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Chapter 1

INTRODUCTION

The ability to determine if flow impinging a mountain rises over the mountain

freely or is blocked and deviates around the mountain is of great practical importance

in regions of complex terrain. In addition to the impact on pollution dispersion,

barrier and flank jets in the vicinity of the massif are also associated with blocked

flow (e.g. Marwitz, 1983; Georgelin and Richard, 1996). The transition from flow over

to blocked flow may also reduce the amplitude of lee-waves generated by the massif,

which in turn may reduce the wave drag by reducing the height of the topography

that the unblocked portion of the flow encounters. Stagnant air generated by blocked

flow may also absorb downward propagating trapped lee-waves which leads to lee-

wave decay (Smith et al., 2002). In addition ridge-parallel variations in the blocked

flow can lead to enhanced precipitation on the windward side by enhancing low-

level convergence (Rotunno and Ferretti, 2001). A gap exists however between the

theory used to predict blocked flow in idealized settings and the application of that

theory in the real atmosphere. In particular the thermodynamic structure in the real

atmosphere deviates, sometimes substantially, from the theoretical assumptions made

in idealized models used to predict blocking.

Two relatively simple theories have been presented to describe the parametric

dependence of the blocked flow on the atmospheric structure and the shape of a

mountain. Both theories are directly applicable to situations in which the upstream

winds are uniform at speed U and the mountain has a simple convex shape with
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characteristic along-stream width a, cross-stream width b, and height h0.

The first theory, proposed by Smith (1988) for circular mountains and extended

by Smith (1989) to include elliptical mountains with varying horizontal aspect ratio,

β = b/a, estimates the conditions under which blocking occurs using linear theory

of air flow over an isolated mountain in which both the cross-mountain wind speed

U and Brunt-Väisälä frequency, N are constant upstream. We label this theory

the continuously-stratified constant-stratification (CSCS) theory. Neglecting Coriolis

forces and assuming the motions are incompressible, hydrostatic and steady, one may

show that the flow is completely determined by two parameters: the mountain height

normalized by a scale for the vertical wavelength of a linear gravity that can remain

stationary with respect to the mean flow ε = Nh0/U and β. The parameter ε can

also be thought of as describing the non-linearity of the flow since the perturbation

u in the linear limit is proportional to Nh0. Smith (1989) found that as ε increases,

stagnation in the fluid first occurs on the windward slope for narrow mountains (β <

1) elongated in the direction of the flow and occurs first above the lee-slope in the form

of wave breaking for wide mountains (β > 1). Numerical studies by Smolarkiewicz

and Rotunno (1990), Ólafsson and Bougeault (1996), and Bauer et al. (2000) have

confirmed the general shape of Smith’s curve for stagnation.

The CSCS theory has been extended to account for rotational effects (Thorsteins-

son and Sigurdsson, 1996). Using a numerical model they showed that as the influence

of rotation increases the value of ε required for blocked flow also increases. More re-

cently the effect of air impinging upon a mountain from various flow angles under

the influence of rotation has been investigated by Zangl (2004). He found that for a

east-west oriented ridge the flow splitting point moves eastward as the ambient flow

shifts from northwest to northeast.

Buzzi et al. (1998); Schneidereit and Schär (2000); Rotunno and Ferretti (2001) all

examined the effect of latent heat release on flow blocking during the 1994 Piedmont

Flood with the aid of numerical simulations. They found that latent heating caused
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by condensation reduces the tendency for flow to be blocked by reducing the static-

stability upstream on the mountain. In idealized numerical experiments Jiang (2003)

showed that latent heat release can can delay the occurrence of flow splitting to values

of ε twice as large as a dry but otherwise similar atmosphere.

The CSCS theory has been applied by several authors to describe upstream condi-

tions when flow blocking is present. Two methods have appeared in the literature to

map atmospheric profiles with non-constant stability to a constant value that can be

used to define ε. The first is a bulk estimate of the low-level stability where the total

change of θ across a layer is used to define N . This method was used by Kitabayashi

(1977) in a study of windward stagnation in Japan. Manins (1982) commented that

the bulk estimation was inappropriate since at night time it is influenced to much by

radiatively cooled surface air. The second method used is to average the low-level

stability. This has been used by several authors to estimate the low-level stability

(e.g. Manins, 1982; Mass and Ferber, 1990).

The second simple theory that has been used to estimate the threshold for flow

blocking relies on the two-layer reduced-gravity shallow-water (RGSW) model. Once

again Coriolis forces are neglected; the flow is assumed steady and, consistent with

the shallow-water approximation, the motions are assumed to be incompressible and

hydrostatic. Let H be the depth of the shallow-water layer upstream and g′ the

gravitational restoring force on the fluid computed as Δρ
ρ0

g where Δρ is the density

difference between the two fluid layers and ρ0 is the density of the lower layer. Accord-

ing to this model, the disturbance is governed by two key parameters in the upstream

flow, the mountain height normalized by the fluid depth M = h0/H and a Froude

number Fr = U/
√

g′H . The RGSW model parameter space has been explored in the

laboratory with tank experiments by Lamb and Britter (1984) and with a numerical

model by Schär and Smith (1993).

While the RGSW theory has been used by several authors to describe effects in

the lee of mountains (e.g. Smith and Grubisic, 1993; Mobbs et al., 2005) it does
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not seem to have been widely used to predict upstream stagnation. Chen and Feng

(1995) comment that typical values M and Fr during the Hawaiian Rainband Project

were in the part of the parameter space in which blocking should be expected. More

recently Jiang et al. (2005) used the RGSW theory to characterize blocking during

the Mesoscale Alpine Project.

Neither theory, however, exactly accounts for thermodynamic structures like those

often encountered in the real atmosphere. In this paper we consider a upstream ther-

modynamic profile in which an inversion is present near mountain-top level and the

remainder of the atmosphere is stably stratified with constant stratification. This pro-

file is a natural extension to both the CSCS theory, because an inversion is introduced

into the constant N environment and to the RGSW theory, because background sta-

bility and a finite-thickness inversion is introduced into what should otherwise be two

homogeneous layers separated by an infinitesimally-thin inversion. In order to keep

the parameter space relatively small we consider cases in which the background wind

speed is constant with height.

In this study we ask whether the CSCS or RGSW theory gives a better prediction

of the likelihood of flow blocking when an upstream inversion is present in a stably-

stratified atmosphere. We consider three metrics to characterize the degree of blocked

flow: the presence of reversed flow on the windward slope, the minimum wind speed

on the windward slope, and the percent of mass initially upstream of the mountain

that deviates laterally around the mountain. We test how each idealized method

compares with each other in these metrics. In addition to examining whether the

RGSW or CSCS theories better predict flow blocking we also examine the best way

to map soundings with inversions into the CSCS parameter space. In particular we

examine whether the bulk method or the average method is better suited to estimate

the low-level stability.
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Chapter 2

EXPERIMENTAL SETUP

2.1 Upstream Soundings

The effect of upstream inversions on the upwind side of mountain ranges has seen

little attention in the literature. As discussed in the Chapter 1 it is commonplace to

smooth an upstream sounding with an inversion so that the stability is constant and

the CSCS theory can be applied, or to approximate the inversion with infinitesimally-

thin fluid interface so the RGSW theory can be applied. Each method obviously

introduces errors into the upstream sounding. This section describes the structure of

the upstream sounding with an inversion and how we approximate that sounding to

fit into either the CSCS theory or the RGSW theory.

We choose an upstream soundings with an inversion at or below the level of the

mountain crest. The solid lines in Fig. 2.1 show the θ profile of two such soundings.

The location of the inversion is defined to be where its upper edge is located relative

to the top of the mountain. Figure 2.1a shows an inversion where the upper edge is

below-mountain-top of a 1000 m high mountain, we call this the “below-mountain-

top inversion.” The upper edge of the below-mountain-top inversion scales with the

mountain height and is located at z = 3
4
h0, where h0 is the mountain height. Figure

2.1b shows an inversion where the upper edge is at the mountain-top for the same

1000 m high mountain, we call this the “mountain-top inversion.” Like the below-

mountain-top inversion the upper edge of the mountain-top inversion scales with the

mountain height and is located at z = h0. The thickness of the inversion also scales

with the mountain height and is 1
4
h0. The stability within the inversion as well as
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Figure 2.1: Upstream soundings of θ. Solid line indicates the actual sounding for the
(a) below-mountain-top inversion and (b) mountain-top inversion for this particular
h0 = 1000 m high mountain. The dash-dot line is the θ sounding with stability
obtained by averaging the stability below-mountain-top line. The dashed line is the
θ sounding with stability obtained by making a bulk estimate of the stability below-
mountain-top line.
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above and below the inversion is constant with height and is independent of h0. Below

the inversion the stability is N = 0.002 s−1 and above the inversion the stability is

N = 0.01 s−1. The stability within the inversion varies between the below-mountain-

top inversion sounding and the mountain-top inversion sounding and will be discussed

later in this section.

If one wishes to apply the CSCS theory to a situation where the upstream sounding

has a non-uniform thermodynamic profile then some smoothing operation must be

performed on the low-level stability. The stability of the thermodynamic profile must

be constant with height in order for the CSCS theory to be directly applicable. We

consider two ways to smooth the stability in the upstream soundings with inversions

so the CSCS theory is applicable. The first method is to make an average estimate

of the stability below the mountain-top,

NA =
1

h0

∫ h0

0
N(z)dz (2.1)

where N(z) is the vertical profile of the Brunt-Väisälä frequency . The θ profile

obtained by averaging the low-level stability is shown by the dash-dot line in Fig. 2.1.

The second possible method is to make a bulk estimate of the low-level stability by

considering the bulk change of θ between the ground and the height of the mountain-

top and then define the stability with this,

NB =

√
g

θ0

Δθ

h0
(2.2)

where Δθ = θ(h0) − θ(0). This is equivalent to averaging N2 between 0 and h0. The

θ profile obtained by making a bulk estimate of the low-level stability in the inversion

sounding is shown by the dashed line in Fig. 2.1. Apparent in Fig. 2.1 is that neither

sounding accurately approximates the upper level stability of the sounding with an

inversion. The average estimate underestimates the upper level stability while the

bulk estimate overestimates it. In order to not introduce any bias in the approximation

of the soundings, in particular the stability above the inversion, we set the stability
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within the inversion so that the magnitude of the error introduced in NA and NB

by making the average and bulk approximations, respectively, is equal above the

inversion. The stability within the inversion for the below-mountain-top inversion is

N = 0.020 s−1 and N = 0.025 s−1 for the mountain-top inversion.

Since there exists no analytic solution to the fully non-linear equations that de-

scribe stratified flow over topography with a constant upstream stability profile (CSCS

model) we must rely on numerical simulations to evaluate the flow behavior. We map

out the ε dependence in the CSCS parameter space for three mountain shapes, β = 1,

β = 2, and β = 4, by varying the upstream constant stability between NA and NB

and by varying the mountain height h0. The numerical model used is described in

the next section.

If one wishes to apply the RGSW water theory to a stably stratified sounding

with a low level inversion then two variables must be approximated from the up-

stream sounding. The first is an approximation of the height of the fluid interface far

upstream, HSW . Since the inversion has finite thickness, the level of the fluid interface

must be arbitrarily chosen to be somewhere within the inversion. We choose the fluid

interface to be half-way between the top and bottom of the inversion. We show later

though that the the RGSW prediction of flow reversal is sensitive to the choice of the

upstream fluid interface height. We also must approximate the reduced gravity, g′
SW .

We do this by considering Δθ, which is now the change of θ across the inversion and

θ0, the potential temperature at the base of the inversion,

g′
SW =

Δθ

θ0
g. (2.3)

With these two parameters we can estimate the upstream Froude number, FrSW =

U/
√

g′
SWHSW and the mountain height normalized by the upstream fluid depth,

MSW = h0/HSW .
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2.2 Numerical Model

The numerical model follows Durran and Klemp (1983) and Epifanio and Durran

(2001). The model is based on the three-dimensional, non-rotating compressible-

Boussinesq equations of motion. It is fully non-linear, non-hydrostatic and employs

a free-slip lower boundary. The first order closer scheme of Lilly (1962) is used

to parameterize sub-grid scale turbulence. At the top boundary a linear radiation

condition based on Klemp and Durran (1983) and Bougeault (1983) and modified by

Durran (1999) is used. The model uses a terrain following height coordinate

σ =
z − h

zt − h

where z is the physical height, h is the height of the terrain, and zt is the top of the

domain. In order to prevent unphysical maximum and minimum from developing in

the θ field near the edges of the inversion a flux limited advection scheme (LeVeque,

1996) is used to advect θ in cases with inversions. A centered fourth order advection

scheme is used in all of the cases with constant upstream stability.

The topography used in the model is an elongated ridge with an uniform-height

center section and is defined by

h(x, y) =

⎧⎪⎨⎪⎩
h0

16
[1 + cos (πr)]4 , if r ≤ 1;

0, otherwise,
(2.4)

where

r2 =

⎧⎪⎨⎪⎩
(

x
4a

)2
+

( |y|−(β−1)a
4a

)2
, if |y| > (β − 1) a,(

x
4a

)2
, otherwise.

(2.5)

In the above equations h0 is the maximum mountain height, a is the along-stream

length scale, and β is the ratio of along-stream length scale to cross-stream length

scale.

The undisturbed upstream wind speed is U = 10 m s−1. The flow is in the

hydrostatic limit by setting a such that Na
U

= 10, where N is the stability aloft.
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Δ
=

0.
9a

Δ
=

0.
3aΔ

=
0.

1a

(36a, 36a)

(−36a,−36a)

(−12a,−15a)

(18a, 15a)

(15a, 7a)

(−5a,−7a)

Figure 2.2: Location and size of the three nested grids. Upper right and lower left
corner locations are relative to the mountain center.

We initiated the flow by gradually increasing u from rest to U over a time interval

−4 ≤ Ua
t

≤ 0. We run the model until Ut
a

= 25, at which time the upstream flow

features are nearly in steady state.

The three nested grids shown in Fig. 2.2 are used in all simulations to make the

integration more computationally efficient. The location of the upper-right and lower-

left corners of each nest relative to the mountain center, located at the origin, are

also shown. The largest nest extends 36a in each direction from the mountain center.

The second finest mesh extends −12a upstream and 18a downstream of the mountain

center. The lateral edges of the second finest mesh are ±15a from the mountain
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center. The finest mesh extends −5a upstream and 15a downstream with the lateral

edges lying ±7a from the mountain center. The horizontal grid spacing is Δ = 0.1a

on the finest mesh and increases by a factor of 3 for each larger mesh. The vertical

grid spacing is Δz = h0/32 for z < 3
2
h0 and then stretches to Δz = U/(4N), where N

is again the stability aloft. This ensures that the inversion will be well resolved with

at least 8 grid points while allowing the integration to be computationally efficient.

The top boundary is zt = 9
2

U
N

π, with N the stability aloft. In order to not violate the

CFL condition the large time step on the finest mesh is Δt = 0.025 a
U

and increases

by a factor of 3 on each larger mesh.
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Chapter 3

FLOW MORPHOLOGY WITH VARYING UPSTREAM

SOUNDINGS

3.1 Structure with and without inversions

The morphological flow features present in the solution with an inversion in the up-

stream sounding are examined in this chapter. In addition morphologic features of

solutions with upstream soundings where the stability is constant and estimated from

the upstream sounding with an inversion are examined. It should be expected that

differences exist between a solution from a a sounding with an upstream inversion and

one with constant stability estimated from the inversion sounding, however, since it is

very common in the literature to estimate the stability of soundings with non-uniform

stability (see Chapter 1) it is important to understand how significant the differences

are.

Recall that there are two simple methods we use to estimate an upstream sounding

that has non-uniform low-level stability. The first is to average the buoyancy frequency

below the mountain crest; the second is to make a bulk estimate of the low-level

stability by considering the total change of θ that occurs between the ground and the

level of the mountain crest. Neither of these estimates are perfect but recall that the

stability within the inversion is set so that the average method underestimates and the

bulk method overestimates the upper level stability of the inversion sounding by equal

magnitudes. Thus neither the average method or the bulk method is immediately

favored when estimated the stability from a sounding with an inversion.

Figure 3.1a shows the u component of velocity and θ contours at a non-dimensional
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time of Ut/a = 25 for the solution with a below-mountain-top inversion present in the

upstream sounding. The mountain height is h0 = 1400 m and the mountain aspect

ratio is β = 4 in this figure. Far upstream the top of the inversion is z = 1050 m

and the bottom of the inversion is z = 700 m. The lower edge of the inversion has

been displaced upwards by about 300 m at the upstream edge of Fig. 3.1, which is

the inflow boundary of the fine-mesh grid.

From the upstream inflow boundary to roughly x = −1.9a the flow field is rela-

tively homogeneous in the vertical direction which is similar to the structure in the

RGSW theory where the flow fields are completely uniform below the fluid interface.

Downstream of x = −1.9a a horizontal region of reversed flow exists above the moun-

tain surface which extends forward to where it attaches to the mountain surface at

about x = −0.9a. The magnitude of the u component of the wind is weak within the

reversed flow region and does not exceed 2 m s−1. Fig. 3.2a shows the u component of

the wind on the surface in color contours for the same below-mountain-top inversion

case. The region of reversed flow runs laterally along the mountain slope to y = ±3.2a

which is beyond the uniform height section of the ridge. Also shown in blue contours

in Fig. 3.2a is the v component of the wind found at the surface. The magnitude

of the v component exceeds 2 m s−1 upstream of x = −5a, which is at the edge of

the fine-mesh grid. This upstream extent of the cross-stream wind component acts

to divert flow laterally around the mountain. The flow diversion will be examined in

more detail in Chapter 4.2.

Figures 3.1b and 3.1c correspond to solutions where the upstream soundings are

the average estimate and bulk estimate respectively, of the low level stability in the

below-mountain-top inversion sounding. The average estimate of the mountain non-

linearity parameter in the original sounding is εA = 1.20 and the bulk estimate is

εB = 1.60. Notice that if the upper level stability is used to define the non-linearity

parameter in the sounding with the inversion then ε = 1.4 which is Δε = ±0.2 from

either the average or bulk estimates of low-level stability. In both constant-ε cases the
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Figure 3.1: The u component of the wind and θ along the center-line of a β = 4
mountain at Ut

a
= 25. The solution for the (a) below-mountain-top inversion with

physical mountain height of h0 = 1400 m and solutions for corresponding constant-N
soundings with the stability obtained by: (b) averaging the low-level stability, and
(c) making a bulk estimate of the low-level stability.
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Figure 3.2: The u component of the wind at the surface when Ut
a

= 25 for a h0 =
1400 m, β = 4 mountain is shown in shaded contours, the contour interval is 2 m s−1.
The v component is shown in blue contours with a 2 m s−1 interval and no zero-
line. The case for the (a) below-mountain-top upstream inversion and corresponding
constant-N soundings obtained by: (b) averaging, and (c) making a bulk estimate of
the upstream stability.
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flow is reversed on the upwind side of the mountain. However, in both the average

and bulk estimated solutions the flow reversal occurs lower down on the mountain

slope than in the below mountain-top inversion case. Also apparent is that in the

average estimated sounding the reversed flow remains attached to the surface whereas

in the bulk estimated sounding the reversed flow detaches from the surface similar to

that in the below-mountain-top inversion sounding. In fact upon closer inspection the

reversed flow region in the bulk estimated sounding is not even in contact with the

mountain surface. This is also apparent in Fig. 3.2c which shows no reversed flow at

the surface along the centerline. Instead reversed flow is present along the outer edges

of the uniform height section. This is somewhat of a time dependent feature as the

areal coverage of the reversed flow region slowly pulsates on the upwind slope. The

reversed flow region at the surface in the solution with the averaged upstream sound-

ing (Fig. 3.2b) extends laterally to roughly the edge of the uniform-height section of

the mountain, which is slightly narrower than in the case with a below-mountain-top

upstream inversion. Another similarity between the bulk estimated solution and the

solution with an inversion is the upstream extent of the v component of velocity.

Figure 3.2c shows that the magnitude of the v component exceeds 2 m s−1 upstream

of x = −5a, which is at the edge of the fine-mesh grid. In the averaged solution the

magnitude of the v component of velocity greater than 2 m s−1 only extends upstream

to roughly x = −4a. Consequences of this difference will be explored more in Chapter

4.2 in regards to the low-level flow diversion.

The u component of the wind along with contours of constant θ for the mountain-

top inversion case are shown in Fig. 3.3a. This figure is similar to Fig. 3.1a except

the upstream inversion is at the mountain-top with the top of the inversion at z =

1400 m and the bottom of the inversion at z = 1050 m. Like the below-mountain-top

inversion, the inversion in this case is displaced roughly 300 m at the upstream edge

of the fine-mesh grid. The structure of the flow field is also similar to the below-

mountain-top inversion. The u component of velocity is relatively homogeneous in
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Figure 3.3: The u component of the wind and θ along the center-line of a β = 4
mountain at Ut

a
= 25, with U = 10 m s−1. The solution for the (a) mountain-top

inversion with physical mountain height of h0 = 1400 m and solutions for correspond-
ing constant-N soundings with the stability obtained by: (b) averaging the low-level
stability, and (c) making a bulk estimate of the low-level stability.



18

the vertical below the inversion up to roughly x = −1.8a. The one main difference

between the mountain-top inversion and below-mountain-top inversion solutions is

the mountain-top inversion case does not reach a critical mountain height to induce

reversed flow on the windward slope. The average estimate of the non-dimensional

mountain height obtained from the mountain-top inversion sounding is εA = 1.07 and

the bulk estimate is εB = 1.73. Here the difference between the average and bulk

estimate of the non-linearity parameter and the non-linearity parameter obtained by

using the upper level stability in the inversion sounding is Δε = ±0.33. The solution

from the averaged sounding (Fig. 3.3b) also shows that the critical mountain height

for reversed flow has not been reached. The flow field instead exhibits a region of

non-reversed decelerated flow upstream of the mountain similar to the inversion case.

The solution from the bulk estimated sounding (Fig. 3.3c) has reached the critical

mountain height and flow reversal is present on the upstream slope. The flow reversal

resembles that of Fig. 3.1c where a portion of the reversed flow region is above the

surface.

3.2 Sensitivity to stability aloft

In order to determine if the upstream structure is sensitive to the stability aloft

several tests were carried out in which the static-stability was varied above height

of the inversion. The stability aloft was halved and doubled from the control case,

N = 0.01 s−1. These test where conducted for a β = 2 mountain with a mountain-top

inversion at mountain heights surrounding the critical mountain height of stagnation,

h0 = 1400 m and h0 = 1600 m.

Figure 3.4 shows the u-component of the wind in shading and θ in contours at

Ut
a

= 25 for the h0 = 1600 m, β = 2 mountain. The control run with N = 0.01 s−1

aloft is shown in Fig. 3.4(a). Here, a shallow region of reversed flow exists on the

upstream slope between x = −0.9a and x = −0.6a. The strength of the the reversed
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flow is weak with a minimum wind speed of u = −0.73 m s−1. Figure 3.4(b) identical

low-level stability structure as in Fig. 3.4(a) but the upper-level static-stability is

N = 0.005 s−1. The region of reversed flow for this case is a bit larger extending

down the slope to roughly x = −a. The magnitude of the reversed flow is also slightly

larger with a minimum wind speed of u = −0.91 m s−1. Figure 3.4(c) shows the a

solution where the static-stability aloft has been doubled from the control solution

to a value of N = 0.02 s−1. Here the region of reversed flow is smaller than the

control solution, extending down the slope to x = −0.8a. The minimum wind speed

is u = −0.51 m s−1 within the reversed flow. The structure upstream of the reversed

flow looks similar in all three cases with the flow being relatively homogeneous in the

vertical below the inversion. Similar patterns are seen for the varying stabilities aloft

when h0 = 1400 m (not shown).

The effect of increasing (decreasing) the stability aloft slightly decreases (increases)

the extent of reversed flow on the upstream slope and decreases (increases) the mag-

nitude of reversed flow strength. This result can be understood by considering the ef-

fect the stability aloft has on removing perturbations of flow speed variations through

gravity wave radiation. The higher stability aloft is more efficient in removing speed

perturbations by upward gravity-wave radiation than the lower stability aloft. Thus

the reversed flow region and magnitude is smaller with the higher stability aloft.
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Chapter 4

PARAMETER SPACE MAPPINGS

As discussed earlier the CSCS model and the RGSW models are described by sim-

ple two dimensional parameter spaces. In the CSCS model flow is controlled entirely

by ε, the mountain height scaled by the vertical wavelength of a linear hydrostatic

mountain wave, and β, the ratio of cross-stream to along-stream mountain scales.

The RGSW solution is controlled completely by M , the mountain height scaled by

the upstream fluid depth, and Fr, the upstream Froude number defined as the ratio

of upstream flow speed to the phase speed of a linear gravity wave. Neither of these

parameter spaces uniquely determine the solution when an inversion is present in oth-

erwise continuously stratified flow. This Chapter examines if estimating parameters

from either the CSCS theory or the RGSW theory using soundings with upstream

inversions gives similar results to the solution at the actual point in the respective

parameter spaces with regard to various criteria that describe flow blocking.

4.1 Stagnation on the Windward Slope

The first flow-blocking criteria we examine is the presence of stagnation and flow

reversal on the windward slope. In the CSCS theory windward side stagnation is

synonymous with an isentropic surface being pierced by the mountain surface (Smith,

1988). In the RGSW model if the fluid interface is pierced by the mountain then a

stagnation point develops on the windward slope. However it is not completely clear

that the mountain-top must pierce the fluid surface for a stagnation point to develop.

As shown in Fig. 4.1 one can imagine a situation where two stagnation points develop
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Figure 4.1: Possible flow configuration with non-vanishing fluid depth at the upstream
stagnation points. Large represent stagnation points.

upstream of the mountain with a region of reversed flow between them. It would

not be necessary for the fluid depth to vanish at either stagnation point in Fig. 4.1.

In this thesis however, we assume that stagnation does indeed occur simultaneously

with the mountain piercing the fluid surface as numerical simulations by Schär and

Smith (1993) suggest to be the case. However future work should be directed toward

showing that the fluid depth must vanish when the upstream flow stagnates with

either numerical simulations or an analytic proof.

To determine the critical value ε̂, at which stagnation occurs for three mountain

shapes, β = 1, β = 2, and β = 4 in the CSCS theory, the numerical model described

in Chapter 2.2 was run with the constant stability upstream soundings obtained

from the average estimate or bulk estimate of the soundings with inversions to a
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non-dimensional time of Ut/a = 25. The flow structure at this time is relatively

steady on the windward slope. The parameter ε was varied by both increasing the

mountain height in 200 m increments and varying the upstream stability between

values obtained by averaging or making a bulk estimate of the stability in the sounding

with an inversion. The critical non-linearity parameter, ε̂ was determined by linearly

interpolating between the two values of ε in which stagnation occurs in one simulation

and not in the other.

To determine the critical parameters, M̂ and F̂ r, at which stagnation occurs in

the RGSW theory an analytical prediction derived by both Lamb and Britter (1984)

and Schär and Smith (1993) and re-derived here is used. The prediction assumes that

the mountain-top dries out with the development of a windward stagnation point. As

discussed above this assumption may not be necessary for stagnation but numerical

simulations by Schär and Smith (1993) suggest it to be the case. The derivation

makes use of conservation of Bernoulli’s function for shallow water flow

B =
1

2
u · u + g(H + h) (4.1)

to relate the undisturbed conditions far upstream and the conditions at the stagnation

point. If the upstream flow is unidirectional with speed U and depth H and the fluid

depth vanishes at the stagnation point where the hill height is hs, then since the flow

is steady and inviscid we can equate the Bernoulli function along a streamline that

stretches from far upstream to the stagnation point,

ghs =
1

2
U2 + gH.

Therefore stagnation will only occur when h0 ≥ hs, with the critical hill height found

at the equality. Thus stagnation occurs whenever

gh0 ≥ 1

2
U2 + gH. (4.2)

Dividing the above equation by gH and using the definition of M and Fr leads to
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the stagnation condition of

M ≥ 1

2
Fr2 + 1 (4.3)

with M̂ and F̂ r, the critical non-dimensional height and Froude number found at the

equality. Using the equality on (4.3) and rearranging shows that

F̂ r =
√

2(M̂ − 1). (4.4)

If M̂ ≤ 1 the upstream fluid interface is at or above the height of the hill and

stagnation is not possible in the RGSW theory.

Schär and Smith (1993) showed that that even though the fluid depth vanishes

at the stagnation point the Froude number remains well behaved in a region around

the stagnation point and also vanishes at the stagnation point. Thus if the flow is

sub-critical upstream it remains sub-critical near the stagnation point.

Plotted in Fig. 4.2 is the difference between the critical values, ε̂ or F̂ r, from

the respective CSCS model (obtained by numerical simulations) and RGSW theory,

obtained by (4.4), and the critical values of ε and Fr estimated from the upstream

sounding with inversions, obtained by numerical simulation. Figure 4.2a shows the

difference for the below-mountain-top inversion and Fig. 4.2b is for the mountain-

top inversion. As discussed in Chapter 2.1 there are two ways to estimate the value

of ε from a sounding with an upstream inversion. The first estimate considers the

bulk change of θ below the mountain-top to determine ε while the second method

considers the average buoyancy frequency below mountain top. The bulk and average

estimates of ε are labeled εB and εA respectively. The upward pointing triangles in Fig.

4.2 represent the difference between the critical value, ε̂ in the CSCS model found by

numerical simulations, and the critical value ε̂B, the bulk estimate of the non-linearity

parameter, at which stagnation occurs in the simulation with an upstream inversion,

relative to ε̂,

ΔSB =
ε̂B − ε̂

ε̂
.
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The downward pointing triangles represent the relative difference between ε̂ from

numerical simulations of the CSCS model and ε̂A, the average estimate of the non-

linearity parameter at which stagnation occurs in the simulation with an upstream

inversion,

ΔSA =
ε̂A − ε̂

ε̂
.

In both the the below-mountain-top inversion case (Fig. 4.2a) and the mountain-top

inversion case (Fig. 4.2b) the value at which the flow stagnates in the CSCS theory

is better estimated by averaging the low level stability as opposed to using the bulk

estimate. The bulk estimate of low level stability consistently over estimates the

value of ε̂. It is interesting that the error introduced by both the average and bulk

estimate in determining the ε̂ in the CSCS model is relatively independent of β. This

is especially true for the below-mountain-top inversion case (Fig. 4.2a). This suggests

that the dependence of the stagnation point on β in the CSCS theory is unaffected

by the presence of an inversion.

The circles in Fig. 4.2 represent the difference between F̂ r and FrSW relative to

F̂ r,

ΔSSW =
F̂ rSW − F̂ r

F̂ r
.

F̂ rSW is the estimation of the Froude Number at the critical mountain height of

stagnation found in the solution with an upstream inversion. The parameter F̂ r

is the critical mountain height predicted by (4.4) with M̂SW estimating the non-

dimensional mountain height. Since M in the RGSW represents the height of the

mountain relative to an infinitesimally thin interface some ambiguity is present when

approximating the fluid interface with an inversion of finite thickness. Therefore error

bars are plotted along with the circles in Fig. 4.2 to represent the range of ΔSSW when

the fluid interface ranges between the top and bottom of the inversion. The circles

estimate the interface to be halfway through the inversion. As the estimated height

of the interface increases (decreases) in the inversion ΔSSW increases (decreases).
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Figure 4.2: The relative difference of the critical value of ε and Fr in the respec-
tive CSCS and RGSW theories and the critical value of stagnation when ε and Fr
are estimated from a sounding with an upstream inversion: (a) below-mountain-top
inversion, or (b) at mountain-top. Error bars for the RGSW estimate represent the
error in choosing a infinitesimally thin fluid interface in an inversion of finite thickness.
Data is staggered from β = 1, β = 2, and β = 4 for readability.
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Examination of (4.4) revels that if M̂ ≤ 1 then the RGSW predicts that stagnation

will not develop on the windward slope. For the mountain-top inversion case (Fig.

4.2b), as the estimated fluid interface approaches the top of the inversion M̂SW → 1,

F̂ r → 0 and since F̂ rSW �= 0 ΔSSW → ∞, which means that stagnation is occurring

in the stratified case with an inversion but it can never happen in the RGSW theory.

Estimating the upstream sounding with parameters from the RGSW model to pre-

dict stagnation gives mixed results. For the below-mountain-top inversion (Fig. 4.2a)

the method does quite well for β ≥ 2 if the fluid interface is estimated to be in the

middle of the inversion (filled circles); however there is some sensitivity to the exact

placement of the fluid interface within the inversion which can either increase or de-

crease the magnitude of ΔSSW . For β = 1, the averaging estimate for CSCS gives

better results.

In the mountain-top inversion case (Fig. 4.2b) when the fluid interface is estimated

to be halfway through the inversion ΔSSW increases with β and is quite large relative

to the averaging method, ΔSA. The is also a large sensitivity of ΔSSW to the to the

estimation of the fluid interface. This sensitivity to the precise location of the fluid

interface would make applying the RGSW model in the real world to predict flow

stagnation difficult when the upstream height of the inversion is near the mountain-

top.

4.2 Low-Level Flow Diversion

The second flow blocking criteria we examine is the amount of mass initially upstream

that is diverted around its lateral sides as opposed to rising freely over the top of the

mountain. Comparisons are made between the amount of flow diverted around the

mountain in the CSCS theory where the stability is constant and where the low-

level stability and non-dimensional mountain height are estimated from an upstream

sounding with a low-level inversion present at or below-mountain-top. Comparisons
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Figure 4.3: Schematic of the control volume for the low-level flow diversion calculation.

are also made between the flow diversion predicted when a stagnation point is present

in the RGSW model and the situation with an inversion present in the upstream

sounding.

In order to calculate the low-level flow diversion we construct a control volume

upstream of the mountain as shown in Fig. 4.3. The flow diversion is calculated on

the second grid in order to allow the control volumes upstream boundary to extend

maximally upstream. The control volume extends upstream to x = −12a which is at

the inflow boundary of the computational grid and downstream to the ridge crest at

x = 0. The lateral edges of the control volume extends to the edge of the uniform

height section of the ridge crest, y = ±(β − 1)a. The top of the control volume is a

rigid lid at located at the height of the mountain-top, z = h0. Mass must be conserved

within the control volume so

∫ ∫
ρsu · n dA = 0, (4.5)

where ρs is a reference Boussinesq density and the integration is over the surface of

the control volume. If φU , φR, φL, and φT are the integrated mass fluxes over each
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surface shown in Fig. 4.3 then (4.5) can be rewritten as

φU = (φL − φR) + φT . (4.6)

The contribution of mass into the control volume is dominated by φU thus this can

be considered the sole source of mass into the volume. All the mass entering the

control volume from the upstream boundary can either ascend through the top of the

volume, φT , or divert laterally around the mountain, (φl − φr). The flow diversion

is then defined as the ratio of the mass that diverts laterally around the sides of the

mountain to the mass that enters the control volume upstream,

FD =
φl − φr

φu

. (4.7)

The calculation for flow diversion was done for the β = 2 and β = 4 mountains. The

calculation was not done for the β = 1 mountain since the control volume has zero

width in this case.

The low-level flow diversion in the CSCS theory, as computed by the numerical

model, for both the β = 2 and β = 4 mountains, is shown by the dashed line in Figs.

4.4a and 4.4b respectively. For both mountain shapes the amount of flow diverted

around the mountain steadily increases with increasing ε. The amount of diverted

flow is similar for both β = 2 and β = 4 mountains especially for ε ≤ 1.2. For ε > 1.2

the flow diversion increases less rapidly for the β = 4 mountain than it does for the

β = 2 mountain.

Recall that when estimating the low-level stability two methods are possible:

averaging the stability below-mountain-top and using the total change of θ below-

mountain-top to define a bulk stability. Therefore each sounding with an upstream

inversion has two estimates of ε, one for the averaging method and one for the bulk

method. The flow diversion for the upstream sounding with a below-mountain-top

inversion is shown in Fig. 4.4. The downward pointing triangles represent εA obtained

by averaging the low-level stability and the upward pointing triangles represent εB
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Figure 4.4: Flow diversion around the mountain at Ut
a

= 25 for mountain shapes (a)
β = 2, (b) β = 4. The dashed line is the flow diversion for the CSCS theory. The flow
diversion for a sounding with an upstream low-level inversion is represented by the
two solid lines. The downward and upward triangles represent the low-level stability
begin estimated by averaging and the bulk method respectively. Filled triangles and
shapes represent the flow is reversed on the windward slope.
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obtained by making a bulk estimate. It should be emphasized even though the solid

curves in Fig. 4.4 represent two separate ways to estimate the upstream stability and

therefore ε, the actual upstream sounding and therefore the flow-diversion around the

mountain are the same for each pair of triangles.

Examination of Fig. 4.4 reveals that when an upstream inversion is present esti-

mating the low level stability with the bulk method represents ε in the CSCS theory

for a given flow diversion more accurately than the average method does. For exam-

ple for the β = 2 mountain (Fig. 4.4a) FD = 0.536 at ε = 1.25 computed by the

numerical model in the CSCS theory. The bulk method estimates that εB = 1.19 and

the average method estimates that εA = 0.81 for the flow diversion to be the same

as computed in the CSCS model. In all cases the the bulk estimate of the low-level

stability does a better job than the average method in reproducing the flow diversion

of the constant-stratification situation. The average estimate underestimates the sta-

bility and thus underestimates the value of ε required to give the correct value of ε

for a given flow diversion. The accuracy of the bulk mapping is particularly evident

for lower values of ε and εB where the two curves almost overlay each other. As the

bulk estimate of ε increases the flow diversion increases to values greater than that

found at equal values of ε in the CSCS theory.

As in Fig. 4.4, Fig. 4.5 shows the flow diversion for the constant stratification

simulation with dashed lines. Since the dashed curves in Figs. 4.4 and 4.5 represent

the same values of ε and thus that same points in the CSCS parameter space in

principle, they should be exactly the same between corresponding panels of the two

figures. The values are, however, taken from two different sets of constant N . Some

small discrepancies exist between these pairs of constant N simulations. This is

probably due to the flow not begin entirely in a steady state at the time the mass flux

calculation was made and non-hydrostatic effects present in the flow which would both

violate the scaling arguments presented in Smith and Grøn̊as (1993). Nevertheless

the agreement between the dashed curves in both figures far out-weighs the small
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Figure 4.5: Similar to Fig. 4.4 except for the mountain top inversion.
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disagreements and is of little importance to the results of this section.

The solid lines in Fig. 4.5 represent curves for the flow diversion from the up-

stream sounding with an inversion. Again the downward pointing triangles represent

εA, obtained by averaging the low-level stability in the upstream sounding, and the up-

ward pointing triangles represent εB , obtained by making a bulk estimate of upstream

low-level stability. We again see in Fig. 4.5 that the bulk method of estimating the up-

stream sounding does a better job in representing the true value of ε than the average

method does. However, the agreement between the bulk estimate and the calculated

flow diversion in the CSCS model is not as good as in the below-mountain-top inver-

sion case, especially for the β = 4 mountain (Fig. 4.5b). As in the below-mountain-top

inversion case when ε > 1.2 the differences become significant between the diverted

flow in the bulk estimated case and the constant stability case. The flow diversion

begins to level off in the case with no upstream inversion whereas it continues to

increase in the case with an upstream inversion. The increase in flow diversion in the

case with a upstream inversion is similar to what would be expected to happen in

the RGSW theory where the 100% of the flow must be diverted around the mountain

when a stagnation point develops. This is because the top of the mountain dries out

when the flow reaches stagnation in the RGSW and thus no flow can pass over the

mountain-top. The amount of flow-diversion is around 80% when the flow reverses in

the mountain-top inversion case for both the β = 2 and β = 4 mountains.

4.3 Minimum Speed on the Windward Slope

The third and final criteria we use to test the degree of flow blocking is how much the

upstream flow decelerates as it approaches the ridge crest. This measure of blocking

is of course related to the onset of flow stagnation discussed in section 4.1 but gives

an evolution of the amount of blocked flow as the parameters change. We again

will compare the flow deceleration computed when the upstream stability is constant
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and the deceleration experienced when an upstream inversion is present at or below

mountain-top. Since we have not run a shallow-water model we do not know the

minimum speed on the windward slope in the RGSW theory for mountains to low to

force stagnation. Therefore this section will deal exclusively with simulated differences

in flow deceleration for a given ε in the CSCS theory and the two estimates of ε made

from the sounding with an upstream inversion.

The minimum u component of wind upstream of the ridge crest from an upstream

sounding with constant stability is shown by the dashed lines in Fig. 4.6. All three

mountain shapes show that the minimum wind speed gradually decreases as ε increases

until ε is large enough to induce flow reversal. The rate of decrease of the minimum

wind speed as a function of ε for the elongated mountains (Figs. 4.6b and 4.6c) is

much greater than that of the round mountain (Fig. 4.6a). After flow reversal the

trend in the minimum wind speed flattens out and even reverses a bit (the minimum

wind speed slightly increases with increasing ε).

The solid lines in Fig. 4.6 show the minimum wind speed found on the upstream

slope when the upstream sounding has a below-mountain-top inversion. Both solid

lines represent solutions to an initialization with the same upstream sounding how-

ever the way in which the low-level stability was estimated differs between the two.

The downward pointing triangles represent the minimum wind speed at values of εA

obtained by making an average estimate of the low-level stability, while the upward

pointing triangles represent the minimum wind speed at values of εB, obtained by

making a bulk estimate of the low-level stability. The minimum wind speed curve at

values of εB is shifted to the right of the minimum wind speed curve calculated when

the stability is constant with height while the curve with values of εA is slightly shifted

to the left. This indicates that the bulk method overestimates ε while the average

method slightly underestimates it. The underestimation of the average method seems

to be much smaller than the overestimation of the bulk method.

The average method does seem to perform better than the bulk method in esti-
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Figure 4.6: Minimum u component of wind on the upstream side of the ridge as a
function of ε at Ut

a
= 25 for the constant stability upstream sounding (dashed), up-

stream below-mountain-top inversion with averaging estimate (downward triangles),
and upstream below mountain top inversion with bulk estimate (upward triangles)
for (a) β = 1, (b) β = 2, (c) β = 4. Filled triangles and circles indicate the flow has
reversed on the windward slope.
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mating the correct value of ε from the calculated minimum wind speed in the CSCS

model. The average method especially does a good job for ε > 1.4 with a β = 1

mountain (Fig. 4.6a). This is in direct contrast to the low-level flow diversion where

it was found that the bulk estimate did a better job than the average method in

reproducing the correct value of ε.

Figure 4.7 again shows the minimum wind speed when the upstream sounding is

constant with dashed lines. The solid lines in Fig. 4.7 represent the case when there

is a mountain-top inversion present in the upstream sounding. The one striking thing

about this figure is that for all values of β the average method does an exceptional

job of mapping the actual sounding into the parameter space of the CSCS model.

This is particularly evident for the β = 4 mountain (Fig. 4.7c) where the solid curve

representing the average estimate directly overlays the minimum wind speed curve

from the CSCS theory. We also see that for the β = 1 mountain even though the

difference between the critical ε in the CSCS theory and the critical ε obtained by

averaging the low-level stability is somewhat large (Fig. 4.2b) the average method of

estimating ε does a decent job at replicating the minimum wind speed found in the

CSCS theory. It is clear from Figs. 4.6 and 4.7 that the averaging method out performs

the bulk method when estimating ε from a sounding with an upstream inversion in

determining the minimum wind speed on the upstream slope.
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Chapter 5

CONCLUSIONS

Both the CSCS model and RGSW model have simple parameter spaces to de-

scribe flow over topography. The CSCS model is described by the parameter ε, the

mountain height scaled by the vertical wavelength of a linear, hydrostatic mountain

wave, and β, the ratio of cross-stream to along-stream mountain scales. The RGSW

model is described by M , the mountain height scaled by the upstream level of the

fluid interface, and Fr, the upstream Froude Number. While both models describe

the parametric dependence of blocking upstream of a mountain in idealized settings,

many authors attempt to characterize blocking in the real-world using one of these

theories when the upstream sounding deviates from the idealized assumptions. We

have therefore conducted a series of numerical simulations with inversions present at

or below the mountain-top in the upstream sounding of an otherwise continuously-

stratified fluid and compared these solutions to those in either the CSCS model or

the RGSW model.

To apply the CSCS model for a sounding with an upstream inversion we exam-

ined two possible ways to estimate the parameter ε. The first was an average estimate

of the stability below mountain-top and the second was a bulk estimate, where the

total change of θ below-mountain-top was used to estimate the stability. We found

that when windward flow reversal was present in the solution with an inversion, the

structure of the reversed flow more resembled the structure of reversed flow in a solu-

tion with constant stability upstream obtained from the bulk estimate. In particular

both solutions exhibited a region of flow reversal detached from the mountain sur-

face in the upstream direction. However, in numerical solutions with an upstream
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inversion in the sounding, regions with no flow reversal exhibited very little variation

with height below the mountain-top. This structure is similar to the RGSW model

where no variations with height are present in each fluid layer. The upstream re-

gions of non-reversed flow in the numerical solutions of constant stability soundings

show significant variation with height. This result is relatively independent of the

static-stability aloft.

Further testing of how well estimates of upstream soundings with inversions fit

into either the CSCS parameter space or the RGSW parameter space were conducted

by considering three measures of blocking. The first was the difference between the

numerically computed stagnation point in the CSCS model with either the bulk or

average estimate of the numerically calculated stagnation point in the solution with

an upstream inversion. Between the bulk and averaging methods of the low-level

stability, the averaging method did a better overall job in estimating the ε at which

occurs stagnation in the CSCS model.

The difference between the average estimate of ε at stagnation in the solution with

an upstream inversion and the value of ε at stagnation in a solution with constant

stability upstream is small for all values of β and inversion heights that we tested. For

example Fig. 4.6c shows that the stagnation threshold for a β = 4 mountain in the

constant stability case is ε̂ ≈ 1.1. If an below-mountain-top inversion is present and

the bulk method is used to estimate the stability the threshold for flow stagnation

is ε̂B ≈ 1.4 where as if the average method is used the threshold is ε̂A ≈ 1.0. If one

uses the bulk method to calculate εB = 1.1 and expects reversed flow they would be

in serious error. The errors are even more significant for the mountain-top inversion

and for mountains with smaller β.

We also considered the difference between the the analytically calculated stagna-

tion point in the RGSW theory and the Fr, estimated from the sounding with an

inversion, at the stagnation point. While the RGSW method performed well for the

below-mountain-top inversion, the performance for the mountain-top inversion was
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mediocre. There was a large dependence on β for the difference between the RGSW

estimate of the stagnation point and the analytic prediction of the stagnation point

for the mountain-top inversion. This dependence should be expected since there is no

dependence on β for stagnation in the RGSW theory. There was also a large uncer-

tainty in the difference due primarily to uncertainty in the placement of the height

of the fluid interface. This is because as the upstream fluid interface approaches the

height of the mountain the RGSW analytic theory predicts that Fr → 0 in order for

stagnation to be reached. Thus it would be difficult to apply the RGSW to determine

flow stagnation if the inversion is near the mountain-top level. Even if the inversion

is below-mountain-top care should be taken since there is a significant dependence on

β on stagnation which is not captured by the RGSW theory.

A related measure of flow blocking that we tested was the minimum wind speed

on the upstream slope. We found that, when comparing the minimum wind speed in

the solution with an upstream inversion to the minimum wind speed in the solution

calculated with constant upstream stability, the average method did a far better job at

estimating the correct value of ε. In other words the difference between the averaged

value of ε and the constant stability value of ε was small for identical minimum wind

speeds in both the solution with an upstream inversion and the solution with constant

stability.

The third measure of flow blocking we tested was the amount of low-level mass

diverted laterally around the mountain. We found the bulk estimate was better than

the average estimate in representing the the value of ε in the CSCS theory for the

diverted flow. However, the bulk method only performed well when the inversion was

below-mountain-top and the true value of ε in the CSCS theory was small. As both

the bulk estimate and true value of ε increased the the amount of flow diversion in

the solution with an inversion upstream increased more rapidly than in the case with

constant stability.

Our study showed that the use of the constant-stability constant-stratification
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theory of flow over topography appears to perform better than the reduced-gravity

shallow-water theory when determining if the flow will be reversed on the upstream

slope. There is no single technique for converting the non-uniform stability profile

into a single constant value of ε the performs best in all our tests. On one hand,

we showed that to apply the continuously-stratified, constant-stability theory a bulk

estimate of the low-level stability was better than an average estimate in determining

the amount of mass that deviates around the mountain. Yet on the other hand, the

average method was far superior to the bulk method in determining the minimum

wind speed and threshold of flow reversal in the continuously-stratified, constant-

stability theory.
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