3 Half Hourly 4km Global (60S - 60N)
Merged IR V1, edited by Andrey Savtchenko, Greenbelt, MD, Goddard Earth Sciences Data and
Information Services Center (GES DISC), Accessed: [1 February 2018], 10.5067/P4HZB9N27EKU.

Johns RH, 1984: A synoptic climatology of northwest flow severe weather outbreaks. Part II:

Johns RH, 1993: Meteorological conditions associated with bow echo development in convective
storms. Weather Forecast, 8, 294–299.

Johnson, N. C., and S. B. Feldstein, 2010: The continuum of North Pacific sea level pressure

King, A. T., and A. D. Kennedy 2019: North American supercell environments in atmospheric

Figure captions

Fig. 1 Climatology of (a-b) 925 hPa winds (vectors; unit: m s\(^{-1}\)) and specific humidity (shading; unit: g kg\(^{-1}\)) and (c-d) 200 hPa winds (vectors; unit: m s\(^{-1}\)) and geopotential height (shading; unit: gpm), and the composite anomalies of (e-f) 925 hPa wind (vectors; unit: m/s) and specific humidity (shading; unit: g kg\(^{-1}\)) and (g-h) 200 hPa winds (vectors; unit: m s\(^{-1}\)) and eddy geopotential height (shading; unit: gpm) for MCSs occurring in (a, c, e, g) MAM and (b, d, f, h) JJA. The grey contour shows elevation higher than 1500 m based on the TBASE data. The purple box shows the location of the U.S. Great Plains (25\(^\circ\)-50\(^\circ\)N, 90\(^\circ\)-105\(^\circ\)W). In e-f, specific humidity anomalies are shown when they are significant at 5% level; wind vectors are shown when either the zonal or meridional wind anomalies are significant at 5% level.

Fig. 2 Similar to Fig. 1 but for composite anomalies of (a-b) 925 hPa divergence (unit: 10\(^{-6}\) s\(^{-1}\)), (c-d) 500 hPa vertical velocity (unit: Pa s\(^{-1}\)), (e-f) CAPE (unit: J kg\(^{-1}\)) and (g-h) CIN (unit: J kg\(^{-1}\)) for MCSs occurring in (a, c, e, g) MAM and (b, d, f, h) JJA. The hatched regions indicate the anomalies are significant at 5% level.

Fig. 3 Composites of 925 hPa winds (vectors; unit: m s\(^{-1}\)), specific humidity (shading; unit: g kg\(^{-1}\)) and 500 hPa geopotential height (contour; unit: gpm) during March-April-May (MAM) in four nodes based on SOM analysis. The purple and black boxes indicate the location of MCS and SOM analysis domain, respectively. The blue dots denote the location of MCS initiation in each node. The percentage in the upper right corner indicates the occurrence frequency of each node.

Fig. 4 Composite anomalies of 925 hPa winds (vectors; unit: m s\(^{-1}\)), specific humidity (shading; unit: g kg\(^{-1}\)) during March-April-May (MAM) in each type of large-scale environment determined by the SOM analysis. The anomalies are relative to all times during MAM. The purple and black
boxes indicate the boundaries of MCS initiation over the Great Plains (25°-50°N, 90°-105°W) and
the SOM analysis domain (20°-55°N, 70°-110°W), respectively. The cyan dots denote the location
of MCS initiation. The percentage in the upper right corner indicates the percentage of occurrence
of each environment type. The grey contour shows elevation higher than 1500 m based on the
TBASE data. Specific humidity anomalies are shown when they are significant at 5% level; wind
vectors are shown when either the zonal or meridional wind anomalies are significant at 5% level.

Fig. 5 Same as Fig. 4 but for the anomalies of 500 hPa vertical velocity (shading; unit: Pa s⁻¹) and
200 hPa eddy geopotential height anomaly (contour: unit: gpm). The solid (dashed) contours
indicate positive (negative) eddy geopotential height anomaly with a contour interval of 20 gpm.
The hatched regions indicate the vertical velocity anomalies are significant at 5% level.

Geopotential height anomalies are shown when they are significant at 5% level.

Fig. 6 Same as Fig. 3 but for JJA.

Fig. 7 Same as Fig. 4 but for JJA.

Fig. 8 Same as Fig. 5 but for JJA.

Fig. 9 Percentage of MCSs in each SOM type as a function of (a-b) initiation times, (c-d) lifecycle
stages and (e-f) duration during (left panel) MAM and (right panel) JJA. Black lines are for all
MCSs while color lines are for MCSs for each SOM type.

Fig. 10 Probability distribution function (PDF) of (a, e) MCS precipitation rate (unit: mm h⁻¹), (b, f) MCS precipitation area (unit: 10⁴ km²) and (c, g) MCS precipitation amount (unit: 10⁴ mm h⁻¹)
for each SOM type during (top panel) MAM and (bottom panel) JJA.
Fig. 11 Time series comparing the large-scale index (blue line) with observed (top) MCS number (red line), (middle) MCS precipitation rate (red line), and (bottom) MCS convective area (red line) at 3-day interval and averaging during (left panel) MAM and (right panel) JJA from 2014-2016. All the time series are normalized. The two vertical dash lines denote the first day of 2015 and 2016, respectively. Note that MCS precipitation rate and precipitation area when no MCS is observed are excluded in (c-f). The correlation between the large-scale index and MCS features are provided at the center on top of each panel.

Fig. 12 Correlation between the large-scale index and (a) MCS number, (b) MCS precipitation rate and (c) MCS convective area at different time intervals for MAM (red) and JJA (red).
Fig. 1 Climatology of (a-b) 925 hPa winds (vectors; unit: m s$^{-1}$) and specific humidity (shading; unit: g kg$^{-1}$) and (c-d) 200 hPa winds (vectors; unit: m s$^{-1}$) and geopotential height (shading; unit: gpm), and the composite anomalies of (e-f) 925 hPa wind (vectors; unit: m/s) and specific humidity (shading; unit: g kg$^{-1}$) and (g-h) 200 hPa winds (vectors; unit: m s$^{-1}$) and eddy geopotential height (shading; unit: gpm) for MCSs occurring in (a, c, e, g) MAM and (b, d, f, h) JJA. The grey contour shows elevation higher than 1500 m based on the TBASE data. The purple box shows the location of the U.S. Great Plains (25°-50°N, 90°-105°W). In e-f, specific humidity anomalies are shown when they are significant at 5% level; wind vectors are shown when either the zonal or meridional wind anomalies are significant at 5% level.
Fig. 2 Similar to Fig. 1 but for composite anomalies of (a-b) 925 hPa divergence (unit: 10^{-6} s$^{-1}$), (c-d) 500 hPa vertical velocity (unit: Pa s$^{-1}$), (e-f) CAPE (unit: J kg$^{-1}$) and (g-h) CIN (unit: J kg$^{-1}$) for MCSs occurring in (a, c, e, g) MAM and (b, d, f, h) JJA. The hatched regions indicate the anomalies are significant at 5% level.
Fig. 3 Composites of 925 hPa winds (vectors; unit: m s$^{-1}$), specific humidity (shading; unit: g kg$^{-1}$) and 500 hPa geopotential height (contour; unit: gpm) during March-April-May (MAM) in four nodes based on SOM analysis. The purple and black boxes indicate the location of MCS and SOM analysis domain, respectively. The blue dots denote the location of MCS initiation in each node. The percentage in the upper right corner indicates the occurrence frequency of each node.
Fig. 4 Composite anomalies of 925 hPa winds (vectors; unit: m s\(^{-1}\)), specific humidity (shading; unit: g kg\(^{-1}\)) during March-April-May (MAM) in each type of large-scale environment determined by the SOM analysis. The anomalies are relative to all times during MAM. The purple and black boxes indicate the boundaries of MCS initiation over the Great Plains (25\(^\circ\)-50\(^\circ\)N, 90\(^\circ\)-105\(^\circ\)W) and the SOM analysis domain (20\(^\circ\)-55\(^\circ\)N, 70\(^\circ\)-110\(^\circ\)W), respectively. The cyan dots denote the location of MCS initiation. The percentage in the upper right corner indicates the percentage of occurrence of each environment type. The grey contour shows elevation higher than 1500 m based on the
TBASE data. Specific humidity anomalies are shown when they are significant at 5% level; wind vectors are shown when either the zonal or meridional wind anomalies are significant at 5% level.
Fig. 5 Same as Fig. 4 but for the anomalies of 500 hPa vertical velocity (shading; unit: Pa s\(^{-1}\)) and 200 hPa eddy geopotential height anomaly (contour: unit: gpm). The solid (dashed) contours indicate positive (negative) eddy geopotential height anomaly with a contour interval of 20 gpm. The hatched regions indicate the vertical velocity anomalies are significant at 5% level. Geopotential height anomalies are shown when they are significant at 5% level.
Fig. 6 Same as Fig. 3 but for JJA.
Fig. 7 Same as Fig. 4 but for JJA.
Fig. 8 Same as Fig. 5 but for JJA.
Fig. 9 Percentage of MCSs in each SOM type as a function of (a-b) initiation times, (c-d) lifecycle stages and (e-f) duration during (left panel) MAM and (right panel) JJA. Black lines are for all MCSs while color lines are for MCSs for each SOM type.
Fig. 10 Probability distribution function (PDF) of (a, e) MCS precipitation rate (unit: mm h\(^{-1}\)), (b, f) MCS precipitation area (unit: \(10^4\) km\(^2\)) and (c, g) MCS precipitation amount (unit: \(10^4\) mm h\(^{-1}\)) for each SOM type during (top panel) MAM and (bottom panel) JJA.
Fig. 11 Time series comparing the large-scale index (blue line) with observed (top) MCS number (red line), (middle) MCS precipitation rate (red line), and (bottom) MCS convective area (red line) at 3-day interval and averaging during (left panel) MAM and (right panel) JJA from 2014-2016. All the time series are normalized. The two vertical dash lines denote the first day of 2015 and 2016, respectively. Note that MCS precipitation rate and precipitation area when no MCS is observed are excluded in (c-f). The correlation between the large-scale index and MCS features are provided at the center on top of each panel.
Fig. 12 Correlation between the large-scale index and (a) MCS number, (b) MCS precipitation rate and (c) MCS convective area at different time intervals for MAM (red) and JJA (red).