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Abstract

A Model Study of Natural
Variability in the Arctic Climate

by Cecilia M. Bitz

Chairperson of Supervisory Committee: Professor David S. Battisti

Department of Atmospheric Sciences

The arctic climate response to natural perturbations in the atmosphere is simu-
lated with two numerical models. The first is a single-column, energy balance model
of the atmosphere, sea ice, and upper-ocean system which I use to investigate how
the variability in atmospheric energy transport is partitioned in the climate system
between storage in the sea ice and net radiation to space. The processes of sea ice
ablation/accretion and heat conduction through the sea ice, integrate stochastic vari-
ability forcing from the atmosphere. I find that significant, natural, low frequency
variability in the arctic sea ice results solely from thermodynamic processes associated
with the arctic climate system and the nature of the atmospheric energy transport
into the Arctic.

The second model is a sea ice and upper ocean model that is designed to explore
variability in the sea ice due to thermodynamics and dynamic processes in a laterally
inhomogeneous system. Ice dynamics in this model (including ridging and advection)
forced by winds with the proper synoptic scale variability increase the sensitivity of
the ice to air temperature anomalies. The air temperature anomalies primarily influ-

ence interannual variability in the central region: without realistic air temperature



anomalies, the low-frequency variance of the ice volume is seriously underestimated.

The results provide an estimate for the magnitude and time scales of the natural
variability in the arctic climate system. The implications of the low-frequency, natural
variability in sea ice volume for detecting a climate change are discussed. Finally,
calculations suggest that the variability in the thermodynamic forcing of the polar cap
could lead to a freshening in the North Atlantic that is comparable to the freshening
associated with the Great Salinity Anomaly.
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Chapter 1

INTRODUCTION

Sea ice has a profound influence on the disposition of energy transfer between the
atmosphere and ocean. Sea ice also stores energy in the climate system, integrating
heat fluxes from the atmosphere and ocean. Due to its storage capacity, the mass
of sea ice tends to change slowly compared to atmospheric conditions. Because sea
ice regulates the exchange of heat fluxes between atmosphere and ocean and stores
freshwater, low frequency variability in sea ice has an important influence on climate.
Growing evidence exists for substantial interannual, decadal, and interdecadal vari-
ability in sea ice extent, sea level pressure, and surface temperature in the Arctic.
However, the processes responsible for low-frequency variability in the arctic climate
system have only recently been examined. The goal of this dissertation is to explore

mechanisms that cause low-frequency variability in the arctic climate system.

The Arctic has received much interest in the past few decades due to concern over
the effect of increasing levels of greenhouse gases in the atmosphere. The stability of
the present arctic climate is thought to be vulnerable to an expected reduction of the
sea ice volume (thickness and areal extent). Understanding processes that control
natural variability of the climate system reduces our uncertainty in the evaluation

and detection of climatic change.

Variations in sea ice and freshwater advected out of the Arctic Basin affect the
near-surface density in the Greenland and Iceland Seas (Aagaard and Carmack, 1989),

as evidenced from a coupled sea ice and ocean model simulation for 1955-1975 by



Hékkinen (1993). It is possible that there is a link between arctic outflow and the
Atlantic thermohaline circulation which regulates the meridional transport of heat
by the ocean.

The potential for relevant interactions between thermodynamic mechanisms and
the ice mass in the Arctic and how such variations might affect the global climate
system is the subject of this dissertation. I will focus on the central Arctic because
the ice is thickest there, thus accounting for a large fraction of the total sea ice mass.
Also the central Arctic is the source region of ice that passes into the North Atlantic.
As noted by Untersteiner (1990), the variability in the ice extent is small compared
to that of the atmospheric heat transport into the Arctic. I hypothesize that some
portion of the variability in the heat transport is transferred into substantial low-
frequency variability in the arctic sea ice which potentially may lead to significant
climatic changes in the North Atlantic.

Measurements of sea ice thickness in the Arctic are too sparse to estimate vari-
ability reliably. The most complete record exists at the North Pole (Shy and Walsh,
1996; McLaren et al., 1994) which consists of measurements from 12 submarine voy-
ages. While the variability of sea ice thickness at a single point might be a result
of variability that is unrelated to changes in the large scale sea ice thickness, these
data do show large interannual variability in the thickness ranging from 2.8 to 4.4 m.
Using drifting buoy data, Shy and Walsh (1996) examined dynamical forcing mech-
anisms only and determined that the persistent direction deviation of ice motion
from geostrophic wind-forcing and divergence of ice at the North Pole preceding the
submarine cruises by 1-2 weeks explained a significant portion of the ice thickness
variability. Thermodynamic mechanisms that might explain part of this thickness
variability remain unexplored.

Chapman and Walsh (1993) present analysis of Arctic sea ice concentrations (1953-
1990) and surface temperature (1960-1990). They found sea ice area anomalies range

from interseasonal to interannual timescales. In particular, they found that the Green-



land and Iceland Sea region experienced a large, persistent positive ice area anomaly
in the late 1960s and early 1970s. The timing of this anomaly is coincident with
the “Great Salinity Anomaly” of the North Atlantic (Dickson et al., 1988). In as-
sessing evidence of climate change in the Arctic over the past several decades, the
authors find the largest temperature increase over land area in the Alaskan and west-
ern Canadian sector during winter and spring. There is an associated small decrease
in the summertime sea ice concentration in the same region. The changes in sea ice
extent are mainly confined to the summer months because the ice is land locked in
the winter. Seasonally the warming occurs before the ice concentration is measurably
decreased. If the warming is connected to the sea ice, this suggest that a decrease
in the sea ice thickness and/or an earlier onset of melt are important causes of the
warming. However, data are lacking to verify this speculation.

Recently Deser and Blackmon (1993) described a mode of decadal variability in
the wintertime surface climate of the North Atlantic that is characterized by a dipole
pattern surface temperature (both air and sea) with centers of opposite polarity east
of Newfoundland and off the southeast coast of the United States. They find wind
anomalies locally over the regions of large surface temperature anomalies and winters
of heavy sea ice in the Labrador Sea preceded surface temperature anomalies east of
Newfoundland. From these relationships they argue the decadal scale variability of
the surface temperatures is the result of (1) a positive feedback between atmosphere
and ocean and/or (2) low-frequency variability in arctic sea ice extent.

Two self-sustaining feedback loops have been proposed to explain interdecadal
climate variability in the North Atlantic. Mysak et al. (1990) suggest that sea ice
anomalies in the Greenland Sea are a result of variation in the sea ice extent in the
western Arctic which is controlled by runoff into the western Arctic Ocean. The
sea ice anomalies in the Greenland Sea influence convective overturning in the the
Greenland sea which ultimately influence the river runoff. There is little evidence

that sea ice growth in the western Arctic is controlled by surface salinity anomalies



and this remains a weakness in the feedback presented by Mysak et al. (1990). Later
Wohlleben and Weaver (1995) reanalyzed the air-sea-ice relationships and argued that
sea surface temperature anomalies in the Labrador Sea influence sea level pressure
anomalies over Greenland. These pressure anomalies affect the export of sea ice and
fresh water from the Arctic which ultimately affects convection in the Labrador Sea.
Finally the loop is completed by variations in the sea surface temperature on the
Labrador Sea as a result of the changes in convection.

The influence of low-frequency sea ice thickness anomalies created by atmospheric
variability via thermodynamic processes in the Arctic was not considered in the feed-
back loops by either Mysak et al. (1990) or Wohlleben and Weaver (1995). The
effect of such low-frequency variability in the sea ice thickness is likely to broaden the
spectral range of climate variability in the North Atlantic and perhaps even excite
new modes.

Coupled atmosphere-sea ice-ocean climate models with varying levels of sophis-
tication have been used to examine the link between sea ice and variability in the
Atlantic thermohaline circulation. Jayne and Marotzke (1997) explore the direct re-
lationship between sea ice and transports of heat and moisture by the atmosphere
and heat and salinity by the ocean. Using a simple, three-box model, they find sea ice
destabilizes the thermohaline circulation through a positive feedback loop associated
with increasing sea ice thickness weakening the thermohaline circulation by enhancing
moisture transport to high latitudes in the atmosphere. Ultimately a weaker thermo-
haline circulation reduces the heat transport by the ocean which causes the sea ice
thickness to increase further in their model. Although this model is relatively simple
(e.g., the model lacks an annual cycle), the climatic importance of sea ice thickness
shown in this study is intriguing.

The Geophysical Fluid Dynamics Laboratory’s coupled atmosphere, sea ice, and
ocean general circulation model also exhibits variability in the thermohaline circu-

lation (Delworth et al., 1993). Although this model is far more complex than the



three-box model described above, both models simulate thermohaline circulation vari-
ability on timescales of approximately 50 years. From a 2000 year integrations with
the same model, Delworth et al. (1997) present evidence for multidecadal variations
of sea surface temperature and salinity in the Greenland and Iceland Seas that are
coherent with the variations of the thermohaline circulation.

There are about a half-dozen (three-dimensional) thermodynamic/dynamic sea
ice modeling studies concerning various aspects of sea ice variability in the literature
(e.g., Walsh et al., 1985; Hikkinen, 1993; Chapman et al., 1994; Flato, 1995). All these
models exhibit rather modest ice mass variability. For example, the annual minimum
sea ice area in the Northern Hemisphere from 1960-1989 simulated by Chapman et al.
(1994) (typical among the studies) has peak-to-peak variability that is about 16% of
the mean (estimated from their Fig. 7). In this hindcast, the annual minimum ice
area has considerably smaller variations than those based on observation where the
peak-to-peak variability is about 28% (estimated from Fig. 6 Chapman and Walsh,
1993). An objective of this dissertation is to determine what aspects of sea ice models
are important for simulating realistic natural variability.

Most modeling studies of arctic climate variability focus on sea ice extent because
it can be verified against observations and because the relationship between extent
of polar sea ice and surface albedo leads to a positive feedback mechanism. When
applied to climate change, the ice-albedo feedback mechanism is thought to be driven
by changes in temperature. However, most of the modeling studies of ice variability
emphasize how the ice is driven by variability in the wind stress (e.g., Walsh et al.,
1985). Sea ice variability associated with thermodynamic processes is often overlooked
- in part because of sparse surface observation over the Arctic Ocean and the lack
of comprehensive ice thickness measurements for comparison. In fact, sea ice models
used in hindcasts are typically forced with monthly mean temperature anomalies
which are spatially interpolated from land station data (e.g., Walsh et al., 1985;
Chapman and Walsh, 1993; Flato, 1995) or without temperature anomalies altogether



(Hakkinen, 1993).

This dissertation is a compilation of three separate but related parts. The first
part is a study of low-frequency natural variability in a one-dimensional coupled at-
mosphere, sea ice, and mixed layer climate model. These results are summarized in
chapter 2. In chapter 3, I present an analysis of the sensitivity of the simulated low-
frequency natural variability of the sea ice thickness as a function of the treatment
of the thermodynamic processes that are included in a typical global climate model.
In chapter 4, I describe a new thermodynamic/dynamic model based on what I have
learned from the earlier parts of this study. This model is the first model that is ap-
propriate for climate studies involving arctic sea ice. Finally I employ the new model,
in chapters 5 and 6, to explore the patterns, timescales, and processes associated with
the variability in sea ice. I summarize the dissertation and draw general conclusions

based on all three parts in chapter 7.



Chapter 2

LOW-FREQUENCY VARIABILITY IN THE ARCTIC
ATMOSPHERE, SEA ICE, UPPER-OCEAN CLIMATE
SYSTEM

2.1 Introduction

In this chapter I will use a coupled, thermodynamic atmosphere/sea ice/upper ocean
model of the maritime arctic polar cap to investigate how the variability in atmo-
spheric energy transport is partitioned in the climate system between storage in the
sea ice and net radiation to space. The processes of sea ice ablation/accretion and
heat conduction through the sea ice, integrate stochastic variability in the meridional
energy transport.! The atmospheric variability is expected to reflect the variabil-
ity in the forcing (the meridional atmospheric energy transport) on the sub-seasonal
to monthly radiative timescale. At longer periods (e.g., decadal) the atmospheric
variability will be affected mainly by the variations in the sea ice, the latter due to
the integrated and nonlinear effects of the high frequency variability in the overlying

atmosphere.

I employ a single-column model of the thermodynamic processes occurring in the

! There is a loose analogy to the theory of stochastic modeling by Hasselmann (1976) for midlatitude
SST anomalies (Frankignoul and Hasselmann, 1977) that would result from random variations in
the atmospheric forcing. In the midlatitude case, the heat capacity of the upper ocean exceeds
that of the atmosphere by about a factor of 20. In my case, the heat capacity of the sea ice
is comparable to that of the atmosphere. Here the slow adjustment of ablation and accretion

strongly influence the low frequency response.



coupled arctic atmosphere and sea ice system (see section 2.2.1). The model is forced
by the annual cycle of insolation and the meridional atmospheric transport of energy
into the Arctic as well as specified cloudiness and snowfall, as described in section
2.2.2. In section 2.3 I will examine the sensitivity of the sea ice thickness to changes in
the energy transport including the annual mean and the temporal variance spectrum.
The effect of correlating the clouds and snowfall with atmospheric energy transport
will be presented. I will also investigate the minimal model physics that is required to
simulate arctic climate variability with a thermodynamic atmosphere/sea ice/upper-
ocean model. The implications of this study for the simulation and detection of
natural and anthropogenic climate changes in the Arctic will be discussed in section

2.5.

2.2 Description of the model and forcing data

2.2.1 Model

The single-column model is designed to study regional arctic processes. The model
simulates the vertical exchange of energy among atmosphere, sea ice, and the ocean
mixed layer in response to prescribed forcing from insolation, meridional transport of
atmospheric energy into the column, cloudiness, and snowfall. A schematic is shown
in Fig. 2.1.

The conduction of heat through the sea ice is modeled after Semtner (1976) such
that the number of sea ice layers remains fixed while the total sea ice thickness varies
and consequently the layer thickness varies. The number of sea ice layers may be
varied to examine the response of the system to changes in resolution of the sea ice
temperature profile. For simplicity, the sea ice is modeled as a horizontally uniform
slab with no leads. In the standard case experiment snow falls on the sea ice surface at
a prescribed rate which varies with season and is independent of atmospheric energy

transport following Maykut and Untersteiner (1971). (In section 2.3.3 I examine
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Figure 2.1: Schematic of the coupled atmosphere/sea ice/upper ocean climate model.
Fsw = incoming solar radiation, Fprr = outgoing longwave radiation, D = atmo-
spheric energy flux convergence, Fy = ocean heat flux, 7, = surface air temperature,
T, = surface sea ice/snow temperature, 77 = temperature of the top of sea ice layer
1, T, = temperature of ocean mixed layer and the bottom temperature of the sea ice,
h = thickness of sea ice, and h; = thickness of snow.
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the model sensitivity to correlating the snow fall rate with the atmospheric energy
transport.) When the sea ice surface is snow free, solar radiation penetrates the sea
ice, thereby heating the sea ice and the ocean mixed layer. The heat conductivity
and the heat capacity of the sea ice are functions of temperature and salinity as in
Maykut and Untersteiner (1971). The Saliev method (see Maykut (1969)) is used to
solve the heat equation describing the evolution of the ice internal temperature.

The surface albedo, «, depends on snow thickness, h,, and sea ice thickness, h, as

a = Qoeean + H(D) {(ozz-ce — ozoce(m)% (1 + tanh(h/2 — 2.5))

+H(hy) [(asm - aice)% (1 + tanh(h,/2 — 2.5))} } : (2.1)

where h and hg are given in centimeters, oeean = 0.1, Qe = 0.55, gpow = 0.8, and
H(h) is the unit step function which is defined to be 1 when A > 0 and 0 when h = 0.
With this parameterization, albedo feedback can occur as a result of variability in
the date that the snow melts away in spring, and in the date that the upper sea ice
surface temperature dips below the freezing point in autumn.

The atmospheric model resolves eighteen vertical layers and is an extension of
the radiative-convective model of MacKay and Khalil (1991). Heating rates from
absorption and emission of eight atmospheric gases including HoO, CO,, and O5 and
atmospheric scattering of solar radiation are computed. Clouds are modeled as a
single layer, characterized by a cloud fraction (cloudiness), a grey-body emissivity,
and a shortwave optical depth. Vertical convective transport of latent and sensible
heat is based on Manabe and Strickler (1964). The most notable changes to the
MacKay and Khalil (1991) atmosphere model are the addition of atmospheric energy
transport into the column, the randomization of the cloud cover and cloud height, the
parameterization of the radiative effects of ice crystal precipitation, and the coupling
to the sea ice surface. The prescribed incoming solar flux at the top of the atmosphere
is computed for 80° north which is representative of the insolation averaged over the

polar cap.
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The upper ocean is modeled as a 50 meter slab mixed layer. The salinity of
the ocean does not change with time. When the ocean is covered with sea ice, the
temperature is fixed at the freezing point of sea water. The heat flux from the ocean to
the bottom of the sea ice is equal to the amount of solar radiation that has penetrated
through the sea ice.

The single-column model simulates the response of the thermodynamics of the
coupled atmosphere/sea ice/upper ocean system averaged over the polar cap. Be-
cause the model is one-dimensional, it cannot include the response of atmospheric
dynamics and sea ice advection and deformation to the variables simulated by the
model. Therefore, I will identify the simulated one-dimensional fluctuations with the
variance of corresponding quantities that are integrated over the Arctic Ocean. For
example, the modeled variability of sea ice thickness is analogous to the variability

of the volume of the sea ice in the Arctic Basin.

2.2.2  FExternal Forcing

Natural climate variability is simulated by the model as a response to the prescribed,
aperiodic component of forcing by time dependent cloudiness and meridional atmo-
spheric energy transport. Due to the low frequency variability of the arctic climate
system, the model must be integrated for approximately 1000 years to obtain stable
estimates of the variance, the spectrum, and other statistics. Because the observa-
tions of the forcing span only a few decades, I simulate the required forcing time series
using a random number generator. The algorithms that synthesize these random per-
turbations produce sample statistics consistent with observed variability. The forcing
time series for clouds and atmospheric energy flux convergence can be generated
independently (see below) or they can be coupled (see section 2.3.3).

In the standard case cloudiness and cloud height are specified at two-day intervals
by comparing a random number to daily values from a climatology based on obser-

vations at the Soviet NP ice stations (see Fig. 2.11b). For each two-day period, the



12

sky is clear if the random number is greater than the climatological mean cloudiness
for that day, otherwise it is overcast. The two-day timescale is based on the observed
decorrelation time of cloud cover and height.

The atmospheric transport of energy, D, is the convergences of energy flux into
the Arctic Basin. It is the sum of the meridional fluxes of sensible heat, latent heat,
and potential energy integrated vertically and horizontally around a latitude circle
and divided by the area enclosed by the latitude circle. Hence, for discrete intervals

of time, ¢ = n7 (n is an integer),

D(nr) = (/ cp[ﬁ]d?"’+/ L[W]%—l-/ [E]%p) /4, (2.2)

where

denotes a zonal mean and
O=[0%
0 T
denotes a time mean (see table 2.1 for a definition of variables). The heating rates
forced by D are distributed through the atmosphere of the single-column model with
a normalized vertical profile that is independent of time. In the model D is speci-
fied as the sum of an annually periodic component and a random component which
are based on rawinsonde data at 70° north. I have used monthly mean values of
observations from 1965 to 1989 analyzed by Overland and Turet (1994). Figure 2.2
shows the observed mean annual cycle and the monthly standard deviation of D. The
atmospheric energy flux convergence anomaly (departure from the monthly mean),
D', is uncorrelated for time lags of one month and longer and the spectrum is nearly
uniform for frequencies less than (2 mo)™" (see Fig. 2.3).
Each of the three terms in Eq. (2.2) may be broken into four components: the
transient eddy flux, the stationary eddy flux, the mean meridional circulation flux,
and the net mass flux (see, for example, pg. 324 Peixoto and Oort, 1992). Observa-

tions indicate that much of the variance in D' can be attributed to the variability in
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Table 2.1: Definition of variables in Eq. 2.2.

variable

definition

A
L

=~

N =T

\\'

area enclosed by latitude circle
latent heat of evaporation

air temperature

specific heat at constant pressure
acceleration due to gravity
distance around latitude circle
pressure

specific humidity

time

meridional component of velocity
geopotential

longitude

time averaging interval

125¢

mean (W m_Z)

=
Q
o1

(o]
a1

J

FM AMJ J A S O ND

month

Figure 2.2: The monthly mean (solid line) and monthly standard deviation (dashed

line) of the observed atmospheric energy flux convergence, D, used to force the single-

column model.
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atmospheric energy flux convergence anomaly, D', observed data (circles) and 100
years of the synthesized daily time series (lines) used to force the model. Observations
are monthly mean values so spectral information is unavailable for periods below 2
months and the autocorrelation is limited to lag times in monthly intervals.
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the sensible heat flux by transient eddies (all year) and standing eddies (in winter)
(see Fig 4a Overland and Turet, 1994). Hence, it is plausible that the autocorrelation
of D' is similar to mid-latitude baroclinic systems. If so, D' would be correlated for
time lags less than about 5 days and the correlation would fall off exponentially with
time lag. A time series with these short-term statistical properties would have a spec-
trum and an autocorrelation consistent with observations (see Fig. 2.3). To simulate
a daily time series, I synthesize random perturbations from the discrete Langevin

equation,

D'(t) = (1 — BAYD'(t — At) + Ate(t)z(t), (2.3)

where At is the time step, 3! is the characteristic timescale of the fluctuations in
D', €(t) is an annually periodic coefficient that is proportional to the variance of D',
and z(t) is a random number with zero mean and unit variance. Note that equation
(2.3) describes a discrete first-order Markov process when €(t) is constant in time
and the variance of D is op? = Ate?/(23). Figure 2.2 indicates that the observed
standard deviation of D’ changes slowly with season. To simulate a reasonable sea-
sonal variability for the model, I approximate the time dependence of €(t) using the
seasonal cycle of the observed variance of D'. The model is integrated with a time
step of At = 1 day, therefore daily values of €(¢) are needed and the observed monthly
variance of D’ is interpolated to daily intervals by first smoothing the monthly val-
ues with a 1-2-1 filter and then using splines. The difference between the observed
monthly variance and daily variance of the true D' depends on the time scale 51.
For example, if 37! ~ 1 month the daily variance is nearly equal to the monthly vari-
ance, but if 37! ~ 5 days the daily variance is significantly larger than the monthly
variance. An iterative process was used to determine an appropriate amplitude for
the annual cycle of €(¢) for a particular § in equation (2.3). For the standard case
I prescribe 37! = 5 days which yields a monthly standard deviation of D’ equal to
~ 33 W m 2 in winter (1 November through 31 March) and ~ 18 W m 2 in sum-
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mer (1 June through 31 August). The autocorrelation and spectral variance for the

simulated time series are plotted along with those from the observed data in Fig. 2.3.

2.3 Experiments

2.3.1 Standard Case

In the standard case the single-column model is integrated for 1000 years and is
forced by the randomly varying atmospheric energy flux convergence and clouds as
described above. Heat conduction through the sea ice is resolved in six layers.

The modeled sea ice thickness, h(t), shown in Fig. 2.4a varies predominantly with
the annual cycle and at decadal and longer timescales. The mean sea ice thickness is
3.1 m and the variance of the monthly sea ice thickness anomaly is 0.75 m?. Figure
2.4b shows that the sea ice thickness anomaly, h’, exhibits a red-noise power spectrum
because the maximum variance is at the lowest frequency and the variance falls rapidly

with increasing frequency. The discrete first-order Markov process,
B'(t) = ah'(t — At) + Z(1), (2.4)

is a simple linear stochastic model which has red-noise spectrum,

c
14 a? —2acos(2mfAL)’

H(f) (2.5)

Here ¢ is a linear fitting constant related to the total variance, —At/Ina is the
characteristic timescale of the variance, f is frequency, and Z(t) is white-noise forcing
(see Jenkins and Watts, 1968). The modeled sea ice thickness power spectrum is
plotted with the best-fit to equation 2.5. See section 2.4 for a physical model of sea
ice thickness variability that is consistent with this fit.

From a least-squares fit to the standard case spectrum for f < (4 yr)fl, the best
fit value for the characteristic timescale for A’ is 15 years. A measure of the linearity

of the sea ice thickness response to D' is the squared coherency (shown in Fig. 2.4c).
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The standard case, 1000 year integration (a) monthly sea ice thickness,

h; (b) power spectrum of yearly sea ice thickness anomaly, b, (circles) and discrete

first-order Markov process best-fit (dashed line); and (c) squared coherency and (d)

phase spectrum of A’ and yearly atmospheric energy flux convergence anomaly, D’

The spectra for A' in this figure and in Figs. 2.8, 2.10, and 2.12 are calculated for

the last 900 years, N, of model output using a lead/lag correlation method smoothed

with a 124 year, L, Tukey window; therefore, the spectral estimates have 8N/3L = 19
degrees of freedom (Jenkins and Watts, 1968).
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The median squared coherency is 0.5 for f < (10 yr)fl. The phase spectrum, shown
in Fig. 2.4d, indicates that for f > (50 yr)fl, h' and D' vary in quadrature. Hence,
for f > (50 yr)~' about 50% of the sea ice thickness variance is consistent with a
linear model forced by D’. The phase spectrum shows that the sea ice thickness
approaches a 180° out-of-phase relation with D’ for century timescales.

Figures 2.5a-c show the spectrum of surface air temperature anomaly, 7, and the
squared coherency and phase spectra of (D’ and 7)) and (A’ and 7). The surface air
temperature is defined as the temperature where the normalized pressure is 0.998,
which is approximately 15 meters above the surface. Although the peak variance for
T occurs at low frequency, much of the variability is at interannual and intraannual
timescales. A discrete, first-order Markov process is fit to the spectral estimates of
T! in the range of (10 yr) ' < f < (6 mo) ' (see Fig. 2.5a). The best fit value for
the surface air temperature characteristic timescale is 40 days.

The high squared coherency between T” and D’ for f > (10 yr)~" in Fig. 2.5b
indicates that the surface air temperature responds linearly to D’ for the range of
frequencies where the ice thickness variability is small. As the frequency approaches
zero the power spectrum of 7 rises sharply which suggests that the surface air tem-
perature is modulated by the large, low frequency, variability in the sea ice thickness.
In addition, at the lowest frequencies the squared coherency between 7 and A’ in-
creases while the squared coherency between 7, and D' falls due to the component
of h' that varies non-linearly with D’. In Fig. 2.5¢, D' leads T, by about 10° at
f = (20 yr)™" and it gradually increases its lead to about 45° at timescales shorter
than the annual cycle. For the range of frequencies from (10 yr)~! to (1 yr)~!, ' leads
T! by 90° (i.e., positive anomalies in the surface air temperature force the sea ice to
melt). h’ approaches a 180° out-of-phase relationship with 7, for decadal timescales.

The spectrum of the sea ice/snow surface temperature, 7%, (not shown) is similar
to the surface air temperature spectrum. The variance of T} is about 95% of the

variance of 7). Table 2.2 lists the monthly standard deviations for the surface air
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Figure 2.5: (a) Power spectrum of monthly surface air temperature anomaly, 77,
(circles) and discrete first-order Markov process best-fit (dashed-line); (b) squared
coherency of T, and monthly atmospheric energy flux convergence anomaly, D', (cir-
cles) and squared coherency of 7, and sea ice thickness anomaly, A, (triangles); (c)
as in (b), but for phase spectrum. The power spectra for 7). (this figure) and the
outgoing longwave radiation anomaly (Fig. 2.6) are calculated as in Fig. 2.4 except
the Tukey window which is 10 years wide; therefore, the spectral estimates have 240
degrees of freedom.
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Table 2.2: Standard deviation of the monthly anomalies of surface air temperature,
sea ice/snow surface temperature, and flux of outgoing longwave radiation for the
standard case.

J  F M A M J J A S O N D

T! (Kelvin) 5.0 53 53 52 46 16 04 08 3.2 42 42 45
T! (Kelvin) 48 51 51 50 44 14 03 07 31 40 4.0 4.3
FirnWm™2) 13 14 14 15 15 88 7.3 7.2 84 98 11 12

temperature anomaly sea ice/snow surface temperature anomaly and flux of outgoing
longwave radiation anomaly.

The outgoing longwave radiation and planetary albedo are of interest because
satellite measurements of these quantities might be used together with observations
of D to indirectly monitor the low frequency variability of sea ice thickness. The
power spectrum of the outgoing longwave radiation anomaly, F);; p, is shown in Fig.
2.6a with a fit to a discrete, first-order Markov process in the range of (10 yr)f1 <
f<(6 mo)f1 which gives a characteristic timescale of 50 days. Figure 2.6b shows
that F{,;  responds almost linearly to D' and the squared coherency between Fy,; p
and D' falls off only slightly for f < (10 yr)~'. The annual mean planetary albedo,
7, defined as the ratio of annual mean outgoing solar radiation to incoming solar
radiation at the top of the atmosphere, has a nearly uniform power spectrum (see
Fig. 2.7a). Figure 2.7b shows that the squared coherency between the planetary
albedo anomaly, n’, and D' is about 0.4. A comparison of Fig. 2.6b and 2.7b shows
that there is a greater coherency between 7’ and b’ than between F/;, , and h'.

In summary, sea ice thickness varies predominantly at interdecadal timescales
with a characteristic timescale of 15 years. About half of the variability of sea ice

thickness for f > (50 yr)_1 can be explained as a linear response to the atmospheric
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Figure 2.6: (a) Power spectrum of monthly outgoing longwave radiation anomaly,
F/, g, (circles) and discrete first-order Markov process best-fit (dashed line) and

(b) squared coherency of FY,; . and monthly atmospheric energy flux convergence
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Figure 2.7: (a) Power spectrum of yearly planetary albedo anomaly, 1, and (b)

squared coherency of 1’ and yearly atmospheric energy flux convergence anomaly,
D', (circles) and squared coherency of 7' and yearly sea ice thickness anomaly, A/,
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energy flux convergence. The variability of the surface air temperature and outgoing
longwave radiation have characteristic timescales in the 40-50 day range. About 90%
of the variability of the surface air temperature and the outgoing longwave radiation
for f > (10 yr)~" can be explained as a linear response to the atmospheric energy

flux convergence.

2.83.2  Processes responsible for the low frequency variability in sea ice thickness

In the following section I will present the results of sensitivity experiments that illumi-
nate the key processes responsible for the development of the low frequency variability
in the sea ice thickness. I will show that a substantial proportion of the variance of
sea ice thickness at decadal and longer timescales is not linearly related to D', but it
results from high frequency variance in D’. T will also show that the system is most
sensitive to variability in D’ in the late spring and early summer.

To evaluate the response of ice thickness to high frequency forcing, D’ was high
pass filtered using a cut-off frequency of f = (5 yr)f1 which reduced the monthly
mean variance of D' by 25% from the standard case. The power spectrum of the
sea ice thickness for this integration is shown in Fig. 2.8. The sea ice thickness
variability is concentrated at low frequencies even though the interdecadal variability
has been removed from the forcing. The variance of ice thickness is reduced to 60%
of the variance of the standard case. This value is consistent with my estimate from
Fig. 2.4c which indicates that about 50% of the ice thickness spectrum cannot be
attributed to forcing by D’ at the same frequency.

To isolate the response of sea ice thickness as a function of season, I calculated
the mean and the standard deviation of the day of the year when the sea ice surface
first begins to melt (i.e., the melt onset date), d,,, and the last day that the sea ice
surface melts (i.e., the freeze-up date), d;. For the standard case the mean melt onset
date is 19 June and the standard deviation is 15 days. The mean freeze-up date is

22 August and the standard deviation is 5 days (see Fig. 2.9a). Observations from
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Figure 2.8: Power spectrum of yearly sea ice thickness anomaly, A', when the model
is forced with high-pass filtered atmospheric energy flux convergence anomaly, D',
with cut-off frequency equal to (5 yr)fl.

the Soviet ice station data show that 10 of the 16 observed melt onset dates occurred
between 15-19 June. There is a wider range in the 21 observations of freeze-up dates,
with most measured between 12-22 August. The dates of melt onset and freeze-up
from the standard case model integration agree with the observed times. However,
the model simulates a much wider range of melt onset date than is observed. This
difference in the range of simulated and observed melt onset dates may be due to
the limited observation record. However, the length of the record does not explain
why the simulated range of melt onset is larger than the simulated range of freeze-up

dates.

The covariance of d,, d¢, and the length of the melt season, df — d,,, with the an-
nual mean sea ice thickness is shown in Fig. 2.9b. As was suggested by Hiakkinen and
Mellor (1990), the sea ice thickness depends strongly on the length of the melt season
which in the model is determined largely by the variations in the melt onset date.
The melt season length leads the annual mean sea ice thickness in Fig. 2.9b which is

consistent with the melt season length forcing the sea ice thickness. Conversely, the
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Figure 2.9: For the standard case (a) histogram of melt onset, d,,, (white) and
freeze-up, dy, (black) denoting the first and last day of the melt season respectively.
The months are labeled at the middle of the month and the counts are grouped
into five day intervals. These dates are extracted from the last 900 years of the
standard case integration. In the 900 year interval there are a few years when the sea
ice/snow surface never melts. These exceptionally cool years have not been included
in the statistics for melt onset and freeze-up. (b) Mean annual sea ice thickness,
h, covariance with d,, (dashed), d; (dot-dashed) and the length of the melt season,
df — dm (line). The covariance is normalized so that the covariance at zero lag is
equal to the correlation coefficient. The mean sea ice thickness is calculated from 1

June through 31 May.



25

Table 2.3: Sea ice thickness anomaly monthly variance, oj/2, as a function of the
season of variability in atmospheric energy flux convergence anomaly, D'. The column
labeled “impact” denotes the variance in A’ relative to the variance in D' normalized
with respect to the standard case (see equation 2.6). In the following table winter is
defined as 1 November through 31 March, late spring and summer are defined as 1
May through 31 August, melt onset is defined as 6-30 June, and freeze-up is defined
as 11 August through 5 September.

all year (standard case) 1.00 1.00 1.00
winter 0.23 0.61 0.38

late spring and summer 0.58 0.18 3.3
melt onset 0.12 0.028 4.3
freeze-up 0.04 0.020 2.0

melt season length is not sensitive to the ice thickness in previous years.

I integrated the model with stochastic forcing in D' limited to only a portion of
the year. The sensitivity of the sea ice thickness response to the seasonality of the
perturbations in D' indicates that perturbations during late spring and summer are
more important than in winter (see Table 2.3). If D is perturbed only during a 24
day window at the beginning of the melt onset (freeze-up), the variance of sea ice
thickness is 12% (4%) of the variance of the standard case. The relative impact of

the seasonal perturbations in D’ are presented in Table 2.3 based on the equation

. O'hl2 O‘h/2
mmpact = 5 5
Op/ Op

When D' varies only during melt onset or freeze-up, the power spectra in Fig. 2.10 in-

(2.6)

standard case>

dicate that the interdecadal variability in sea ice thickness remains prominent. There-

fore, the low frequency variability in the system is very sensitive to anomalies in D’
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Figure 2.10: The power spectrum of yearly sea ice thickness anomalies, A', when the
atmospheric energy flux convergence anomaly, D', varies only during a 24 day window
at melt onset (triangles) and freeze-up (circles).

during melt onset.

Table 2.4 shows the changes to the mean sea ice thickness when the annual mean
atmospheric energy flux convergence, (D), is increased by a fixed percentage through-
out the year. The mean sea ice thickness is reduced by 0.5 m and 2.1 m when (D)
is increased by 1% and 10% respectively. I find a decrease in the variance and the
characteristic timescale of sea ice thickness as (D) is increased because sea ice thick-
ness variability is strongly dependent on the mean sea ice thickness. If the mean sea
ice thickness is reduced by varying the solar constant or the oceanic heat flux, I find

the variability in sea ice thickness is also reduced.
2.3.8 Sensitivity Studies

Sensitivity to cloud forcing

In the standard case experiment cloudiness and cloud height are modeled as random
forcing functions that have prescribed statistical properties (as described in section

2.2.2) so that on average there is about 50% cloud cover in winter and 90% cloud
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Table 2.4: Sea ice thickness annual mean, (h}); variance of the monthly mean anomaly,
on?; and characteristic timescale from the spectral variance as a function of the mean
annual value of atmospheric energy flux convergence, (D). The mean is calculated
over the last 900 years of a 1000 year integration.

(D) (h) op? Characteristic Time
(W m—?) (m) (m?) Scale (yr)
97 (standard case) 3.1 0.75 15
98 2.6 0.56 11
107 1.0 0.08 1.6

cover in summer. Cloud cover is so prevalent in the Arctic that day-to-day variations
may not affect the low frequency variability of the climate system. In this section
I will show that the variability of sea ice thickness is relatively insensitive to the
treatment of cloud forcing variability.

In reality, the atmospheric energy flux convergence is likely to be correlated with
clouds in the Arctic. To investigate the effects of correlating clouds and D, I first
compute a linear regression between the annual cycles (denoted by overbar) of the
observed climatological mean cloud cover and the latent heat component of the at-

mospheric energy flux convergence, Dy, (see Fig. 2.11). Hence
C=a+bDy,

where a=0.2 and b=0.04. Finally, the cloud cover for each day is computed according
to
C = a+bDy, subject to C = [0,1],

where D; = wD and w is the faction of D from latent heating for each day, i.e.,

w= D /D.
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When cloud cover and atmospheric energy flux convergence are correlated, there
is a significant impact on the mean annual cycle of surface temperature and sea ice
thickness, but there is little change in the low frequency variability of the system.
The mean winter time surface temperature is lower and the mean sea ice thickness
is greater. To maintain a sea ice thickness consistent with the standard case, D is
increased by 3.5 W m~2 all year. When D is increased to compensate for the cooling,
correlating D and C reduces the variance of sea ice thickness by only 10% from the
standard case.

I have just shown that correlating cloudiness with the atmospheric energy flux
convergence slightly reduces the variability in the climate system from the standard
case where the clouds are allowed to vary randomly. If instead I remove all stochastic
variability in the cloudiness, so that the cloud cover is the prescribed annual cycle
shown in Fig. 2.11b and the cloud height is fixed, the total variance of sea ice thickness
is reduced by 25% from the standard case, although the spectral distribution of the
variability is nearly unchanged from the standard case. Therefore, variability of sea
ice thickness depends on the stochastic variability in the cloud forcing, but it is not
necessary for the variability of the cloudiness to be correlated with the atmospheric

heat flux convergence.

Sensitivity to snowfall rate

In the standard case experiment snowfall is prescribed with a periodic annual cycle.
However, I expect that snowfall is correlated with the atmospheric energy flux conver-
gence because the contribution of latent heat to the total energy flux is proportional
to the flux of moisture into the Arctic. In section 2.3.2 T showed that variability in
the date of sea ice melt onset is linked to the variability in sea ice thickness. If the
snowfall rate is correlated to anomalies in D, then positive anomalies in snow depth
could insulate the surface and reduce the impact of positive anomalies in D. Also

the positive correlation between snow depth and D prior to melt onset may tend to
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Figure 2.11: (a) Component of the mean annual cycle of atmospheric energy trans-
port that comes from latent heat (daily values splined from observed monthly mean
Overland and Turet (1994) and (b) mean annual cycle of cloud cover (daily values
splined from observed 3 day mean of Soviet ice station data).



30

narrow the range of melt onset date, which has been shown to affect the variability
of sea ice thickness.

To obtain an estimate of the importance of variability in the snowfall rate, I
assume the snowfall rate is proportional to the moisture flux, i.e., I do not account
for storage of moisture in the atmosphere and subsequent snowfall at a later time.
The moisture flux across the 70° latitude circle is Dy /L, where L is the latent heat
of evaporation. Observations indicate that, on average, the total amount of moisture
that crosses the latitude circle at 70° north during the time of the year when the
upper sea ice/snow surface is below the melting temperature is 90 kg m 2 (Overland
and Turet (1994)). To accumulate an average annual snowfall depth equal to ~ 0.3
m (as in the standard case), the snowfall rate is equal to the moisture flux multiplied
by (275 kg m~3)~1,

When the snowfall rate and atmospheric energy flux convergence are correlated,
I find that there is a modest effect on the mean and the variability of the climate.
The mean wintertime surface temperature is lower than the standard case and the
mean sea ice thickness is greater. To maintain a sea ice thickness consistent with

2 all year. When D is increased to

the standard case, D is increased by 2.5 W m™
compensate for the cooling, the variance of the sea ice thickness is 35% less than
the standard case. The standard deviation of the melt onset date is reduced from
15 days for the standard case to less than 14 days when the snowfall rate and D
are correlated. This suggests that increasing snow depth during anomalously warm

events in D can reduce the influence of D on the variability of sea ice thickness.

Sensitivity to model resolution

I have varied the number of layers in the sea ice model to see how the variability
of sea ice thickness depends on the resolution of the temperature profile. Table 2.5
demonstrates that both the total variance of sea ice thickness and the characteristic

time scale increase with increased temperature resolution. This shows that the low
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Table 2.5: Sea ice thickness anomaly variance, oj/2, as a function of number of sea
ice layers. To keep the mean ice thickness approximately equal to the standard case
value, the mean value of the atmospheric energy flux convergence was adjusted for
the integrations with less than six sea ice layers.

number of op?  Characteristic Time
layers (m?) Scale (yr)
6 (standard case) 0.75 15
4 0.72 15
2 0.61 13
1 0.33 6

frequency variability is greatest in simulations where the temperature profile in the
sea ice is well resolved. The variance of surface air temperature, sea ice/snow surface
temperature, and outgoing longwave radiation are not sensitive to changes in the
number of layers in the sea ice model because a substantially higher portion of the
total variance in these variables is associated with the higher frequency variance in
the atmospheric energy flux convergence and hence they are decoupled from the low

frequency response in the sea ice.

In addition to changing the vertical resolution of the sea ice model, I have replaced
the more elaborate MacKay and Khalil (1991) radiative-convective atmosphere model
with a simple two stream, radiative equilibrium atmosphere as in Thorndike (1992b).
This change eliminates the time lag associated with radiative transfer. The sea ice
thickness power spectrum, shown in Fig. 2.12a, indicates that the variability is still
concentrated at low frequencies. However, the spectrum of sea ice thickness falls
off faster with frequency than the standard case. The squared coherency and phase

spectrum of sea ice thickness and atmospheric energy flux convergence (Fig. 2.12b and
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Figure 2.12: (a) Power spectrum of yearly sea ice thickness anomaly, A'; (b) squared
coherency and (c) phase spectrum of A’ and yearly atmospheric energy flux con-
vergence anomaly, D' for an integration where the radiative/convective atmosphere
model is replaced with a two stream atmosphere model.
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c) are similar to those of the standard case. The power spectrum of the sea ice/snow

surface temperature (not shown) is also similar to the standard case spectrum.

Ice export and the arctic climate

The general circulation of arctic sea ice includes the anticyclonic Beaufort Gyre and
the transpolar drift stream. Ultimately, most of the ice in the these circulating regimes
exits through Fram Strait. This export amounts to approximately 10% of the total
mass of sea ice in the Arctic Ocean each year (e.g., Rothrock, 1975). Hence, sea ice
has a limited lifetime due to transport out of the Arctic which may affect the low
frequency variability of the sea ice volume. Colony and Thorndike (1985) estimate
that the mean lifetime ranges from essentially zero at Fram Strait to approximately
six years north of Ellsmere Island.

To mimic qualitatively the effects of mean sea ice export through Fram Strait, an
additional term is added to the equation for bottom ablation/accretion from the stan-
dard case, —kh, where 1/k = 10 yr is the time constant for ice export. To maintain a
sea ice thickness consistent with the standard case, the annual mean of D is lowered
by 7.5 W m 2 all year. The results, displayed in Fig. 2.13, indicate the variance of
monthly sea ice thickness is diminished by about 50% and the characteristic timescale
for the variability of sea ice thickness is reduced to 6 years. Thus, while this simple
representation of ice export does not change the qualitative result that significant
low frequency variability is forced by thermodynamic processes, I anticipate that ice

export has an important quantitative effect on the sea ice thickness variability.

2.4 Physical model

A simple model describing the growth of perennial sea ice due to thermodynamic

processes with both annually and interannually varying forcing can be written

It = hn + G(hn) = M + G, — M,, (2.7)
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Figure 2.13: Sea ice thickness from integration to qualitatively examine the effects of
mean sea ice export through Fram Strait.

where h,, denotes the ice thickness at the start of the growth season during the nth
year, G and M are the annual thickness changes from growth and melt respectively.
The terms with overbars (primes) represent thickness changes from annually peri-
odic forcing (interannually varying forcing). With the addition of the influence from
interannually varying forcing, this model is an extension to that given in section 5
of Thorndike (1992b). Note that in Eq. 2.7, G is written as an explicit function
of h, because the growth rate is quite sensitive to the thickness while the thickness
dependence of M is neglected.

If we ignore the effects of aperiodic forcing in the ocean, then Eq. 2.7 can be
simplified by neglecting GJ,. This approximation is justified because the integrated
effect of aperiodic atmospheric forcing on growth is small over the relatively long
growth season (see table 2.3). Defining the equilibrium thickness h., such that the
change from growth equals that from melt, Weq) = M, and letting /' = h — h,,,
allows Eq. 2.7 to take on a particularly simple form
, 0G

;H—l_h;z,:hn%

— M. (2.8)
heg

The first term on the right hand side represents negative feedback in the system
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where (—0G/0h)™! evaluated at h,, is a decay time constant (in years). The second
term on the righthand side represents variations in the melt which are related (but
not equal) to anomalies of the atmospheric heat flux convergence. M’ depends on
processes in the ice, hence some fraction of M’ may be non-linearly related to the
atmospheric heat flux convergence. If M’ has the characteristics of white-noise, then
Eq. 2.8 has the form of a discrete first-order Markov process (see Eq. 2.4) which was
used for the fit shown in Fig. 2.4(b) for the ice thickness power spectrum. According
to Eq. 2.8, the non-linear fitting parameter a is
oG

=1 - . 2.
a + o . (2.9)

For the simple stochastic model in Eq. 2.4, the variance of the yearly? ice thickness

(02,) is related to the variance of the melt (03,) by
o2 = aﬁg. (2.10)

The characteristic timescale, 7, which equals 1/In(a), depends on processes and ap-
proximations that affect the growth rate such as the snow depth, the vertical reso-
lution of heat conduction in the ice, and the equilibrium ice thickness (see section
2.3.3). For example, table 2.5 shows that the timescale depends on the number of
layers in the sea ice. Computing 03, as a residual from 7 and o7, (see table 2.6, shows
that the variance of the melt is relatively insensitive to the number of layers. This
might be expected because the ice is nearly isothermal during the melt season. In
contrast, the experiments with stochastic forcing in the atmosphere limited to only a
portion of the year (see end of section 2.3.2) all had the same characteristic timescale
(not shown), and so o2 is 0.059 m%yr—! (0.022 m?yr—! ) for the experiments with

stochastic forcing in summer (winter).

2 Although in this chapter o}, is cited for monthly anomalies and Eq. 2.10 refers to yearly anomalies,

due to the long time scale for the volume variability, there is little difference.
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Table 2.6: Variance of annual ice melt, o3, as a function of number of sea ice layers
ow?, as a function of number of sea ice layers.

number of om’

layers m?yr~!

6 (standard case)  0.10

4 0.096
2 0.094
1 0.11

With Eq. 2.8 I have developed a physical model to describe the time evolution of
the sea ice thickness anomalies that is consistent with that simulated in the standard
case integration of the single-column model. Relationships from the physical model
are consistent with the dependence of the characteristic timescale on the model pro-
cesses and approximations tested with sensitivity studies using the single-column

model.

2.5 Discussion and conclusions

The single-column model model predicts that the variability of sea ice thickness
averaged over the central Arctic Ocean when it is forced by realistic atmospheric
perturbations occurs predominantly at low frequencies. A characteristic timescale,
estimated by least-squares fitting of the ice thickness spectrum to the spectrum of a
discrete, first-order Markov model, is 15 years for the standard case. Although the
single-column model is a very simple model, the standard deviation and characteristic
timescale of the modeled sea ice thickness agree to within about a factor of two with

two more physically complete models which are forced by monthly air temperature
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anomalies (Hakkinen and Mellor, 1990; Flato, 1995).

The phase spectrum between sea ice thickness and atmospheric energy flux con-
vergence is nearly constant at 90° for the range f > (50 yr)_l, and the squared
coherency in this range is approximately 0.5 (Fig. 2.4). Therefore, half of the vari-
ability of ice thickness in this range is consistent with the features of a linear model,
directly forced by perturbations of atmospheric energy flux convergence. However,
it is clear that about half of the variability is not explained by such a model, and
experiments with high pass filtered forcing (Fig. 2.8) suggest that high frequency
variability in the atmospheric energy flux convergence induces the unexplained low
frequency variability through nonlinear processes.

It appears likely that the nonlinearities in the sea ice response arise because the
sea ice adjusts to thermal forcing by changing its temperature and thickness in a
complicated way. In particular, the physical mechanisms governing these processes
undergo step changes at the onset of melt and at freeze-up. Figure 2.9 shows that
a typical anomaly in the melt onset date influences the sea ice thickness for several
decades. It appears that anomalous melting associated with the onset of the melt
season can induce a very broad, low frequency response in the sea ice thickness.

The relevance of the onset of melting to the low frequency variability is also sug-
gested by the fact that the sea ice thickness variance is most sensitive to atmospheric
energy flux convergence perturbations in late spring. For example, when the atmo-
spheric energy flux convergence is anomalously high in late spring, the snow begins
to melt earlier. As the snow melts, the surface albedo decreases and “locks” in the
effect of the anomalously high atmospheric energy flux convergence by lengthening
the melt season which ultimately thins the sea ice. There is not an equivalent inter-
action between the atmospheric energy flux convergence and the effect of the surface
albedo at freeze-up partly due to the low elevation angle of the sun in late August.

The total variance and characteristic timescale of the sea ice thickness increase

with the mean thickness and with the number of sea ice layers in the model. When the
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modeled ice temperature profile is constrained to be linear so that the heat capacity
and the effects of brine pockets are neglected, the model over estimates the annual
cycle. The timescale of the variability, according to the simple physical model in
section 2.4, depends on the annual cycle of ice growth.

If the large, low frequency variability in the sea ice thickness is realistic, then
one would have to measure sea ice thickness in the Arctic over several decades to
obtain an accurate estimate of the climatological mean. My model results imply
that the best variables for indirectly detecting low frequency fluctuations in the sea
ice thickness are the surface temperature and the planetary albedo because there is
significant squared coherency between the sea ice thickness and surface temperature
(0.5) and the sea ice thickness and planetary albedo (0.7) for frequencies less than
(10 yr)fl. In contrast, the squared coherency of the sea ice thickness with outgoing
longwave radiation is only 0.4 for low frequencies.

The results presented do not depend on the details of the atmospheric radiation
model. I have found the same qualitative variability in the sea ice thickness and
surface sea ice/snow temperature when the entire atmosphere model is reduced to a
simple two stream radiative equilibrium model. I have modeled cloud cover as highly
correlated with the atmospheric energy flux convergence and found little change in the
variability of the climate system. On the other hand, the sea ice thickness variability
is affected by the resolution of the ice temperature profile, the variability in annual
accumulated snowfall, and by the abrupt change in the surface albedo and the sea ice
surface temperature at melt onset. This suggests that it is important to use adequate
temperature resolution in the ice (at least four ice layers) and to include the effects
of accumulated snowfall in surface heat conduction and the surface albedo in models
of the arctic climate system. A simple, qualitative experiment suggests that the sea
ice export will have a significant impact on the low frequency variability in the sea
ice volume.

From these results, I can estimate how long one must wait to detect a change
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in the mean sea ice thickness by using statistical decision theory. To determine if a
step change has occurred in the climatological mean sea ice thickness, I pose a simple
null hypothesis: there is no difference between the mean ice thickness before and after
the supposed climate change. Rejection of the null hypothesis implies that the mean
ice thickness has changed, with some probability given by a significance level. The
significance of the difference between the two sample means depends on the number
of independent measurements used to estimate each mean and the variance of the
ice thickness. I assume that the number of independent measurements of sea ice
thickness equals the length of time that the thickness has been monitored divided by
the characteristic timescale of the sea ice thickness variability. I use results for the
variance (o7, = 0.75 m?) and characteristic timescale (15 yr) of sea ice thickness from
the standard case. For example, to obtain 4 independent measurements of sea ice
thickness before a supposed climate change, one would have to monitor the sea ice
thickness for 60 years. The solid lines in Fig. 2.14 show contours of the significance
level to reject the null hypothesis for the standard case, as a function of the number
of independent measurements and the estimated difference in mean thickness. For
example, sea ice thickness must be monitored for 60 years for a 1.4 m change in
the mean sea ice thickness to be significant at the 95% confidence level (see letter
A in Fig. 2.14). Suppose one only wants to wait 30 years, then the difference of
the means must be at least 0.7 m to detect a climate change at the 75% confidence
level (letter B in Fig. 2.14). In contrast, if the sea ice thickness variance is 0.35 m?
and the characteristic timescale is 6 years (e.g., in the case that includes a simple
parameterization for sea ice export, section 2.3.3), the criteria for significance are
more readily met (dashed line in Fig. 2.14). Therefore, a 1.3 m change would require
measurements taken over 12 years in order to detect a climate change at the 95%

confidence level (see letter C in Fig. 2.14).

Finally, I note that much has been written about the importance of convection

in the subpolar seas to the global thermohaline circulation as mentioned in the in-
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Figure 2.14: Contours show the significance level as a function of the estimated dif-
ference in the climatological mean sea ice thickness before and after a climate change
and the degrees of freedom of the measurement after the climate change. The solid
contours are computed using the results from the standard case and the dashed
contours are computed using the results from the case which includes a simple pa-
rameterization for sea ice export. I assume that there are four independent thickness
measurements before the climate has changed. The t-statistic, derived from Student’s
T distribution, is used to determine the 75 and 95% significance levels.
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troduction. A weak salinity stratification characterizes the density structure in the
North Atlantic. Aagaard and Carmack (1989) estimate that the principal source of
fresh water in the Greenland, Iceland and Norwegian Seas region is the influx of sea
ice and low salinity polar surface water through Fram Strait. The freshwater trans-
port into the North Atlantic from sea ice flux through Fram Strait given in Aagaard
and Carmack (1989) is 2800 km?® yr~'. Dickson et al. (1988) estimate that the to-
tal freshwater excess during the Great Salinity Anomaly (GSA) in the 1970’s was
approximately 2200 km?®. If it is true that ice export is the dominant source for fresh-
water transport into the North Atlantic, from the model results I estimate that even
without anomalies in the ice velocity at Fram Strait, the standard deviation of the

freshwater transported by ice would be ~ 780 km? yr—!

which is found by multiply-
ing 2800 km? yr~! by the ratio of the standard deviation to mean sea ice thickness,
op /i_z = 0.28. Hence, it may be possible that thermodynamic processes alone can
account for freshening of the North Atlantic comparable to the freshening during the

GSA. For example, a sea ice volume anomaly that is one standard deviation above

the mean for 3 years translates to a 2300 km? freshwater volume.

My objective in this study was to assess the potential for natural interannual,
decadal, and longer timescale variability in the arctic sea ice that results because
of the special thermodynamics associated with the coupled arctic atmosphere, sea
ice, and upper ocean system. I have shown that significant, natural, low frequency
variability in the arctic sea ice is expected solely due to thermodynamic processes
associated with the arctic climate system and the nature of the atmospheric energy
transport into the Arctic. Additional processes not considered in this chapter may
contribute to the low frequency variability in the sea ice. These include the effects of
open water, new ice growth, sea ice export, and dynamics and thermodynamics in a
distributions of sea ice thicknesses. How these processes affect sea ice variability is
further explained in chapter 5. It is also likely that low frequency variability in the

sea ice volume is affected by variability in the ocean circulation below the mixed layer.
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An examination of how the ocean thermohaline circulation affects sea ice variability

is beyond the scope of this dissertation.



Chapter 3

COMPARISON OF NATURAL VARIABILITY IN THE
ARCTIC CLIMATE SIMULATED BY THE COLUMN
MODEL AND BY THE GFDL GCM

3.1 Overview of chapter 3

In this chapter I examine the natural variability of the arctic climate system simulated
by two very different models: the Geophysical Fluid Dynamics Laboratory (GFDL)
global climate model, and the single column model (SCM) from chapter 2 which is an
area-averaged model of the arctic atmosphere/sea ice/upper ocean system. A 1000
yr integration of the SCM is performed in which the model is driven by a prescribed,
stochastic atmospheric energy flux convergence (D) which has spectral characteristics
that are identical to the spectra of the observed D. The standard deviation of the
yearly mean sea ice thickness from this model is 0.85 m; the mean sea ice thickness is
3.1 m. In contrast, the standard deviation of the yearly averaged sea ice thickness in
the GFDL climate model is found to be about 6% of the climatological mean thickness
and only 24% of that simulated by the SCM.

I present a series of experiments to determine the cause of these disparate results.
First, after changing the treatment of sea ice and snow albedo in the (standard)
SCM model to be identical thermodynamically to that in the GFDL model, I drive
the SCM with D from the GFDL control integration to demonstrate that the SCM
model produces an arctic climate similar to that of GFDL model. I then examine
integrations of the SCM in which the different prescriptions of the sea ice treatment

(GFDL vs. standard SCM) and D (GFDL vs. observed) are permutated. My results
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indicate that unarguable improvements in the treatment of sea ice in the GFDL
climate model should amplify significantly the natural variability in this model. T
present calculations that indicate the variability in the sea ice thickness is extremely
sensitive to the spectrum of the atmospheric energy flux convergence. Specifically,
the differences between the GFDL and observed D at time scales shorter than three
years are shown to have a significant, impact on the sea ice variability on all time
scales. A conservative best-estimate for the amplitude of the natural variability in
the arctic sea ice volume is presented; this estimate is a significant fraction (about
25%) of the mean sea ice thickness.

My results suggest that most of the global climate models that have been used to
evaluate climate change may also have artificially quiescent natural variability in the

Arctic.

3.2 Introduction

The Arctic is portrayed in current climate models as a region of high sensitivity and
widespread influence. State-of-the-art numerical models of the earth’s climate system
(each of which contains sophisticated modules for the ocean, atmosphere, cryosphere
and land surface') indicate that the surface warming associated with increasing levels
of greenhouse gases in the Earth’s atmosphere is greatest in the Arctic. However,
little has been reported about the ability of these models to simulate the natural
low frequency variability in the arctic climate system which, in reality, may obscure
greenhouse gas warming.

Sea ice thickness varies on much longer time scales than the atmospheric forcing on
the sea ice. Hence, variability in the arctic sea ice thickness may be used to measure
the low-frequency variability in the arctic climate system. In the previous chapter I

used an arctic atmosphere/sea ice/upper ocean climate system (in this chapter the

! Hereafter, I refer to these models as General Circulation Models, or GCM’s.
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Figure 3.1: One thousand year time series of the annual mean sea ice thickness
anomaly averaged over perennial ice area in the Arctic from (a) the SCM and (b) the
GFDL climate model. Spectra (c) of the ice thickness from SCM (o) and GFDL (x),
each with a best fit (dotted line) to a discrete first order Markov process. The spectra
are calculated for the last 900 years (V) of model output using a lead/lag correlation
method smoothed with a 124 year (L) Tukey window, yielding 8 N/3L = 19 degrees
of freedom (Jenkins and Watts, 1968).
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model is referred to as the single column model, or 'SCM’) to examine the natural
variability of the climate system, averaged over the arctic polar cap. Variability in
the arctic climate stems from variability in the transport of energy into the Arctic by
atmospheric circulation (see, e.g., Nakamura and Oort, 1988). The sea ice thickness
anomaly from chapter 2, (repeated here in Fig. 3.1a) indicate that variance in the
arctic climate system occurs on time scales longer than a decade and at remarkably
large amplitude (overall standard deviation in yearly ice thickness of 0.85 m). This
result is consistent with the calculations presented in Hékkinen and Mellor (1990) and
Flato (1995) using sea ice models forced with observed surface atmospheric conditions,
and the interannual changes in the springtime ice thickness of order 1 m at the North
Pole from a dozen submarine voyages, reported in McLaren et al. (1994). Analysis
of the ice draft from moored sonars in the Beaufort Sea indicate changes in the
multi-year ice thickness of 1.5 m during the period 1990 to 1995 (Moritz, personal
communication). Nonetheless, there are too few observational data to determine
whether the climate variability that is demonstrated by the model in chapter 2 is
consistent with that in nature. I can, however, compare the results in Fig. 3.1a from
the SCM to that realized in a global climate model that includes a comprehensive
treatment of each component of the hydrologic cycle. Fig. 3.1b shows a time series
of the anomalies of the mean annual arctic sea ice thickness for the area identified
in Fig. 3.2 from a 1000 year, “present climate” integration of the Geophysical Fluid
Dynamics Laboratory (GFDL) GCM (Manabe and Stouffer, 1996).

The amplitude of the simulated climate variability, evidenced here by the sea ice
thickness in the GCM, is fundamentally different from that in the SCM. The standard
deviation for the annual sea ice thickness is 0.20 meters for the GFDL GCM and 0.85
meters for the SCM, though the power spectrum of sea ice thickness (Fig. 3.1c) from
the GFDL GCM and the SCM indicate both models exhibit greatest variance in the
sea ice thickness at low frequencies (see section 2.4). The difference in the natural

variability depicted in Fig. 3.1a and that in Fig. 3.1b strongly affects the number of
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Figure 3.2: Grid points from the GFDL model area that are used for comparison with
the SCM model output. This region is chosen because the sea ice is predominantly
perennial.
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years one would have to monitor ice thickness to detect a climate change of 1 —2 m,
as simulated by most GCMs in response to a doubling of CO, (see, e.g., fig. 2.14).

Does the GFDL GCM underestimate the variability in the sea ice, or is the area
averaged ice thickness from the SCM model in error? There are insufficient observa-
tions to answer this question definitively. In this study I will determine why there are
large differences in the arctic climate simulated by the two models. In the process,
I will reveal some insight concerning which of the two estimates in Fig. 1 is a more
reliable estimate of the variability in the arctic climate system.

In this study I perform multiple, 1000 year integrations of the SCM to evaluate
the sensitivity of the coupled climate system to the formulations of ice physics and
to atmospheric forcing. I present results in which the (standard) sea ice module is
modified in the SCM to be identical thermodynamically to the sea ice module that
is in the GFDL climate model. I then perform integrations which independently
exchange several of the oversimplified physical formulations in the GCM ice module
for the more realistic treatment that is used in the standard version of the SCM;
ultimately, I arrive back at the formulation of sea ice that is used in the standard
version of the SCM. I will demonstrate that adding realism to the parameterization
of ice physics and increasing the resolution of temperature structure in the sea ice
will lead to a substantial increase in the low frequency variability in the arctic climate
simulated by the GFDL GCM and other climate models?.

A brief overview of the physical formulation of the sea ice in the GFDL general
circulation model is found in section 3.3. Section 3.4.1 contains a discussion of the
observed flux of moist static energy into the Arctic which is important for variability
in the arctic climate and provides an important component in the forcing of the SCM.
Differences in this energy flux realized from the GCM and that from the observational

record are identified, and in section 3.5 I examine the effect of these differences on the

2T use the output from the GFDL model in this study because it is available and widely recognized.

Other GCMs employ similar simplifications to sea ice, though details differ.
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simulated variability in the arctic climate system using the standard SCM. In section
3.6 I incrementally alter the SCM to include several physical formulations in the sea
ice module that are presently in the GFDL GCM, and illustrate the sensitivity of the
natural variability that is simulated in the model to these formulations. An estimate
of the variability in the sea ice in nature is provided in section 3.7, and a summary

and discussion are presented in section 3.8.

3.3 Geophysical Fluid Dynamics Laboratory general circulation model

The GFDL GCM is a global coupled atmosphere, sea ice, and ocean model. The
model physics are described in Manabe et al. (1992), so here I review only the
treatment of arctic sea ice. The ice is a slab of uniform thickness in each grid box
without leads. Snow accumulation is converted immediately to equivalent sea ice
thickness, therefore the thermal insulating capacity of snow is neglected and the
surface albedo does not depend explicitly on snow depth. Heat conduction through
the sea ice is calculated by assuming a linear temperature profile between the top and
bottom surfaces of the ice; hence, sea ice is treated as a single layer with zero heat
capacity (i.e., changes in the sea ice temperature require no energy). The sea ice is
advected with the surface current, unless ice thickness exceeds four meters.

To mimic the effects of snow cover, melt ponds and open water, the GFDL GCM

surface albedo is specified as a function of the surface temperature,

jce, when T, > T,,
. Qice + 0.025(T,, — Ts), when T,,, — 10°K
.7 <T, <Tp,
Olsnows when T, < T,, — 10°K,

and sea ice thickness,

o, when h > 1m 3.1)
QGFDL = 3.1
\/B(Oj* - a’ocean) + Qocean when h <1 m.
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In Eq. 3.1, his the sea ice thickness in meters, T is the upper surface temperature, 7,

is the upper surface melting temperature, ;.. = 0.55, Qgpow = 0.8, and apeean = 0.1.

3.4 Discrepancies due to atmospheric forcing in the arctic region

The natural variability in the Arctic is rooted fundamentally in the variability of
energy transported by the atmosphere into the Arctic. Natural variability in the
climate of the polar cap modeled by the SCM is a response to the prescribed, time
dependent atmospheric energy flux convergence, D, and cloudiness as described in
section 2.2.2. Could the discrepancy in the sea ice variability in the two models (see
Fig. 3.1a and b) be due to the differences in the energy transport to the Arctic that
is realized in the GFDL GCM and the energy transport that is prescribed (based on
observations) in the SCM? To answer this question, I will compare SCM simulations

forced by (i) D based on observations and (ii) D from the GFDL GCM.

3.4.1 Atmospheric energy transport into the Arctic in nature and in the GFDL GCM

The observed monthly values of D for a polar cap bounded by 70° N are computed by
Overland and Turet (1994) based on rawinsonde data from 1965 to 1989 (see section
2.2.2) . The values of D from the GFDL GCM output are computed as a residual

from the energy budget of the polar cap (see Nakamura and Oort, 1988),
AE/At=F,+ D+ F, (3.2)

where AE /At is the rate of storage of energy in the atmosphere, Fj, is the net incoming
flux of short wave and long wave radiation at the top of the atmosphere, and F is
the upward energy flux at the Earth’s surface*. The GFDL model output is given
as monthly mean values. AE/At, F,, and F; are computed at each grid point and

then averaged over all of the grid points shown in Fig. 3.2. Therefore, D represents

3 D is not directly calculable from the information that is saved from the GCM integration.
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the monthly poleward transport of energy across the boundary of the area covered
by the grid points®.

Figure 3.3(a) and (b) show the mean annual cycle and the standard deviation of D
from observations and GFDL model output. The mean monthly D from the GCM is
5 —10% larger than the observed D in all months except November through January.
The standard deviation of monthly D from the GFDL GCM is about 60% of observed
during the winter and about 80% of observed during the melt season. The power
spectrum and autocorrelation for the observed and GFDL derived monthly anomaly
of D are shown in Figure 3.3(c) and (d). The power spectrum of the observation-
based D is nearly constant for monthly and longer time scales, while the variance
in D from the GFDL model output is skewed towards short time scales (at least as
short as two months). The power spectrum of D from the GFDL model output is
similar to observations for monthly time scales, but it is considerably lower for time
scales greater than about 5 months (see also section 3.7).

To examine the sensitivity of the climate variability in the Arctic requires long
integrations (e.g., 1000 years each) because of the long time scale associated with the
thermodynamic adjustment of sea ice. The observed time series of D, however, spans
less than 30 years. In addition, only the mean monthly D is available from both
observations and the GFDL GCM, though D probably varies considerably on shorter
time scales. Hence, to force the SCM with a one-day time step, synthetic time series
of D must be obtained for both the observations and the GCM.

Based on observations I obtain a synthetic D from a discrete form of the Langevin

equation (p560f Reif, 1965) so that the standard deviation and power spectrum of

4 The areas used to calculate D from the model and the observations differ because the region that
is most appropriate for input to the area-averaged model (i.e., over the perennial arctic sea ice) is
void of observations with which to calculate the observed D. Note, however, in the GFDL model
D along 70°N is less than D over the region of perennial sea ice, which suggests the observations

at 70°N are likely to provide an underestimate of the true D over the perennial sea ice.
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Figure 3.3: The mean monthly atmospheric energy flux convergence: (a) The annual
cycle; (b) standard deviation; (c¢) power spectrum; and (d) autocorrelation. Data are
presented for both observations (solid line) and the GFDL model (dashed line). The
power spectra are calculated as in Fig. 3.1c, but here the annual cycle is removed
and the window width is four years. Hence, there are 600 (16) degrees of freedom in
the GFDL output (observations).
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Figure 3.4: Spectra of synthetic D based on observations (heavy solid) and the GFDL
GCM (heavy dashed). Also plotted is the spectrum of the hybrid D (light solid),
discussed in section 3.7. All curves are computed analytically from the difference
equations and spectral filters used to synthesize D.

monthly mean values are consistent with those in Fig. 3.3(b) and (c¢), and the power
spectrum of the daily time series of D is red with a characteristic time scale of 5 days
(see section 2.2.2). Based on GFDL output, again, I simulate D from a discrete form
of the Langevin equation; however, now the daily time series is partially high pass
filtered to render the synthetic spectrum commensurate with that from the GFDL
model. Power spectra of the synthetic time series are shown in Fig. 3.4; the spectral
properties of the synthetic D are statistically indistinguishable from their observed

counterparts in Fig. 3.3c and d.

3.5 Sensitivity of ice thickness variability due to differences in the at-

mospheric forcing

I first demonstrate that the area-averaged SCM model reproduces the sea ice vari-

ability simulated by the GFDL GCM. The sea ice module in the SCM is replaced
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Figure 3.5: Anomalies of yearly sea ice thickness from the SCM output for integrations
with (a) D based on GFDL, standard SCM surface physics for snow and albedo, 6 sea
ice layers; (b) D based on observations, GFDL surface physics for snow and albedo,
1 sea ice layer; (c) D based on GFDL, GFDL surface physics for snow and albedo, 1
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with the thermodynamic treatment of sea ice that is identical to that in the GCM.
The modified SCM was able to reproduce a significant portion of the low-frequency
variability in the GFDL 1000 yr time series of sea ice that is shown in Fig. 3.1b when
forced by the accompanying D taken directly from the GFDL climate model. Specifi-
cally, about 45% of the sea ice variance in the GFDL control integration is accounted
for in the hindcast (not shown) even though I have neglected the ocean heat trans-
port variability and used only monthly averaged values of D from the GCM, using a
cubic spline to produce a daily time series. As a second test, a 1000 yr integration is
performed while forcing the modified SCM with the GFDL synthetic D® (Fig. 3.4). A
300 yr segment of the time series of the sea ice thickness from this model is displayed
in Fig. 3.5c. The standard deviation (o) of the yearly sea ice thickness from the SCM
with the GFDL GCM sea ice physics (e.g., albedo as per Eq. 3.1, one layer of ice,
and no snow cover) is ¢ = 0.14m, similar to that from the GCM (o = 0.20m) and
very different from that realized by the standard physics SCM forced by the observed
D (o = 0.85m).

To examine how much of this remarkable difference in the sea ice variability can
be attributed to the differences in the forcing, I re-ran the SCM model with the sea
ice physics of the GFDL GCM, but this time the forcing D was prescribed based
on the observations. This integration also yielded sea ice variability (variability is
used synonymously with standard deviation) that is predominantly at low frequencies
(Figs. 3.5b and 3.6 (heavy dashed line) ) but with amplitude (¢ = 0.45m) that is
intermediate between the amplitude achieved in the standard physics SCM forced by
the observed D (0 = 0.85m) and the amplitude realized by the SCM with the GFDL
GCM D and the GCM ice physics (o = 0.14m).

Finally, I integrated the standard physics SCM, forcing it with the D based on the
GFDL GCM. The standard deviation is reduced to one-third (0.28/0.85) of that from

5 Henceforth, when I refer to forcing of the SCM with the GFDL GCM D or the observed D, I am
referring to the synthesized D that are described at the end of section 3.4.1
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Table 3.1: The standard deviation of yearly sea ice thickness anomalies for four
integrations of the SCM, described in section 3b. Each integration uses a unique
permutation of the forcing (D) and treatment of sea ice.

Experiments with different sea ice physics packages

GCM (GFDL) SCM
ice-physics ice-physics

D as per GFDL GCM 0.14 m 0.28 m

D as per observations 0.45 m 0.85 m

the integration using the observed Dj; the variance remains in the lower frequencies

(Figs.3.5a and 3.6 (heavy solid line)).

In summary, the results of these four SCM integrations (see Table 3.1) demonstrate

the following:

e When the SCM is modified to contain the GFDL GCM thermodynamic sea ice
package and is forced by the energy transport that is realized by the GCM, the
variability in the sea ice is statistically very similar to the sea ice variability

from the full GCM;

e The variability in arctic sea ice in the area-averaged (SCM) regional climate
model is substantially affected by the different formulations of the sea ice physics
(see section 3.3), and by the differences between the energy transport into the

Arctic realized by the GFDL GCM and that which is observed in nature.
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Figure 3.6: Power spectra of yearly sea ice thickness anomalies from the SCM output
for integrations: D based on GFDL, standard surface physics for snow and albedo, 6
sea ice layers (heavy solid); D based on observations, GFDL surface physics for snow
and albedo, 1 sea ice layer (heavy dashed); D based on GFDL, GFDL surface physics
for snow and albedo, 1 sea ice layer (light solid); the hybrid D and the SCM standard
physics (light dashed) . The power spectra are calculated as in Fig. 3.1c.

3.6 Sensitivity studies reveal the fundamental physics that accounts for

the quiescent arctic climate in the general circulation model

The experiments of the last section showed that the sea ice variability in the SCM
almost doubles® when the simple module for sea ice from the GCM (section 3.1) is
replaced by the more realistic formulation in the standard SCM, described in Eq. 2.1.
In this section I will isolate aspects of the sea ice treatment that significantly affect
the variability in the sea ice and in the arctic climate system that is simulated by the

SCM.

The two fundamental differences between the ice models used in the SCM and

6 The increase in the standard deviation of annual mean ice thickness due to the inclusion of
a more realistic sea ice module is 0.28/0.14 = 2 when the SCM is forced by the GCM D and
0.85/0.45 = 1.9 when the SCM is forced by the observed D.
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Table 3.2: The standard deviation of yearly sea ice thickness anomalies from eight
integrations which differ by the number of sea ice layers, n, and the surface physics
which either explicitly include the effect of snow or (as in the GFDL model) there
is no snow cover and the albedo is described by Equation 3.1. The integrations in
the left (right) quartet were forced with the variability in D that is based on GFDL
model output (the observed data). The schematic indicates the percent change in
standard deviation as one moves through the quartet of experiments, using either
prescription of D.

GFDL D observed D
n=1 n=6 n=1 n==6
Osurface=GFDL  0.14m 0.18 m 0.45m 0.57m
Qgurface=€xplicit 0.19m 0.28 m 0.57m 0.85 m

~ 130%

~ 130% ~|150%
~ 190%

B —

~ 150%
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GCM are:
(i) GFDL GCM: The surface physics do not resolve snow cover. The albedo

parameterization depends on the upper surface temperature and sea ice thick-
ness, but does not depend on snow depth explicitly. Insolation effects and
energy storage in snow cover are excluded.
SCM: The snow depth is treated as a prognostic variable in the sea ice model.
The surface albedo parameterization reflects the sea ice thickness and the
snow depth. The surface is insulated by accumulated snow cover, and energy
is required to melt it.

(i) GFDL GCM: The vertical temperature profile is constrained to be uniformly
linear. Hence, the sea ice model has one layer.

SCM.: The temperature profile is well resolved by six sea ice layers.

Table 3.2 summarizes the results from the (1000 yr) integrations of the SCM using
all possible permutations of the forcing (GFDL GCM or observed), sea ice resolution
(one layer (GFDL GCM) or six layers (standard)), and snow/albedo formulation (see
section 2.2). The quartet of experiments on the left (right) summarizes results for
varying sea ice resolution and the treatment of snow/albedo while keeping the forcing
D prescribed as in the GCM (from observations).

For forcing by the observed D and with the treatment of snow/albedo as in the
GFDL GCM, increasing the number of layers in the sea ice from a purely linear
(n = 1) profile to n = 6 layers (hence better resolving conduction) causes an increase
of 27% (0.45 to 0.57 m) in the standard deviation of sea ice thickness; using the
standard SCM albedo/snow formulation yields an increase in the variability of 49%
(0.57 to 0.85 m). The percent increase of the sea ice variability associated with the
adequate resolution of conduction depends on the treatment of snow/albedo, yet it
is relatively insensitive to the prescription of D (compare rows in Tables 3.2).

For forcing by the observed D, changing the snow/ albedo formulation from the

GFDL GCM formulation (Eq. 3.1) to the explicit treatment in the standard version
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of the SCM leads to an increase in the standard deviation of sea ice thickness of
27% (0.45 to 0.57 m) with n = 1 and 49% (0.57 to 0.85 m) with n = 6. Again, the
percent increase of the sea ice variability resulting from improving the formulation
of snow/albedo is relatively insensitive to the prescription of D (compare columns in
Tables 3.2).

In summary, either increasing the resolution of the temperature profile in the
sea ice or implementing the improved snow/albedo formulation from that in the
GFDL GCM, independently, leads to a substantial increase in sea ice variability in the
regionally averaged arctic climate (SCM) model. Implementing these improvements
stmultaneously causes the variance to increase by about four-fold, independent of the

different prescriptions of forcing D (see footnote 7).

3.7 An estimate of the variability of sea ice thickness in nature

The natural variability in the arctic climate system is driven by changes in the energy
transport into the Arctic by the atmosphere (D) and by the ocean. I have shown
that the differences between the atmospheric energy transport in the GFDL GCM
and that in nature (Figs. 3.3c and 3.4) have a large impact on the variability of the
arctic climate in the SCM (e.g., a factor 0.85/0.28 = 3 difference in the standard
deviation of sea ice thickness; Table 3.1). Hence, to obtain a reliable estimate for the
amplitude of the natural variability in the arctic climate system requires that D be
known accurately on a wide range of time scales.

For periods of less than a few years, the differences in D from the observations
and from the GFDL model are statistically significant (based on sample size) and are
too large to be attributed to observational error. In contrast, for periods greater than
about five years, the observational record is too short to determine the true spectrum
of D: significant uncertainties are introduced from both measurement and sampling

error. However, I anticipate that in the decadal range, nature has at least as much
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variability in D as does the GFDL model’.

To obtain a conservative “best estimate” of the sea ice variability in the arctic
climate system, I assemble a hybrid D which has spectral properties that are consis-
tent with the observations on time scales shorter than two years, and is intermediate
between the D from the GFDL model and from observations for time scales longer
than two years. This hybrid spectrum is plotted in Fig. 3.4, along with the spectra
based on the GFDL and observed D.

When the standard physics SCM model is forced by this hybrid D, the variability
in the sea ice thickness still accumulates at the lowest frequencies (Fig. 3.6, light
dashed line) and the overall variability is 0.72 m - only slightly reduced from that
obtained using the SCM and the full-spectrum observed D (0.85m). Thus, the “best
estimate” of the standard deviation due to natural variability in sea ice is more than
a factor of three (0.72/0.20) greater than that simulated by the GCM. The remaining
experiments with the SCM using the hybrid D and various mixes of sea ice physics
are summarized in Table 3.3. Using the hybrid D, the sensitivity of the simulated sea
ice variability to specific changes in the treatment of sea ice is consistent with that
obtained using the observed and GFDL D (contrast rows and columns between the
two tables, Tables 3.2 and 3.3).

I have not yet examined the impact of sea ice dynamics or leads on the variability
in the arctic climate system. Section 2.3.3 present a calculation that suggests the
uniform advection of sea ice acts to dampen the variability displayed in the standard
physics SCM (Fig. 3.1). A discussion of the variability that is due to the mechanical
forcing (wind and current stresses) of the sea ice is found in chapter 5. I anticipate
that variability in the ocean heat transport, which is neglected in this study, will

increase the variability in the sea ice from the "best estimate’ presented here that is

" The interannual to multi-decadal variability in the global tropics of the GFDL GCM is anemic
compared to nature (Lau et al., 1992); one may expect that this problem is communicated via

atmospheric dynamics to the polar regions.
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Table 3.3: As in Table 3.2, but the forcing D has spectral characteristics that represent
a hybrid of the spectra from the GCM and from observations.

Hybrid D
n=1 n=2=6

Osurface=GFDL  0.28 m 0.38 m

Qsurtace=€xplicit 0.42m 0.72 m

~ 140%

~ 150% ~(190%
~ 260%

—_—

~ 170%

due solely to the stochastic nature of the atmospheric energy transport.

3.8 Discussion and conclusions

In this chapter I have used a model of the area-averaged, coupled arctic atmo-
sphere/sea ice/ocean system to examine the variability in the arctic climate that
may be expected because of the natural variability in the transport of energy into the
Arctic via the atmospheric circulation. I use sea ice thickness as a useful indicator of
the state of the arctic climate system.

The motivation for this work stems from the results of chapter 2, which suggest
that the variability in the arctic climate may be surprisingly large and predominantly
at multi-decadal and longer time scales. Though the scant observations are not
inconsistent with the model results, the observational record is too short to determine
the veracity of this result. Hence, I contrasted the SCM results to those found in a

global general circulation (climate) model, and found that the variability in the sea
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ice of the GCM was one quarter of that in the SCM (see section 3.2). In this study,
I have used the SCM diagnostically to help determine the reasons for the qualitative
differences between the SCM and the arctic climate simulated by the GFDL GCM,
and summarize the reasons below. Some of the results from the present study are
relevant to most - if not all - of the GCMs in use today to study natural climate
variability and the climate change associated with increasing greenhouse gases; they
suggest that the variability in the arctic climate is probably much more energetic
than is being simulated in these general circulation (climate) models (see sections

3.8.1 and 3.8.2 below).

3.8.1 Arctic sea ice variability in the GFDL GCM

I inserted the GFDL sea ice physics into the SCM and then forced the model with the
synthetic energy transport that is statistically identical to that in the GFDL GCM
(section 3.5). The sea ice thickness variance is similar to that from the “present
climate” integration of the GFDL climate model. Thus, results that I have presented
concerning the impact of improving the sea ice treatment on the variability in the
arctic climate are likely to be quantitatively relevant to the GFDL climate model®.
My results suggest that the GFDL GCM will exhibit substantially more natural
variability in the arctic climate system (e.g., a factor of four in sea ice thickness vari-
ance) if unarguable improvements are made in the treatment of sea ice in the model
(see section 3.6). Furthermore, there is a fundamental difference in the variability in
the sea ice thickness displayed in the SCM driven by the atmospheric energy transport
(D) from the GFDL model and derived from observations. The standard deviation

81t is unlikely that differences in the details of the GFDL and SCM atmosphere models within
the arctic would render the SCM model not applicable to the GCM. Results from chapter 2
showed that the modeled sea ice thickness variability is relatively insensitive to the details of the
stochastic cloud forcing; correlating perturbations in the cloud forcing with the atmospheric heat

flux convergence has a modest effect on the model variability.
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of the sea ice thickness in the SCM forced by the GCM D is about one-third of that
from the model forced with the observed D (see section 3.5). Combining the im-
provements in the treatment of the sea ice physics with (unidentified) changes to the
GCM so that the atmospheric energy transport into the Arctic is consistent with that
observed, my calculations indicate that the variance in the arctic sea ice simulated
by this GCM will increase by a factor of ten!

The variance of the atmospheric energy transport in the GFDL GCM is less
than that from observations on all time scales (Fig. 3.3). Most important for the
variability in the arctic climate system, the GFDL GCM severely under represents
the variability on the seasonal to interannual time scales - the time scales at which the
observed energy transport is accurately determined. The literature indicates this is a
problem ubiquitous to low-resolution models (see, e.g., Held and Phillipps (1993) and
Boyle (1993) for a discussion of the resolution dependence of energy transport in the
synoptic band), and herein lies a fundamental problem with using a GCM to examine
the variability in the arctic climate system: the significant variability in the arctic
sea ice thickness is on multidecadal time scales and it is sensitive to the amplitude of
the variability in the meridional energy transport by the atmosphere into the Arctic
at all frequencies but particularly to the amplitude of the high frequency variability
(section 2.3.2). Thus, to study the natural variability in the arctic climate with a
GCM will require multiple very long (multi-century) integrations at high resolution

(at least T42).

3.8.2  Arctic sea ice vartability simulated by other models

In this section, I compare the sea ice variability demonstrated by the SCM with
results from other models. Two other classes of models have been used to assess the
natural variability in the arctic sea ice: (a) sea ice/upper ocean models of the Arctic,
and (b) full climate models that couple an atmospheric GCM to a sea ice model

and a model of the oceans. The class (a) models require prescribed time-dependent
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forcing as a boundary condition at the surface of the sea ice. The necessary data
to do this have only recently become of sufficient duration to determine this forcing
over the Arctic (but there are insufficient data to determine the observed arctic ice
volume at any time in the historical record). The results from the model studies of
Walsh et al. (1985), Hiakkinen (1993), Flato (1995) and Hékkinen and Mellor (1990)
using type (a) models are pertinent to this study. I note, however, that because the
variability is likely to be dominated by multidecadal and longer time scales, for all
of the studies discussed below (excepting perhaps Hikkinen and Mellor (1990)) the
model integrations are too short to determine, even qualitatively, the amplitude of

the variability in the arctic climate system.

Coupled Sea Ice/Ocean Models of the Arctic

Hékkinen (1993) used a dynamic-thermodynamic sea ice model of the Arctic to study
the freshwater export from Fram Strait for the period 1955-1975. The prescribed
forcing of the model was heat flux derived from the climatological mean annual cycles
of air temperatures and the observed wind stress for that period. The variability in
the simulated sea ice volume for this period was about 10% of the mean sea ice volume.
Walsh et al. (1985) and Flato (1995) used different dynamic-thermodynamic sea ice
models to perform hindcasts of the sea ice variability in the Arctic from 1951-1980
(Flato’s hindcast extends to 1990). The standard deviation of the averaged sea ice
thickness in these simulations is also much smaller than that obtained with the SCM,
but comparable to that in Hakkinen (all three studies found variability greater than
that from the GFDL climate model).

In the studies of Hikkinen (1993) and Flato (1995), the heat fluxes used to force
the model are calculated using the bulk formula and the climatological mean surface

air temperatures®, which ensures an artificial, strong damping of the sea ice vari-

9 The forcing of the sea ice model in Flato’s study is largely confined to the observed wind stress



66

ability'®. In contrast, the sea ice in the SCM experiences only thermodynamic (not
dynamic) processes and atmospheric anomalies that are affected by interactions be-
tween the atmosphere/sea ice/ocean system. Note that Hikkinen and Mellor (1990)
performed a study of the arctic sea ice from 1880 to 1985 using a one-dimensional sea
ice/upper ocean model. In this study, the forcing included the observed surface heat
fluxes calculated (in part) from the observed surface atmospheric temperature anoma-
lies. The spectral variance of the sea ice mass displayed in this hindcast was consistent
with that simulated by the SCM (Hékkinen, personal communication 1995).

In summary, the results from these three studies suggest that thermodynamic
processes are a major conduit for affecting variability in the sea ice volume in the
Arctic. In addition, the results from the dynamic/thermodynamic sea ice models

indicate that ice dynamics does not damp out the ice variability.

Global Climate Models

There are about two dozen global climate models that are presently being used to
study the variability in the global atmosphere/ocean/land/sea ice climate system.
Apparently, the natural variability in the sea ice has been examined in only three of
these models (this includes the documentation of the GFDL model in this study). In
the Hadley Center climate model (HADCM2; Mitchell et al. (1994)), the standard
deviation in the sea ice volume is about 10 to 20% of the mean sea ice volume (T.
Johns, personal communication, 1995). The standard deviation in the sea ice volume
from a twenty year control integration of the CSIRO climate model is about 20%
of the mean sea ice volume ( Hunt et al. (1995)). Note that a significant portion

of the variability in the sea ice volume in these two GCMs arises from variability

anomalies: the model experienced interannually varying air temperatures only near the coasts.

10 For analogous reasons there is an artificial reduction of the variance in the atmosphere when
atmospheric GCMs are integrated using climatologically prescribed SSTs (see, e.g., Barsugli (1995)
and Manabe and Stouffer (1996)).
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in the sea ice extent. Hence, it is likely that the variability of the perennial sea ice
volume in these global climate models is much less than that displayed in the SCM,
and this is expected from the sensitivity studies using the SCM in sections 3.6 and
3.5. Specifically, the atmosphere component of the CSIRO climate model discussed in
Hunt et al. (1995) has low horizontal resolution (R15) which enables long integrations
to be made but ensures a deleterious affect on the sea ice variability via distortions
in the atmospheric energy transport (see section 3.5). The HADCM2 model uses a
moderate horizontal resolution in its atmosphere model, but has a one-level sea ice
formulation which, according to the results in section 3.6, will artificially reduce (by
about half) the variance in the sea ice from that which would be realized in the same
climate model but with the conduction of heat in the sea ice is adequately resolved.
Hence, the sea ice variability in the GFDL, HADCM2 and CSIRO climate models is

likely to be less than that in nature.

3.8.8 Implications

I have confirmed that in the regionally averaged model of the coupled atmosphere/sea
ice/ocean arctic climate system, the natural climate variability is extremely sensitive
to the formulation of the sea ice. Specifically, the variance in the sea ice thickness
simulated by the coupled model nearly doubles when snow is explicitly included in
the model and a more realistic parameterization for the albedo of snow/ice is used
in place of the standard formulation of albedo used in several GCMs. When there is
adequate resolution of the temperature profile in the sea ice, again the sea ice variance
nearly doubles. Implementing these improvements simultaneously causes the variance
to increase by about four-fold. The result from increasing the temperature resolution
may have been anticipated by combining the results from Semtner (1976) (concerning
the sensitivity of the annual cycle of sea ice to the number of layers in the sea ice)
with those from section 2.3.3, which demonstrated that low-frequency variability in

arctic climate is largely a result of nonlinear physics that are associated with sea ice



68

that is undergoing both annual cycle forcing and stochastic (high frequency) forcing.

There are two implications from these results for detecting an anthropogenically
forced climate change in the Arctic. To detect a climate change the amplitude and
character of the natural variability (the noise) must be known. There are insufficient
observations to document the natural variability in the arctic climate system (due to
the presence of sea ice, the arctic climate system adjusts slowly (Thorndike, 1992b)).
My results suggest that the treatment of sea ice in the global climate models used
to address the detection problem results in a serious underestimation of the natural
arctic climate variability. Furthermore, because the variability in the arctic climate is
extraordinarily sensitive to the full spectrum of the variability in the meridional en-
ergy transport (D) into the Arctic, it is important that these climate models simulate
accurately all of the many processes that constitute D.

Second, climate models that are presently used to evaluate climate change due to
increasing carbon dioxide suggest that the greatest changes will be in the mean arctic
climate and inherently tied to changes in the sea ice thickness, particularly to large
changes in the mean sea ice thickness. To my knowledge (also, personal communica-
tions (1995) to D Battisti from G. Flato, J. Maslanik, J. Walsh, and J. Weatherly),
excepting the two studies mentioned in section 3.8.2 and the analysis of the GFDL
climate model presented here, the natural variability of arctic sea ice thickness simu-
lated by these models has not been examined. However, because these global climate
models have in common low horizontal resolution atmospheres (see, e.g., Houghton
et al. (1990)), the climate change simulated by these GCMs is likely to be large com-
pared to the natural variability within the arctic in the control integrations of these
climate models (e.g., the standard deviation of the area-averaged sea ice thickness is
0.20 m for the control integration of the GFDL climate model, while the change in
the mean sea ice thickness associated with a doubling C'Os is typically more than 2 m
(Manabe et al., 1991)). In contrast, my results indicate that the natural variability

within the arctic is much larger than that simulated by these models, and it may
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be a substantial fraction of the predicted change in mean ice thickness. Hence, the
present estimate of the ratio “signal (climate change)” to “noise (natural variability

”

plus observational error)” is likely to be greatly overestimated in the Arctic. Finally,
my results raise serious questions concerning the viability of the predicted equilibrium
climate change using these models because of the strong nonlinearities and long time
scales inherent to the variability in the Arctic (due to sea ice).

It is commonly stated that the arctic climate is sensitive to external (e.g., anthro-
pogenic) forcing because of the feedback involving changes in the ice extent and the
surface albedo. In light of my results, it is not surprising that the widest variations
among different GCM simulations of the present mean climate, and of the climate
response to greenhouse gas increase, occur in the Arctic (e.g., Houghton et al., 1990).
Indeed, the differences in the annual cycle of the arctic surface temperature re-
sponse simulated by different GCMs would represent enormous climate changes, with
important implications both inside and outside the Arctic. Based on the results pre-
sented in this and the previous chapter and the results of others, it is likely that the
wide variability of the arctic climate simulated by the GCMs result from the model

formulations of arctic physical processes that determine the surface albedo, sea ice

thickness, snow depth, and cloudiness.



Chapter 4

A NEW DYNAMIC/THERMODYNAMIC SEA ICE
MODEL DESCRIPTION

4.1 Introduction

In chapter 2 using a single column model of the arctic climate system I have shown
that energy transport into the Arctic by the atmospheric forces low-frequency vari-
ability in the modeled sea ice thickness through thermodynamics processes alone. In
the second half of this dissertation, I will investigate how dynamical processes (i.e.,
advection, ridging, and opening) affect low frequency variability in the system. I
will reexamine the estimate of the variance of sea ice that was made with the single
column model (SCM) in section 2.3.3 in which a crude parameterization that showed
export weakened the variability in the ice thickness. Additionally, I will explore the
role of ice deformation. Deformation is potentially an important mechanism for prop-
erly determining low-frequency variability of ice because (1) the amount of ridging
depends inversely on the volume which is a negative feedback on thickness variations
and (2) open water production also depends inversely on the volume which is a posi-
tive feedback on thickness variations. I will use a model to quantitatively assess how
the proposed dynamical mechanisms interact to effect the low frequency variability

of sea ice.

4.2 Overview of the model formulation

In this section I will summarize the elements that are essential to simulate low fre-

quency variability in sea ice, based in part on the results from the SCM.
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e Low-frequency variability in the SCM is very sensitive to atmospheric anomalies
during melt onset, when the snow-albedo feedback mechanism can effectively
“lock” in the effect of warm anomalies. Model physics that affect the state of
the sea ice surface in the spring and fall play a role in determining how the ice
will respond. Hence the model must accurately allow snow to accumulate on

the ice surface and the albedo to depend explicitly on the snow depth.

e The simple physical model that explains low-frequency variability of ice thick-
ness due to thermodynamics processes given in section 2.4 links the timescale
of the variations to the ice growth rate which depends on thickness and the
distribution of energy within the ice. Consistent with the physical model, SCM
results show that the total variance and timescale of the sea ice thickness in-
crease with the mean thickness and with the number of sea ice layers in the
model. When the modeled ice temperature profile is constrained to be linear
so that the heat capacity and the effects of brine pockets are neglected, the
model over estimates the amplitude of the annual cycle, while the variance
and timescale of the thickness anomalies are greatly reduced compared to the
standard case. The insulating effect of snow also influences the ice temperature
profile and growth rate. Therefore, the vertical temperature profile in the model

must be well resolved and must include the effects of brine pockets.

e I have argued that ice export and ridging in the Arctic influences variations in
the ice. A realistic treatment of thin ice and open water is essential in the Arctic
due to the tremendous influence thin ice and open water have on the surface
energy balance (Maykut, 1982). Hence the representation of the ice dynamics
and the ice thickness distribution in the ice model must properly reproduce
open water production through ice deformation and export and must resolve

thin ice explicitly.
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Because I want to resolve the vertical temperature profile in the sea ice and ac-
cumulating snow on top of the ice, the number of state variables in the model will
increase rapidly with the number of ice thicknesses (or ice categories) in each gridbox.
My objective is to keep the number of categories as small as possible yet sufficient
to properly simulate thin ice and the evolution of the rest of the ice. Recently, Stern
et al. (1995) formulated a three-category sea ice model consisting of open water, thin
ice, and thick ice which takes into account shear deformation in the production of
open water and allows for redistribution between categories as a result of ridging. I
will evaluate how the evolution of the ice mass depends on the number of ice cate-
gories (between two and four). I will use the formulation for two and three categories
from Stern et al. (1995) with minor modifications. and I derive the equations for
four categories in this chapter.

Previous sea ice models used in climate studies have generally either incorporated
(1) a thorough treatment of ice thermodynamics (e.g., the single-column model used
in chapters 2 and 3), or (2) a thorough treatment of dynamics, but an overly crude
representation of the thermodynamics (e.g., the Hibler viscous-plastic model used by
Chapman et al., 1994). Almost without exception, the dynamic (thermodynamic)
models severely compromise the ice thermodynamics (dynamics). To accomplish the
goals outlined above, I will develop a new model that includes the viscous-plastic ice
dynamics model from Zhang and Hibler (1997) to which I have added the essential
thermodynamic physics that I described above. The fundamental difference between
this model and other dynamic sea ice models used in climate studies lies in the detail
given to the thermodynamic treatment of sea ice and the implementation of a three-
and four-category ice thickness distribution.

This chapter begins with the definitions of the state variables and basic equations
governing their evolution. The following sections describe the physical processes and
parameterizations that are components of these basic equations and the numerical

methods I use to solve the system of equation. The last sections compares this model
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to other commonly used models.

4.3 Fundamental equations

Equations governing the evolution of ice and snow velocity, concentration, volume,
and energy are developed in this section. I have chosen state variables, listed in table
4.1, that are related to the governing equation.

Ice velocity (u) is determined from the momentum balance equation,

D
mFI::—mkau—l—Ta—l—Tw—mgVY-i-F, (4.1)

where m is the mass per unit area of the ice, f is the Coriolis parameter, 7, and 7,
are forces due to air and water stresses, g is the gravitational constant, Y is the ocean
surface dynamic height, and F is the force due to internal ice stress.

The evolution of ice concentration (4;) and ice volume! per unit area (H;A4;) for

each category i > 0 (category 0 is open water) is governed by a pair of continuity

equations,
0A;
and

respectively, where u is the horizontal velocity? of the ice, H; is ice thickness, ¥; and
©; are contributions by mechanical redistribution, and A; and V; are contributions
by thermodynamic processes. Equation 4.3 describes the evolution of snow volume

when H;, ©;, and V; are replaced with H/, ©;, and V;, respectively.

! The three-category model presented in Stern et al. (1995) gives equations for the evolution of ice
thickness rather than volume. Volume is used here because (unlike thickness) it evolves by the

same equation as the concentration.

2 All ice categories share the same velocity, so u has no subscript.
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Employing a vertical coordinate normalized by the sea ice thickness, 27 = z/H;,

the specific enthalpy (Q;(z,y, z7)) evolves according to

0(Q:H; A;)

*

where II;(x,y, z}) is the contribution by mechanical redistribution and &;(z,y, 2}) is
the contribution by thermodynamic processes. Equation 4.4 describes the evolution
of the heat content in the snow layer when Q;, H;, II; and &; are replaced with 7,
H? IT7 and &, respectively. The vertical coordinate in the snow is normalized by the

snow thickness, z{* = z/H?.

Table 4.1: State Variables

symbol description

u velocity of the sea ice

A, concentration of sea ice in category %

H; thickness of sea ice in category 4

H} thickness of snow in category %

Qi specific enthalpy (relative to melting, see Eq. 4.6)
of sea ice in category 17

Q3 specific enthalpy (relative to melting) of snow in
category 1

Ty temperature of ocean mixed layer




75

Vertical heat transfer

Vertical heat transport in the sea ice is governed by the heat equation, modified to

include absorption of solar radiation:

or 0 0T .
e &ka +rlope™™ + T, (4.5)

where T is the temperature, C), is the specific heat, £ is the conductivity, I is the solar
radiation that penetrates the upper surface, x is the extinction length from Beer’s
Law, and T represents the contribution from horizontal advection of thermal energy
and other thermodynamic processes. The category index, 7, is implied. Boundary
conditions for equation 4.5 follow from top surface energy balance and from the mixed
layer/open water energy balance which will be described below.

The temperature is computed from the specific enthalpy relative to the melting

temperature T,
T
Q(T) = / Cpdl' - L, (4.6)
where L is the latent heat of sea ice. Mathematically it is possible to combine 4.5
and 4.6, eliminating 7" from the set of fundamental equations. However, the equation

is unnecessarily complicated. Instead, I include both equations and include 7" in the

set of unknown variables which also includes the state variables.

Top surface energy balance
The top surface energy balance for each ice category is

or
Fnet(T) :Fr(l—a) _IO+FL_0-T4+FSi+F€i+ka—’ (47)
z

where F,.(1 — «) is the net solar radiation above the top surface, Fy, is the incoming
longwave radiation, oT* is the outgoing longwave radiation, Fy; and F,; are the
sensible and latent heat fluxes over an ice surface, respectively. If F,(7},) > 0, then
the upper surface is fixed at the melting temperature (i.e., Ty, = T,;,). If F,et(T,) < 0
then the upper surface is not melting and Eq. 4.7 is solved for T5.
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Mized layer/open water energy balance

The mixed layer in the model represents the upper most ocean layer, including the

water beneath the sea ice and areas of open water between sea ice floes. The net heat

flux into the mixed layer (F,;,) is balanced by a temperature change in the water

and can be written

dT,,
)

Fmix = CpoDOW (48)

where C, is the specific heat of the ocean and Dy is depth of water in the mixed
layer which is assumed to be independent of the ice cover.

The bottom of the ice is in contact with sea water with temperature 7,,. Therefore,
the bottom temperature 1, = T,,, unless T,, > T}, when T} is fixed at 7T},. This limits
the minimum 7} to the freezing temperature of sea water (T), where Ty = 271.2K

for typical values of salinity in the Arctic, following Maykut and Untersteiner (1971).

4.4 Physical processes and parameterizations

In this sections, I will give details of the model dynamics, mechanical redistribution,
and thermodynamics to complete the descriptions of the fundamental equations. Sec-
tion 4.4.1 describes the terms in the momentum equation and mechanical redistribu-
tion. This will lead to simple expressions for the ¥;, ©;, and II; for the conservation
equations above. Next I will define the thermodynamic parameters in section 4.4.2.
Finally, in section 4.4.3, I will derive expressions for the thermodynamic processes

that contribute to A;, V;, &;, and F,;,-

4.4.1 Ice dynamics
Air and water stress

Following Hibler (1979) the stress terms in the momentum equation (Eq. 4.1) are
from nonlinear integral boundary-layer theories (McPhee, 1975; Brown, 1980),



7

Ta = PaCalug|(ug cos ¢ + k X ugsin ¢), (19)
Tw = PuwCu|uw — u|[(uy —u)cosf + k X (uy —u)sinf],
where C, and C,, are drag coefficients, p, and p,, are densities, ug is the geostrophic

wind, uy, is the geostrophic ocean current, and ¢ and € are turning angles.

Ice rheology and the constitutive law

The momentum equation depends on the ice internal force which in turn depends on

the ice stress tensor, thus

0
F=—"0;, 4.1
8Xj0J ( O)

in Cartesian coordinates. A constitutive law characterizes the stress o resulting from
a given strain rate é and ice thickness and concentration, defining the nature of the
ice interaction. The rheology used in this model is from Hibler (1979) where the ice
behavior is plastic at normal strain rates and viscous at very small strain rates. The

viscous-plastic constitutive law from Hibler (1979) is summarized below.

The constitutive law can be cast in terms of the principal components of stress

(o7 and oy7) and strain rate (é; and é;7) with the pair of equations

— (e — PJ2
or=¢a =P/ (4.11)

Orr = Te€rr

where P is the ice strength (é; and é;; are the divergence and shear of u, respec-
tively). The nonlinear bulk ¢ and shear 7 viscosities are also functions of €¢;, é;;. The

functional forms are chosen so that the stress state lies on an elliptical yield curve,

0+ PP b _
PR7 PR 12
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where e is the ratio of the principal axes of the ellipse®. Thus requiring
2
=< (4.13)

for plastic behavior. To avoid infinite viscosities as A — 0, ¢ and 7n are constrained
to large limiting values corresponding to very small strain rates. In this case the
stress state lies inside the elliptical yield curve and the ice behaves like a viscous

fluid, exhibiting creep.

Ice strength

The ice strength is a quadratic function of the average ice thickness including the open
water fraction (h) and the total concentration of ice (A), as suggested by Overland

and Pease (1988), so that
P = P*h?Aexp(—C(1 — A)), (4.14)

where P* and C are fixed empirical constants. Overland and Pease (1988) based the
functional form for P on an energetics argument from Rothrock (1975) where the
compressive strength is equated with the potential energy increase per unit strain in
pure convergence plus the rate of frictional energy loss in ridging. Using the rule for
mechanical redistribution that transforms ice into a thickness that is proportional to
its original thickness, the compressive strength has a quadratic dependence on the

regional ice thickness.

3 Hibler (1979) chose e = 2 which is also used in this model.
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Mechanical redistribution

The development of mechanical redistribution (¥;, in Eq. 4.2) comes from the theory

of the ice thickness distribution from Thorndike et al. (1975),
U = [€][an(0)0(h) + ar(0)w, (h, g)], (4.15)

where |¢| = (¢2 +¢2,)Y/2, 0 = tan"' ¢;;7/é1, 6(h) is the Dirac delta function, w,(h, g) is
the ridging mode, and g(h) is the thickness distribution. The coefficients ag(f) and
a,(0) depend on the yield curve (and vice versa) and are related by ay(0) — a,(0) =

cosf. For a plastic yield curve, Rothrock (1975) derived the relationship

1 1
a,(0) = —5 cos 0+ 3 V/cos? 0 + e~2 sin 6. (4.16)

The ridging mode is the sum of two distributions describing the ice participating in
ridging (—a(h)) and the ice transformed from ridging (n(h)), normalized to properly
conserve area and volume. The ice participating in ridging comes from weighting
g(h) by a function b(h) that is designed to make thinner ice more likely to ridge
than thicker ice. Thorndike et al. (1975) argues that a plausible b(h) might depend
linearly on the cumulative thickness distribution G(h) = foh g(h)dh according to

2 1— G(h) < G*
b(h) = { F1-% a<a (4.17)
0 G > G~

where G* is the limiting fraction below which all ridging occurs. With little data to
base their assumption, Thorndike et al. (1975) used a rule for deriving n(h) from
a(h) that forces all ice participating in ridging to be transformed into ice that is five

times its original thickness. Hence,

_—a(h) + (1/25)a(h/5) (4.18)
a 4/5 '
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Two categories

The Evaluation of the ridging mode for the popular two-category sea ice model can
be derived from the ice thickness distribution equations above. Following Stern et al.

(1995), the thickness distribution is a sum of two delta functions,
g(h) =(1— A)do(h) + Aé(h — H). (4.19)

For simplicity, the index ¢ = 1 is dropped. The two categories of sea ice have thick-
nesses as follows: category 0 is zero-thickness, category 1 is thickness H which is
always greater than Hj.

Using the viscous-plastic rheology (|é|c, = (A — €;7)/2), the redistribution term is

H; (4.20)

Substituting Eq. 4.19 into Eq. 4.17 and integrating Eq. 4.18, Stern et al. (1995)

1- =477 1-A<G

W= { 1= = (4.21)
0 1-A>G"

With just one non-zero thickness category, mechanical redistribution does not change

showed

the volume or enthalpy of category 1, so ©; = II; = 0.

Three categories

The special case of redistribution for three-categories of ice is derived in Stern et al.
(1995) using Eqs. 4.17 and 4.18. For three categories the thickness distribution takes

the simple form
g(h) = Aod(h) + A16(h — Hy) + Ag6(h — Hy), (4.22)

where Ay = 1—A; — A, is the concentration of open water. The three categories of sea

ice have thicknesses as follows: category 0 is zero-thickness, category 1 is bounded
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from below by H; and above by Hj, and category 2 is greater than Hj. Hence
category 0 represents open water and category 1 and 2 are often called the thin and
thick ice categories, respectively.

The redistribution terms can be written
H; 1
\Ifl :/ \I/dh:—(A—GI)Wl
i 2
0

0, :/ dh = %(A — &)W (4.23)

Hi

Again substituting Eq. 4.22 into Eq. 4.17 and integrating Eq. 4.18, Stern et al.

(1995) found
Wy =—-5(V1—13)/4

(4.24)
Wy =(V1 - 5V2)/4,
where the auxiliary functions are defined as
_ Ag)? Ay < G*
‘/1 :{ [ G*i| 0 =
0 Ao >G (4.25)
{[1—%] Ag+ A <G
Vo =
0 Ao+ AL > G*.

According to this formulation, ice from the thin category that ridges is transfered
to the thick category. However when thick ice ridges, it has no place to go, so its
concentration decreases and thickness increases, but the volume does not change.

Hence
O =—-0, =V Hy,
(4.26)
O] =—0; =V, Hj.
For simplicity, I assume that mechanical redistribution does not mix heat verti-

cally. Hence,
Hl(xa Y, ZI) = - HQ(‘T’ Y, Z;) = llllQl(‘ra Y, ZI)Hb
Hi (xa Y, Zf*) = Hg(xa Y, Zf*) = \Ilei (371 Y, z‘f*)Hf

(4.27)

Data from which to develop a less restrictive model are lacking.
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Four categories

A fourth category can be added, making

The four categories of sea ice have thicknesses as in the three category case except
category 2 is bounded from above by H; and category 3 is greater than H;. A third

redistribution term is required,

© 1
Uy = / Wdh = 5(A — &)W, (4.29)

H3
The factors of ¥ for the four categories are
Wy =(Vi = V2)/4 = 5(Va — V3)/4, (4.30)
Wy =(Vo — 5V3) /4,

where V] and V5 are defined as in 4.25 and the third auxiliary function is

1— Adotdibde]® A 4 A 4+ 4, <G
V3={[ ] Aot At s < (4.31)
0 A0+A1+A2>G*.
Hence
@1 :\Ilel
@2 = - \IllHl + (\Ijg + \Ill/5)H2 (432)
O3 = — Uy Hy,
and

I, =Q: H,

Iy = = W1Q1Hy + (U2 + ¥1/5)Q2H, (4.33)

I3 = — V(2 H.

where II; and @); are functions of the normalized vertical coordinate. Equations 4.32

and 4.33 are easily modified to give expressions for ©f and II{ (not shown).
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4.4.2  Thermodynamic definitions and parameterizations

Before developing the equation that describe the terms in Eqs. 4.2-4.4, I will present

a few basic thermodynamic definitions.

Heat capacity, latent heat, and enthalpy

The specific heat of sea ice C,(T,S) is parameterized* according to Untersteiner
(1961) such that

vS

Cp(T, S) == Cpf + m,

(4.34)

where Cp; = 1.88 MJ m 3 K ! is the specific heat of fresh ice, S and T are the ice
salinity and temperature, respectively. This parameterization accounts for internal
melting at the brine pocket/ice interface as the temperature approaches the melting
temperature (7;,) to the extent that when it reaches T,,, it is completely melted.

Hence the latent heat of sea ice is zero (L = 0) and Eq. 4.6 is simply

QT) = / " o1, $)dT .
m 4.35
vS vS

= T-T,)— ’
s ) 2732 —T,, toma T

The parameter v is determined by equating the energy needed to heat sea ice from 0

K to melting with the energy needed to do the same to fresh ice. Hence,

=L (4.36)

defines v based on the latent heat of fresh ice L; = 306 MJ m? and the empirical
constant o = 0.054 K ppt~! where T, = 273.2 — a'S.

4 The index i for each category is implied throughout this section.
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Conductivity

Brine pockets also influence the conduction of heat through the ice which is parame-

terized

BS

MTS) =k = s

(4.37)

where k; = 2.034 W m? K~! is the conductivity of fresh ice and § is determined

experimentally to be 0.1172 W m? ppt~.

Salinity profile

Melting at the brine pocket/ice interface makes sea ice very porous when it warms. In
reality the ice drains as it becomes porous and its salinity decreases markedly before
it melts at the upper surface [e.g., see Weeks and Ackley, 1986]. Also runoff of melt
water from the upper surface draining through the ice flushes away brine and salt.

Hence the salinity of ice tends to decrease towards the upper surface of the ice.

For simplicity the salinity profile is approximated as homogeneous, independent
of space and time, within each ice category. New ice growing over open water is
assumed to have 10 ppt and in all other categories the salinity is fixed at 3.2 ppt.
This may seem to be a gross approximation, but at this time the few measurements
of salinity indicate that it is nearly constant in the ice below freeboard. As a result
of this approximation, the simulated temperature gradient near the upper surface is

larger than it would be if the salinity was lower at the upper surface.

Relaxing the constant salinity approximation would complicate the method for
conserving thermal energy in the ice as it grows and melts. At this time, I am
unaware of any models that have a salinity profile in the ice and conserve thermal
energy. This possible weakness in this and other thermodynamic treatments is being

addressed elsewhere (B. Lipscomb, personal communication, 1997).
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Snow parameters

I assume the snow is fresh, therefore the specific and latent heat of snow are C; =
Cpsp®/p and L* = L;p®/p, where p*/p = 0.36 is the ratio of snow and ice densities.
The enthalpy of snow is

Q*(T) = C3(T — 273.2) — L. (4.38)

The conductivity is £* = 0.31 W m? K.

Sensible and latent heat fluzes

The sensible and latent heat fluxes are parameterized according to bulk aerodynamic

formulae,

Fsi = cpaC’Hug(Tair — Ts) (439)

and

Fei = CpaCEug(QIOm - qs): (440)

where ¢, is the specific heat of dry air, u, is the geostrophic wind speed, Cy and Cg
are transfer coefficients approximated by 1.75x102 as in Parkinson and Washington
(1979), T, is the surface air temperature, and g0, and g5 are the specific humidity
at 10-m and at the surface. ¢iq,, is fixed at 90% relative humidity based on T,;. and
gs is assumed to be saturated with respect to an ice surface (or an ocean surface,

where applicable).

Penetrating solar radiation

The solar radiation penetrating the sea ice in Eq. 4.5 is absorbed according to Beer’s

Law, Iye™, with extinction length x = 0.015 cm™!.

The fraction of the net solar
radiation incident on the top surface that penetrates the surface (Iy) depends on the

cloudiness (C) according to Iy = 0.18(1 — C) + 0.35C.
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Albedo

The ice/snow albedo « accounts for patchy snow coverage

H,

_— 4.41
H, +10’ (4.41)

O = Qjce + (asnow - aice)

with H in cm, as in Bettge et al. (1996). I impose the additional constraint that «
must be at least 0.05 more than the ocean albedo, . The ice albedo depends on

the ice thickness (in ¢cm) and surface temperature® such that (see Fig. 4.1)

(1 1 H—-20 1 1 Ts— 272
ice — ! N —t h - .1 - -1 hi . 4.42
« ap+ o <2+Qan <0 ) 0 <2+2an 03 ) (4.42)

The snow albedo depends on the surface temperature such that

1 Ts — 272)

1
Osnow = ° — 0.1 <§ + — tanh (4.43)

2 0.3
where oy = 0.1, o = 0.6, and o® = 0.8. The albedo of new ice that forms over the
lead is fixed at e = 0.3. The asymptotic limits of Eqs. 4.42 and 4.43 are designed
to approximate measured dry and melting snow and sea ice values from Grenfell
and Maykut (1977). The functional dependence on ice thickness and temperature is
meant to allow smooth transitions between the asymptotic limits to avoid erroneous

numerical oscillations from abrupt changes.

4.4.3 Thermodynamic processes

In this section I derive expressions for the thermodynamic terms A;, V;, V7, &, &7,
and F,;, representing contribution by thermodynamic processes in Eq. 4.2-4.4, and
4.8. The first six terms represent changes from top, bottom, and lateral melt; bottom
growth; new ice growth over the open water fraction; redistribution when an ice
category outgrows its thickness boundary; and vertical heat transfer (diffusion). The

last term is the net heat flux into the open water fraction.

5 The albedo parameterization given here differs from that used in the single column model (Eq.

2.1) because this model is designed to simulate thin ice and open water areas explicitly.
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Figure 4.1: Surface albedo parameterization for Eq. 4.42.
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To derive explicit equations for the thermodynamic processes in this model, it is

necessary to define the vertical grid. Each category has N; vertical layers of sea ice

and one layer of snow. The specific enthalpy is constant throughout the vertical layer

in each grid box. Layers are numbered 0 for the snow, 1 for the top layer of the ice,

and so on. The index k is used to identify the layer.

Now the thermodynamic terms become

A=
V=
Vi =
Eik
&=

-Aai + -Anézl + -Aria
Vi + Vi + Vi + Vidin + Vi,

Vai + Vi + Ve

=ik + Eeenyic + Enkdit + Erik + Eair,

Eai T &4 + Eri + Egi

(4.44)

where 9;; is the Kronecker delta symbol, defined such that 6;; = 1 when i = 1,

otherwise d;; = 0. The subscripts a, t, b, n, r and d refer to lateral, top, bottom,

new, redistribution, and diffusion, respectively.
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The solution to the heat equation, Eq. 4.5, accounts for thermal diffusion. There
is no simple closed form expression for the thermal diffusion terms, £gy and &,
therefore these terms are only meant to represent thermal diffusion and will not
be defined explicitly. 1 will explain the method for including the effects of thermal

diffusion on the state of the system in section 4.5.

Freezing and melting at the top and bottom surfaces

The enthalpy of each layer of ice depends on the mean temperature of the layer (7})

according to Eq. 4.35,

vS

Y — 4.4
273.2 — T, (4.45)

Qi = Cyy (T = T) = Ly +

Energy balance at the top and bottom surfaces determines sea ice melt and growth
rates. From the top surface energy balance in Eq. 4.7, if F,.;(7},) > 0, then the upper

surface is fixed at the melting temperature and F),¢; is used for melting according to
Fret(T) = —Q°n° (4.46)

until the snow layer is gone and then

Fnet(Tm) = _ana (447)

where Q° and () are specific enthalpies of the snow and the top layer of the ice and
n® and n are the changes to the snow and ice thickness due to melting at the top
surface.

The bottom surface energy balance is

oT
Xb — k‘g = —le/, (448)

where X, is the heat flux from the mixed layer and v is the change to the ice thickness
due to growth/melt. The bottom surface grows (melts) when the lefthand side of Eq.

4.48 is negative (positive). @y = @Qxn when ice is melting, otherwise

~vS

= Cpp(Ty —Tw) — Ly + —0
@ = Chs( ) It oma_T,

(4.49)
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as ice is growing at the ice/mixed layer interface which is at T,,.

The specific enthalpy of the ice and snow layers needs to be adjusted when the
layer spacing changes after growth and melt at the surfaces (see Fig. 4.2). The
adjusted specific enthalpy is

Q=D wirQ + wp Q- (4.50)
.

The w;; are weights computed from the relative overlap of the layer k with with
each layer 1 from the old layer spacing (including both snow and ice layers). wyy is

non-zero when ice grows at the bottom surface.

la.
( 7 }Q

bottom growth
a) b)

Figure 4.2: Diagram showing heat content before (a) and after (b) changing the layer
spacing for an ice model with four vertical layers that has experience melt at the top
surface and growth at the bottom surface.

Referring back to Eq. 4.44, now I can evaluate the terms with subscripts ¢ and b.
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Hence
Vt :nAa
Vb :VA,
Vi ="+ 1A, (4.51)

E a0t =Q — Qi
& =@ + ) A,
where p* is the (prescribed) snowfall rate and the index ¢ is implied. 0t represents
the time spent freezing/melting before the energy is adjusted. In practice, the model

equations are discretized so dt is equal to the timestep At.

Mized layer/open water energy balance

Heat transfer between the mixed layer and ice is partitioned between lateral melt and
bottom melt according to parameterizations that depend on the temperature of the
water in the mixed layer. The lefthand side of Eq. 4.8 can be expanded so

dT,,
Friz = AoFy + Fy + ZAz'(Iz' — Xoi — Xpi + R;) = CpoDOWa (4.52)

where Fj is the net heat flux into the top surface, F), is the heat flux from the deep
ocean, [; is the solar radiation passing through the bottom of thickness category 1,
X, and X, are the lateral and bottom heat fluxes into the ice, R; is the flux of heat
from melt water runoff by the ice top surface (see fig. 4.3). When the heat balance
is such that T, is below T}, T,, is fixed at T and the excess (negative) heat is used
to grow new ice on the open water fraction. (The following section is devoted to
describing the process of new ice growth.)

The net heat flux into the open water is
Fo=F.(1-a)+ F, — 0T+ Fy+ F.,, (4.53)

where o is the albedo of the ocean and F,, and F,, are the sensible and latent heat

fluxes over open water, respectively. The solar radiation passing through the bottom



91

Ry

Ice
lce X~

X2 Xp1 I
Voo |
I X Mixed layer
T
Fy

Figure 4.3: Schematic of mixed layer/open water energy balance.

of thickness category ¢ in Eq. 4.7 is
I; = Ipe %, (4.54)

In Eq. 4.52 assumes all solar radiation that enters the top surface of the mixed layer
is absorbed by the mixed layer.

Parameterizations for lateral and bottom heat fluxes into the ice (X, and X, in
Eq. 4.52, with the index ¢ implied) depend on the rates the lateral and bottom
interfaces are receding (M, and M,;) which, in turn, are functions of the mixed layer

temperature. I assume lateral melting occurs uniformly over the interface,
Xo= [_Q + Cpo(Tw - Tm)]HpMa, (455)

where @ is the vertically averaged specific enthalpy of the sea ice, Cp, (T, — T)p) is

the energy needed to warm the melt water to the mixed layer temperature; p is the
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perimeter of the interface. The rate of heat exchange with the bottom is
Xy = —QpAM,. (4.56)

The lateral melt rate is parameterized according to Maykut and Perovich (1987)
as

M, = my(T, — 271.2)™. (4.57)

From their analysis of ablation data taken during the Marginal Ice Zone Experiment,
Maykut and Perovich (1987) determined best fit estimates for m; = 3x107% and
mo = 1.36. The bottom melt rate due to heat exchange with the mixed layer is
parameterized according to McPhee (1992) as

Cpo
—Qy’

My = cpu, (T, — 271.2) (4.58)

with empirical constant ¢, = 0.0058 and skin friction velocity taken to be u, =
0.01 m s L.

The perimeter depends on the floe distribution and geometry. Rothrock and
Thorndike (1984) developed the concept of a “mean caliper diameter” (d) as the
average over all angles of the distance between to parallel lines set against the floe’s
side walls (see fig. 4.4). Thus the floe perimeter is simply p = wd. Using aerial
photographs of summer pack ice in the Beaufort Sea, Rothrock and Thorndike (1984)
found a relationship for the floe area, s = &d?, where £ = 0.66. Following Steele
(1992), it is assumed that the sea ice floe size in each thickness category can be
described by an “average diameter” representing a regional ensemble average. Then

the perimeter of the of the interface of open water is
p = nnrd, (4.59)

where the number of floes is A/&d?. For simplicity, d is taken to be 1 km and is

independent of ice thickness category.
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Figure 4.4: Hypothetical ice floe distribution.

Referring back to Eq. 4.44, now I can evaluate the terms with subscripts a,

Aa = - ab,
Va = - apHa
Vi = - apHS: (460)

Ear = — QM,pH/N,
£ =— Q" MpH"*.

New ice growth over open water

New ice grows on the open water when the energy balance (Eq. 4.8) is such that T,

is below the freezing temperature of sea water. Once new ice begins to grow the net

heat flux into the mixed layer including the new ice (see section 4.5) is

F;),zz = AOFnew + Fw + le, (461)
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where the downward net heat flux from above the top surface of the new ice F,,, is

Fnew:Fr(l_anew)+FL_UT4 +Fsi+Fei7 (462)

new

where ., is the albedo of the new ice.

", -
B

L

I Mixed layer
at 271.2 K

Figure 4.5: Schematic of mixed layer heat balance with new ice growing at the top
surface.

Assuming a linear temperature profile in the new ice, the thickness (H,e,) and

top surface temperature (7,.,) are determined from a pair of coupled equations,
/ 0.5(Fpmig + F.)dt — Ao HrewQnew = 0 (4.63)
and

k

new

Fnew_IO+

(271.2 = Tpew) = 0. (4.64)

In Eq. 4.63, 0.5(Fpet + F;

* 1) is the average of the net flux into the mixed layer before

and after the new ice grows and @), is the specific enthalpy of the new ice. The

solar radiation penetrating the top surface of the new ice (Ij) is assumed to pass
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through the ice. Hence solar heating occurs only at the top sea ice surface for new
ice growing over open water.

New ice that grows over open water is added to the thinnest ice thickness category
(category 1). Category 1 ice is constrained to be at least Hj so if H.,, < H{ then the
new ice is reshaped so its thickness is equal to H{, by conserving volume. Referring

back to Eq. 4.44, now I can evaluate the terms with subscripts n. Hence

Hnew %
An :AO H(Hnew - H(;() + H* 7'[(I_I() - Hnew) 3
0

Vn :AOHnewa (465)

Enk :QnewAOHnew/Na
where #(z) is the unit step function which is defined to be 1 when z > 0 and 0 when

2z <0.

4.4.4  Redistribution of ice between categories when the thickness outgrows its limits

There is no dynamical or thermodynamical process that keeps the ice from outgrowing
its thickness range for a given category, so a periodic adjustment must be made. For
example, if the thin ice should should grow thicker than its upper thickness limit H7,
it is combined with the next thicker category. It is also possible for the thin ice to
melt below H{, then it must be reshaped so its thickness is Hj and its concentration
is adjusted to conserve volume.

Referring back to Eq. 4.44, now I can evaluate the terms with subscripts . Hence

for the special case when all N; = N the terms for the thinnest ice category are

H; — Hy
H;

VT15t :AQHQH(H; - HQ) - A1H1H(H1 - Hik),

Aq«lét :AQH(H; - HQ) —_ Al H(Hg - H]_) + H(Hl - Hik) 5

V3,6t =A HSH(H: — Hy) — A HSH(H, — HY), (4.66)
AH AH
it =22k gy gy ATk, gy

ERot =AH;Q5H(Hy — Hy) — AiHTQTH(H, — Hy),
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and for i > 1,

bt =A H(Hi_y — HY ) + Ay H(H],, — Hiyy)
— Ai[M(H{ , — H;) + H(H; — H})],

Veiot =A; 1 Hi H(Hioy — H ) + A HiH(H; , — Hipq)
— AiH[H(H_, — H;) + H(H; — H})],

Viot =Ai  H]_ (H(Hiy — Hy) + A HY H(H — Hig)

(4.67)
— AiHP[H(H | — H;) + H(H; — H})],

A Hi 1Qiza e A1 Hi1Qitr ke

Erikdt = N H(Hi—1 — H_,) + N H(Hy — Hit)
~ AR gy B — B+ H(H— )

5:i5t :Ai—lHig—le—lH(Hi—l - H;—l) + Ai+1HiS+1Qf+1H(H;+1 - Hi+1)
— AiHQ][H(H_, — H;) + H(H; — H)],
where the thickest ice category has a limitless upper thickness bound H; — oo and

A;7,0. Ot represents the time it takes for a process to cause the ice thickness to

outgrow its boundary (also see Eq. 4.51).

4.5 Methodology

The above equations constitute a closed set of partial differential equations and al-
gebraic equations® for the unknown variables. I propose to solve this system as a set

of coupled, initial/boundary value problems.

4.5.1  Time splitting

Figure 4.6 shows a block diagram of the key physical processes. Variables shown below

a box are changed by the processes represented by the box above them. Temporal

6 Except for the vertical diffusion terms &z and & 5; which are found in a separate step from the

solution of heat equation and cannot be expressed simply.
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evolution is indexed by j. For example, the momentum equation affects only ice
velocity, but advection changes all the state variables except ice velocity.

I use time splitting to separate the problem into multiple steps, updating the state
after each. For example, time changes of the ice concentration are caused by advec-
tion, mechanical redistribution, (lateral) melting, and thermodynamic redistribution.

Symbolically these steps are written

Aj+1/4 = A] — AtV : uj+1Aj,
ATHYZ = AT+ L A 4 T (udtE, AL, (4.68)
Aj+3/4 _ Aj-|—1/2 + .Aa(TJ,, Qj-l—l/?, Hj+1/2), .

AT = ATH o ALA (AT TP 4 ALA, (TS, AP HIT3Y),

where At is the timestep and the category index 7 is implied.

4.5.2 Solution for ice velocity

The velocity is found from an iterative solution to Eqs. 4.1 and 4.9-4.14. A description
of the numerical method is given in (appendix A Hibler, 1979). The solution used in
this updated version of the model includes a more efficient numerical scheme that is

documented in Zhang and Hibler (1997).

4.5.8  Numerical scheme for Advection

Hibler (1979) used a centered difference advection scheme with harmonic and bihar-
monic diffusion to stabilize long integrations. The scheme is second order accurate,
however the non-physical diffusion reduces the accuracy to some extent. One unde-
sirable side effect of this numerical scheme is it allows negative quantities to exist in
a grid box. Currently several modeling groups have modified the original Hibler ad-
vection scheme to avoid the negative quantities by using upstream differencing which

is numerically diffusive and first order accurate. I adopt this method as well.
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Figure 4.6: Block Diagram of model flow. Indices for thickness category and position
are implied.
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Advection of a quantity g is written

8g_

W v (g0 (4.69)

Using upstream differencing for an Arakawa-B grid (Fig. 4.7a), Eq. 4.69 becomes

0
8_£t] = (wgr — urgr + vngs — veg1) /A, (4.70)

where g, are the upstream values of g on the left, right, bottom, and top sides of
the grid box and u, v(, s are the average velocity components along each side. For

example, in Fig. 4.7b for grid box 1, 7,

Up = Ui—1,j—1 T Uj—1,5

and
i when u; < 0
g1 =
9i+1,5, when uy > 0.
a) b)
u,v u,v i1 Ui,j
g, 0g/0t gi-1, : Yij
u,v u,v Ui-1,j-1 Uiyj—1

Figure 4.7: The staggered spatial Arakawa-B grid (a), with horizontal indices (b),
used for computation.
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4.5.4  Solution of the heat equation

The solution of the heat equation is the most complicated part of the thermodynamic
treatment because of the brine pockets present in sea ice. Vertical heat transfer is
solved for N vertical layers in the sea ice and one layer in the snow. Figure 4.8 shows
a schematic of the vertical grid of the sea ice and illustrates the notations used in
this section. A staggered vertical grid is used, with temperature and specific heat
defined at the layer midpoint and conductivity defined at the layer interfaces. Hence
Cp = Cp(Ty) for I = 1, N (from Eq. 4.34), k; = k((T; + T}41)/2) for | = 2, N (from
Eq. 4.37), kn11 = k(Tn+1), Cpo and kg are fixed, and k; is described below.

When snow is present, it is useful to define an effective conductivity ki at the
snow/ice interface so the conductive flux at the interface is —2k, (T3 —Ty)/(AH + Hy)
(fluxes are positive downward as is the coordinate z). k; is derived by assuming
the conductive fluxes above and below the interface are equivalent which is written

numerically,
L-Ty o Ti=T
hs/2 YIAH/2

where 717 is the interface temperature and the snow conductivity kg is independent of

ko (4.71)

temperature. Hence the effective conductivity is

. kok(T1)(AH + H,)
' AHko+ Hk(Ty)

(4.72)

The heat equation (Eq. 4.5) is discretized using an implicit scheme with two-levels

in time and centered in space,

; ; i1 i+1 i1 i1
R ot O N P W VR Gt o
pl At Azl t A,Zl =1 A,Zl_l
Tt Ty,
Q) il Sl A e Sl 2 3 I QY
+ ( ) | ki Az =T AL }+ Iz

where Az; = H, when [ = 0; otherwise Az, = AH. Equation 4.73 is solved with a
tri-diagonal matrix solver. Experimentally I find Eq. 4.73 gives stable solutions for

6=0.5 or 1.0 over the range of timesteps and layer spacing used in this study.
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Figure 4.8: Vertical grid of the sea ice (a) when snow is present and (b) when the ice
is snow-free. AH is the thickness of an ice layer and Hj is the thickness of the snow
layer. The surface temperature in either case is T5.
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The accuracy of Eq. 4.73 is a matter of some interest. Schemes with two-levels
(e.g., Eq. 4.73 with §=0.5) in time are attractive because the truncation error can
be second order in time O(At?). However, the coefficients Cgl and k! are fixed
at a single level for the timestep, so Eq. 4.73 may not be second order accurate.
To make Eq. 4.73 truly second order accurate would require replacing C’gl with
0CIH + (1 — 0)CY, and the first two occurrences of k7 with k7*'. The resulting
solution would be nonlinear and would need to be solved iteratively, an undesirable
method for models used in long (climate) integration. An alternative to an iterative
method is a predictor-corrector method whose error is intermediate between first and
second order accurate.

The predictor-corrector method entails solving two tri-diagonal systems. First the
predictor step is the solution of Eq. 4.73 with § = 1 to give an estimate of 7 at the
(7 + 1) time, written fljﬂ. Then ﬁjﬂ is used to estimate Cj; and k; at the (j + 1)

. .. —~j+1 ~iiq .
time, giving C;,,  and klj+ . Now the corrector step is

j+1 j+1 j+1 j+1
T - Tl _ "j+1Tl - Tl—l

—~j+1 Tt i 1 ~;
0C.) 1—903] l Lo g |Ri+tix
ol +( ) pl At Azl ! AZ[ -1 AZl,1
N ) I :
1—@) |pfHL "t g 7L 7=l I
+( ) 1 AZ[ -1 Azl—l + l

(4.74)

Both Eqgs. 4.73 and 4.74 are modified for the surface layers in order to maintain second

order accuracy with the change in layer spacing and to include boundary conditions.

The top boundary condition for the heat equation depends on the net heat flux F,.;
at the top surface such that if

Foee =F(Tn) +k g—: . >0, (4.75)

then the top boundary condition is 7/™! = T,,; otherwise the top surface has the

following flux boundary condition,

or
F(L)+ k- =0, (4.76)
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where F is defined by Eq. 4.75. The second-order accurate, finite-difference form of
Eq. 4.76 is

F(TI) + & [a(T]* = T + 0(T7H — T9)] = 0. (4.77)

Coefficients a and b depend on the layer spacing such that when the ice is snow-free

(l=1,in Eq. 4.77) a = 3/AH and b = —1/3AH and when snow is present (I = 0),

_ H,+AH/2 2

~ H,/2 H,+AH
—H,/2 9

T H,+AH/2H, + AH’

(4.78)
b

When the predictor-corrector method is used, kl] is replaced by 75{ *1 for the boundary
condition in the corrector step. F'is a non-linear function of 7§, so a Newton-Rhapson
iterative solution is used when the flux boundary condition applies.

The bottom boundary is in contact with sea water at 7,, which changes very

slowly so 1?:11 = TJ] .1 = T3 unless TJ is above the melting temperature of sea ice in

which case Tﬁ_’f = TJJ 1= T

Table 4.2 shows a comparison of the relative error in the temperature for the solu-
tion with and without the predictor-corrector step and # = 1 and 0.5. The integrations
were performed with the model run in column mode with a fixed concentration and
thickness, Ay = 0.95, Hy = 320-cm, H5 = 0, and A; = 0. The model is forced with
surface air temperature and geostrophic winds from 1979 at 86°N 10°W. Solar radia-
tion and incoming longwave radiation are calculated as in Parkinson and Washington
(1979) with climatological cloud cover. Further details about the external forcing are
reserved for the following chapter when the full dynamic/thermodynamic model is
run in hindcast mode.

The error of the interior temperature (L(7})) is measured by computing the rms
of the difference between temperature from the integrations listed in table 4.2 and an

temperature (7)) from integration with very fine resolution and a small time step.
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Hence

L(Ty) = [> (Ti — TP)2. (4.79)

Table 4.2: Numerical error of temperature in ice interior L(7}) and at the sur-
face L(T}) for the following schemes: backwards (B); backwards, predictor-corrector
(BPC); Crank-Nicholson (CN); and Crank-Nicholson, predictor-corrector (CNPC).
The model was run in column mode. There is a seasonal cycle to the error (not
shown), with the error being largest in September and decaying roughly linearly in
time throughout the winter, until it is negligible in summer. The errors listed are
averaged from September to June. Error is reported in milli-Kelvin (mK).

scheme | AH At L(Ty) L(Ts) | AH At L(Ty) L(Ty)
cm  day mK mK | cm  day mK mK

B 80 1 677 305 | 20 1/4 135 26
BPC 80 1 439 274 | 20 1/4 70 42
CN 80 1 659 276 | 20 1/4 128 41
CNPC | 80 1 420 244 | 20 1/4 62 24

The backwards scheme (f = 1) has the largest error as it should because it is
only first order accurate in time. The Crank-Nicholson (6 = 0.5), predictor-corrector
method has the lowest error. Because there is little difference in computing costs
between the backwards and Crank-Nicholson methods, the second-order method is
used generally without the corrector step for all but the thinnest ice category. The
thin ice category heat equation is solved with the backwards method because the
Crank-Nicholson method occasional gave poor results for certain initial conditions
with very thin layers. Whether the extra computing time to perform the predictor-
corrector justifies the improvement over the error without the corrector step is not

clear.
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Table 4.3: Numerical error of temperature in ice interior and at the surface for the
Crank-Nicholson, predictor-corrector scheme.

AH At L(T,) L(Ty)
cm  day mK mK

80 1 420 244
40 1/2 161 86
20 1/4 62 24
10 1/8 32 10
5 1/16 17 4

Integration with various layer spacings and time steps were performed to deter-
mine the accuracy of the scheme. Table 4.3 shows the experiments designed to test the
Crank-Nicholson, predictor-corrector method. For a second-order accurate method,
the error should fall by one-quarter when AH and At are halved. These experiments
verify that the method is more likely first-order accurate. Roughly the same accuracy
is achieved for all four methods (only CNPC is shown). The model is influenced by
many processes beyond the solution of the heat equation whose error can reduce the

accuracy of the temperature.

Varying the layer spacing from 4-16 layers and the timesteps from 1/4-1 day
independently (not shown) indicates the error is dominated by spatial resolution. It
is difficult to argue for a particular layer spacing that adequately resolves the vertical
processes without defining adequate. Because this study is focusing on ice mass
variability, an appropriate test might be to examine the variability as a function of
layer spacing. However, the ice response should be examined in a model coupled to

an atmosphere which is beyond the scope of this dissertation. A discussion of the
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results from uncoupled experiments will be postponed until the following chapter.
For completeness here an estimate of how the growth and melt depends on resolution

is examined below.

4.5.5 how growth/melt depend on vertical resolution

The amount of melt/growth at the top and bottom surface are computed from Egs.
4.47 and 4.48 as a diagnostic from the temperature profile (771, T,g +1) and prescribed
forcing. The mixed layer heat flux changes slowly so X, is prescribed based on the
temperature T7.

The total annual growth and melt at top and bottom surfaces as a function of
vertical resolution are shown in table 4.4. The top melt and bottom growth increase
(as does the range) with smaller layer layer spacing, so the net change in thickness is

perhaps fortuitously insensitive to layer spacing.

Table 4.4: Total annual growth (G) and melt (M) at top and bottom surfaces for
CNPC and BPC schemes. The model was run in column mode with ice thickness
fixed at 320-cm and concentration fixed at 1.0.

CNPC BPC
top  bottom  net top  bottom  net
AH At M G M AH At M G M

cm days cm cm o cmo cm cm days cm cm cm cm

80 1 36.1 414 1.6 3.6 80 1 37.7 39.0 2.0 -0.6
40 1/2  37.0 435 14 5.1 40 1/2 381 423 1.6 25
20 1/4 383 442 13 46 20 1/4 391 436 14 3.1
10 1/8 394 441 1.2 34 10 1/8 399 437 13 25

5 1/16 40.3 44.1 1.2 2.7 5 1/16 406 439 1.2 2.1
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4.5.6 Heal exchange between mized layer/open water due to lateral melt and bottom

melt

Table 4.5 shows the total annual energy transferred through the mixed layer/open
water into to lateral melt and bottom melt. The integrations were performed with
the model run in column mode with concentration and thickness fixed as shown in
the table during each integrations. The forcing is as described above.

For ice concentrations typical of the central Arctic, the energy that goes into
bottom melt is more than 50 times that which goes into lateral melt. The factor
can be even more for higher ice concentration and/or thinner ice. The flux into the

bottom of the ice is about 0-5 W m™2 for average central Arctic conditions.

Table 4.5: Total annual energy transferred through the mixed layer into lateral melt
and bottom melt based on the model run in column mode with ice thickness and area
fixed during each integration. The equivalent, time-averaged heat flux is also given.
Units are per horizontal area.

Initial Conditions Heat Exchange Average Flux

A, H; Ay, Hy Lateral Bottom  Lateral Bottom

(cm) (em) (MJm™%) (MJm™2) (Wm™2) (Wm?)
0 0 0.99 320 0.09 11.7 0.003 0.37
0 0 0.9 320 1.3 78.8 0.04 2.5
0 0 0.8 320 2.8 151.6 0.09 4.8
0 0 0.6 320 5.4 286.5 0.17 9.1
0 0 0.4 320 6.0 385.5 0.19 12.2
0.4 50 0.4 320 0.99 178.9 0.03 5.7

0.8 30 0.0 0 0.56 204.8 0.02 6.5
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4.6 Comparison to other models

4.6.1 Dynamics

The viscous plastic rheology (e.g., Hibler, 1979) is likely to become popular for
climate simulation. In the past few years a few general circulation models (e.g., the
Climate System Model from the National Center for Atmospheric Research (NCAR))
adopted the cavitating fluid rheology of Flato and Hibler (1992) because it is simpler
and integrates more quickly than models with a viscous plastic rheology. However
there are three compelling reasons to the choose viscous plastic rheology: (1) it is less
restrictive because it computes deformation from shear stress, (2) it is stable on an
Arakawa B-grid which is the typical grid used for large-scale ocean models, and (3)
Zhang and Hibler (1997) made the viscous plastic model run with comparable speed.

Multi-category (thickness distribution) models in dynamic/thermodynamic sea ice
models have been used by Hibler (1980), Flato and Hibler (1995), and Flato (1995).
The latter is the only study with direct climate implications (see section 3.8.2). The
thickness distribution described here is distinct from these model in one essential way:
the thickness within each category is allowed to vary within the boundaries that define
the category. The multi-category models fix the ice thickness within each category
and conserve mass by adjusting the concentration. Hence compared to the fixed
thickness, multi-category model, the three and four category models described in this
chapter have more degrees of freedom per category associated with the conservation

of mass.

4.6.2 Thermodynamics

The fundamental equations representing heat conduction, freezing, and melting in
the ice described in this chapter resemble that of Maykut and Untersteiner (1971),
however I assume salinity is fixed and account for internal melting when determining

the melt rate. The ice internal temperature profile is determined essentially in the
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same fashion as in the one dimensional sea ice model of Ebert and Curry (1993).

Currently the most thermodynamically realistic dynamic/thermodynamic climate
models use the Semtner (1976) three layer (two ice and one snow) model (Ross and
Walsh, 1987; Hékkinen, 1993; Chapman et al., 1994). The Semtner model uses a
fictitious heat reservoir to mimic the effect of brine pockets in the fall. The reservoir
method is highly restrictive for variability issues. The ice model employed in the
NCAR Community Climate Model number (CCM3) has multiple layers (hence a
non-zero heat capacity) but does not parameterize brine pockets nor does it have a
fictitious reservoir (Kiehl et al., 1996).

Conservation of internal energy of the ice when the ice is in motion requires a
horizontal advective term. Advection of the ice internal energy has been implemented
previously in the NCAR Genesis and Climate System Models (Pollard and Thompson,
1994; Bettge et al., 1996). However, these NCAR models have just two-categories
of sea ice, use the highly simplified thermodynamics of Semtner (1976), and the
cavitating-fluid rheology of Flato and Hibler (1992). Hence the method developed
here is considerably more realistic, albeit more complicated.

In typical dynamic/thermodynamic sea ice models the energy absorbed by the
open water/mixed layer is transferred to the sea ice laterally and at the bottom by
splitting the energy in some matter (e.g., 50% to each). In this model the mixed layer
stores energy and transfers it to the ice laterally and to the ice bottom according to

the temperature of the mixed layer.



Chapter 5

A STUDY OF NATURAL VARIABILITY OF ARCTIC
SEA ICE SIMULATED BY A
DYNAMIC/THERMODYNAMIC SEA ICE MODEL

5.1 Introduction

The goal of this chapter is to examine how thermodynamic and dynamic processes
interact to affect sea ice variability. Ice deformation creates ridges and open water,
while ice transport moves ice to locations where it is not in thermodynamic equi-
librium. Perturbations in ice thickness affect the ice dynamics because ice strength
depends on the thickness distribution. Ridging serves to dampen thickness pertur-
bations because anomalously thin ice will also be anomalously weak (ridging more
easily) and vice versa. Ice dynamics also allows ice to leave the Arctic Basin mainly
through Fram Strait. The time scale for variations in sea ice mass is likely limited by
advection which constrains the lifetime of sea ice in the Arctic Basin to 5-10 years.
As noted by Thorndike et al. (1975), in a Lagrangian framework the thermodynamic
processes tend to make a uniform thickness that is intermediate to the extremes
caused by opening and ridging.

Much has been written about the importance of open water (leads) for the mean
response to a climate change (e.g., Ledley, 1988). However, little is known about how
open water may influence the natural variability in the system. If ice experiences an
atmospheric anomaly that causes additional melt, then the ice will open more readily,
increasing the open water fraction. During the melt season, increasing the open water

fraction creates a positive feedback due to greater solar absorption. Thus atmospheric
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anomalies occurring during the melt season may have a disproportionately large affect
on the sea ice when there is open water present. On the other hand, increasing the
open water fraction will also increase the total volume of ice grown during the cold
season, acting as a negative feedback, because ice grows at a faster rate over open

water and for thin ice.

Variations in sea ice and freshwater advected out of the arctic basin have been
proposed to govern the near-surface density in the gyre circulations in the Greenland
and Iceland Seas (Aagaard and Carmack, 1989; Hékkinen, 1993). These authors argue
that there is a link between arctic outflow and the Atlantic thermohaline circulation.
Various studies have explored how surface wind anomalies affect ice advection into
the North Atlantic. However, the influence of thermodynamic mechanisms on the

volume of ice advected into the North Atlantic has received little attention.

This chapter begins with a description of the model domain and the external
forcing fields. Next I will present the results from the standard case integration: a
hindcast of the sea ice for the period 1979-1994. Sensitivity studies will be performed
to reveal how the dynamic and thermodynamic processes interact to determine the
sea ice response to atmospheric forcing. Finally, I will examine how sensitive the

results are to the number of sea ice thickness categories ranging from two-four.

5.2 The model domain

The sea ice model domain is limited to ocean covered regions in the Arctic as shown
in Fig. 5.1. Figure 5.1 defines the three subregions used in this chapter (see figure

caption).
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Figure 5.1: The horizontal grid with 160-km square grid boxes based on a stereo-
graphic projection. Subregions used throughout this chapter are “shelf” (enclosed by
heavy solid line), “central” (enclosed by heavy dashed line), and “basin” (the sum of
shelf plus central regions). The areas of the shelf and central regions are 2.97 and 3.94
r 10% km?, respectively. This grid was used previously by Flato and Hibler (1992)
and Flato (1995).

5.3 External forcing

5.3.1 Two meter air temperatures

The basin-wide reliable surface air temperature record is limited in duration. Valuable
measurements were taken at Soviet manned drifting ice stations, which were in regular
operation from 1950 to 1991. The total dataset represents over 27,000 stations days,
though there are data from only about two stations per day on average. Hence these
data do not constitute a spatial field of daily varying surface temperature over the
entire Arctic Ocean. Beginning in 1979 a network of drifting buoys resting on the
sea ice was deployed which is presently maintained by the International Arctic Buoy
Program (IABP). Because the accuracy of the buoy data suffers from mal-functioning
equipment and solar heating, the Soviet data provide a valuable means of calibration.

The Polar Exchange at the Sea Surface (POLES) project (see Martin and Munoz

(1997)) have compiled a two meter air temperature set with a six hour frequency
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between 1979-1994. The observations that comprise the POLES data set are from
land stations, ship observations from the Comprehensive Ocean-Atmosphere Data
Set (COADS), drifting Soviet NP ice stations, and buoys. For this study I compute
daily means from the 6 hourly record. Then I convert the data from the POLES grid

to the model grid by linear interpolation.

5.3.2  Geostrophic winds

Daily geostrophic winds are computed from pressure fields taken at 12 GMT which
are provided by the IABP for the period of 1979-1994. The IABP data is a blend of
the pressure measured from the buoys with the gridded pressure data from NCAR
analysis product. These data are archived at the World Data Center A: Glaciology.

I use an inverse linear interpolation method to convert the IABP pressure grid
to the model grid shown in Fig 5.1. The IABP grid only covers the region north
70°N, but the model domain extends below 70°N, so I extrapolate the buoy data
in a few places. The main region is in the Norwegian Basin/North Sea where ice
concentrations and thicknesses are low and the ice has little influence on the rest of

the Arctic.

5.3.8  Cloudiness and snowfall

Cloudiness and snowfall rates are specified to be annually periodic and independent
of position in the model domain. Cloudiness is taken to be the climatological mean
measured from the Soviet NP ice stations (see Fig. 2.11b). Snowfall rates are those

from Maykut and Untersteiner (1971).

5.3.4  Parameterizations for the air/ice and air/ocean surface fluzes

Fluxes of downward longwave and shortwave radiation for clear skies are parameter-

ized as in Parkinson and Washington (1979). Minor modifications are made to their
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parameters for cloud depletion of the solar flux, (1 — ac?), and cloud enhancement of
the longwave flux, (1 + 7c). Parkinson and Washington (1979) used a = 0.6,5 = 3,
and v = 0.275 respectively, while here I use 0.65, 2.3, and 0.225 to reproduce reason-
able ice thicknesses in the Arctic. The relative humidity is fixed at 90%.

5.3.5 Oceanic forcing

Currents and oceanic heat flux are steady (no annual cycle). Both are derived from

the diagnostic ice-ocean calculation of Hibler and Zhang (1993).

5.4 Demonstration of the model: The standard case

The standard case, as well as other simulations reported, is a 37 year integration,
which includes a spin-up period using forcing from 1979 repeated 5 times and then
two repetitions of the 1979-1994 forcing. The results presented are for the final cycle
for 1979-1994 of this integration.

The standard case integration has the full model physics for three ice categories
as described in the previous chapter. There are four vertical layers in the thick ice
category and two in the thin ice category, with Hj = 10 cm and H{ = 50 cm defining

the boundaries of the thin and thick categories.

5.4.1 Annual cycle for the standard case

Histograms shown in Fig. 5.2 characterize the evolution of the thickness distribution
over the course of an annual cycle averaged over the Arctic Basin for 1979-1994. The
thick ice category which includes first year and multi-year ridged and unridged ice has
basin wide mean thickness ranging from 290 cm (fall) to 350 cm (spring). The thin
ice includes only unridged, first year ice and ice from the thick ice category that melts
below H7. The thickness of thin ice, averaged over the basin, only ranges from 22-36

cm during the course of the year, although the model is designed to allow thin ice to
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Figure 5.2: Representation of the modeled thickness distribution averaged over the
Arctic Basin for 1979-1994. The annual cycle is averaged over (a) January-March, (b)
April-June, (c) July-September, and (d) October-December. The bars are positioned
along the abscissa at the mean thickness while the height of the bars represent the
mean concentration. There are three thickness categories (hence three bars) including
open water. In January-March, the open water concentration is ~ 0 (see footnote 1).
The width of the bars is arbitrary.

range from 10-50 cm. The concentration of thin ice represents a balance primarily
of the input of new ice that grows over the leads and the transfer of ice from thin to
thick category by ridging.

The upper panel from Fig. 5.3 shows the simulated annual cycle of the ice con-
centration averaged over the Arctic Basin. The simulated concentration in winter is
nearly 100% because the model output is written after the thermodynamics portion
of the timestep so that the open water produced by ridging is usually already covered
by new ice. However, for January-April the simulated opening rate (not shown) is
1.2% and 1.8% per day for the central region and shelf regions, respectively. The thin
ice concentration is a maximum in the fall when the large concentration of open water
that exists during the melt season is covered with new ice. The thin ice concentration

reaches a maximum of 40% in October-November. During the winter season (January



116

through April) the thin ice concentration is 4-10% in the central region and 13-16%
in the shelf region.

Using the passive-microwave record for 1979-1991 from the Scanning Multichannel
Microwave Radiometer (SMMR) and the Special Sensor Microwave/Imager (SSM/I)
from (Schweitzer, 1995), I can compare the modeled ice concentration to monthly
mean observed concentrations. From a summary of studies of measurement error,
Gloerson et al. (1992) estimate the accuracy of passive-microwave concentrations
is £2 — 3% (absolute error) in the winter and up to £10% (absolute error) in the
summer. Studies show that the error in high concentration regions during winter
months is mainly due to the instrument’s inability to distinguish between open water
and ice in the thickness range from 0-20cm. Melt water and open water near the
ice edge and in coastal regions can cause a substantial negative bias in the passive
microwave measurements compared to direct measurements, leading to higher error
estimates during the summer.

Open water concentrations measured by passive microwave in the winter are 0.03
to 0.04 in the central regions and 0.04 in the shelf region. Because ice takes several
days to grow thicker than 20cm (the minimum thickness that is reliably distinguished
from open water by passive microwave), it is no surprise that the simulated opening
for one day is roughly half of the passive-microwave “open water” concentration.

The simulated ice concentration reaches a minimum in late August in the central
region (80%) and in early September in the shelf region (43%). The observed minima
occurs in September in both region (the passive microwave data are only available
for monthly intervals due to the frequency that swathes are taken). The minimum
monthly ice concentration for 1979-1991 from the model is on average 2% higher than
observed in both regions.

The lower panel from Fig. 5.3 shows the simulated annual cycle of the ice growth
rate averaged over the Arctic Basin. During the fall, the growth is primarily controlled

by the thin ice category (10-50 c¢m range) when the concentration of thin ice is
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Figure 5.3: The simulated mean annual cycle of ice concentration and ice growth

averaged over the Arctic Basin for 1979-1994. Concentration is shown for thin (A4,)

and thick (As) categories and the total ice concentration (A; + As).

Growth is

broken into four curves representing new ice growing over open water (dotted), thin

ice (dashed), and thick ice which is separated into two curves for gridboxes with

thickness greater than (heavy solid) or less than (light solid) 250 cm. The growth is

weighted by the concentration (e.g., new ice growth in winter contributes about 0.15

cm/day to the basin wide average thickness).
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Figure 5.4: The simulated mean annual cycle of ice transfer rate by ridging averaged
over the Arctic Basin for 1979-1994 for thickness ranges as described in Fig 5.3.

greatest. Although thinner ice grows faster than thicker ice, the rates are weighted
by the concentration, so we see that the thin ice and thick ice in the 50-250 cm range’
contribute about the same amount during the winter. The ice thicker than 250 cm
creates a thermodynamic sink for the ice volume, because it melts much more than
it grows.

Fig. 5.4 shows the annual cycle of the ice transfer rate by ridging averaged over
the Arctic Basin. The curve for the thin ice (10-50cm range) shows the basin average
U, H; (see Eq. 4.26). The sum of the three curves is always zero because there is
no net volume change from ridging. The transfer rate is very small in summer when
most of the thin ice has melted and the strain rate is small due to weak summer

winds. Transfer rates are highest in the fall as is the concentration of thin ice.

The annual averaged volume of ice transferred from thin to thick categories in the

standard case hindcast (minus the integral of the lowest curve in Fig. 5.4) is equal to

1 The growth rate for the thick ice category is separated into two curves for gridboxes with thickness

greater /less than 250 ¢cm for comparing with an integration using four ice categories below.
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a 70 cm thick layer of ice covering the Arctic Basin. During most of the cold season
more thin ice is transferred into gridboxes in the 50-250 cm thick range compared to

the thicker range.

The total annual volume of ice transferred between categories can be compared
to an estimate from a 28 thickness category model by Flato (1995) who found the
volume? transferred is equal to a 55 cm thick layer averaged over the Arctic Basin
(approximated from his Fig. 9) or about 25% lower than the annual volume of ice
transferred between categories in my standard case integration. The true value is not
known. The volume transferred from the thin to thick category due to ridging is sen-
sitive to the parameterize of ice strength. However, the correct way to parameterize
ice strength for models with so few categories is not known. See section 5.6.2 on the

ice strength for further discussion of this issue.

The mean sea ice coverage for April and September from the model and passive-
microwave satellite measurements is shown in Fig. 5.5. I chose to compare the
simulated concentration to observations in April when the extent is maximum and
the new ice growth is relatively low and in September when the extent is minimum

and meltponds have partly drained and/or refrozen.

In April the modeled sea ice extent tends to be too high in the Greenland and
Barents Seas, where the ice edge is strongly influenced by the ocean heat flux during
the winter. In this model the heat flux is fixed in time so the ice extent in April
cannot differ much from year to year. The modeled ice coverage in September is
greater than observed. The modeled ice extends too far toward Franz Josef Land and

Svalbard and into the Kara Sea.

Figure 5.6 shows the mean ice thickness for April and September for 1979-1991.
The thickness is 0-2 m near Siberia and gradually increases from west to east in the

Arctic Basin to obtain a thickness of 4-6 meters near Greenland and the Canadian

2 Flato (1995) calls the same quantity the ridged ice production.
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Figure 5.6: Modeled mean sea ice thickness fields for (a) April and (b) September,
1979-1991. Contours mark 1-m intervals beginning with the 1 m contour which is
dashed. The crosshatched region denotes ice thickness exceeding 4 m. Ice thickness
includes the average of the ice covered and open water fractions of the gridbox.

Archipelago. This is consistent with thickness measurements by upward looking sonar

on submarines (see Bourke and Garret, 1987).

5.4.2  Sea ice variability for the standard case

Figure 5.7 shows the sea ice volume and concentration averaged over the subregions
defined in Fig. 5.1. In the early 1980’s and in the early 1990’s, pronounced minima
are simulated in the summer and fall ice concentration and volume of the shelf region
(see dashed lines in Fig. 5.7(a) and (b), respectively). The two minima share similar
features, except that the 1990’s minimum is more severe.

Ice concentrations in the central region have relatively little interannual variability
compared to the shelf region. The ratio of the standard deviation to mean is 0.04 and
0.32 for the annual minimum in ice concentration in the central and shelf regions,
respectively. The ice concentrations averaged over the central region are uncorrelated
with those over the shelf region in summer and fall.

The interannual anomalies in the volume in the central region are out of phase

with the anomalies in the shelf region. When the volume of ice in the shelf and central
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Figure 5.7: Daily sea ice (a) concentration and (b) volume of the subregions identified
in Fig. 5.1. Volume is normalized by the area of each region so it is equivalent to the
average ice thickness for the region.
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Figure 5.8: Fall (October-November) mean sea ice concentration for (a) thin and (b)
thick ice categories averaged over the subregions identified in Fig. 5.1.

regions are combined to give the mean ice volume for the Arctic Basin, the variations
are less apparent. Indeed the standard deviation of the monthly mean normalized
volume anomalies in the shelf and central regions are 27 cm and 17 cm, respectively,

while the standard deviation of the basin wide average is only 13 cm.

Mean ice concentrations for the thick and thin ice categories during October-
November are shown separately in Fig. 5.8. During fall, the concentration of thick
ice and thin ice are anticorrelated. The simulated mean ice thickness (not shown)
indicates that the ice in the central region was anomalously thick during the late
1980’s and early 1990’s which could be due to increased convergence of ice there.
Curiously the concentration of ice in the central region is remarkable steady compared
to the relatively large variability seen in the volume (Fig. 5.7(b)).

There are two possible explanations for the out-of-phase relationship between sea

ice volume in the central Arctic and shelf regions: (1) anomalous winds transport
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unusually large quantities of thick ice out of the shelf regions and into the central
arctic (and vice versa) and (2) the air temperature anomalies in the central and shelf
regions are anticorrelated. Positive correlations for monthly mean air temperatures

(not shown) averaged over the central and shelf regions rule out (2).

5.4.3 Sea ice minimum of 1990

Serreze et al. (1995) argued that the minimum in sea ice in 1990 was due to warm
windy off-shore flow in May associated with an unusual low pressure center at about
80°N, 100°E, followed by warmer than average conditions in June. Serreze et al.
(1995) speculate that in July and August, the anomalous flow along the east Siberian
coast caused enhanced breakup and poleward advection of the ice.

Figure 5.9 shows the mean sea ice coverage for April and September 1990 from
the model and from observations (SSM/I). The model simulation of the large open
water region in September resembles the observations, but subtle regional differences
exist.

Figure 5.10(a) shows the modeled mean ice thickness in April, 1990 is anomalously
thin (compare Figs. 5.10(a) and 5.6(a)) in the Siberian sector prior to the summer
of 1990. It appears that the modeled ice is preconditioned in the Siberian Arctic for
the appearance of the extensive open water in the summer. Others have noticed that
wintertime conditions play a roll in determining summer anomalies. For example, the
simulated December ice concentration in a model study by Walsh and Zwally (1990)
proved to be well correlated with the following summer ice severity (both observed
and simulated).

The September 1990 thickness field (Fig. 5.10(a)) also reveals interesting features.
The Siberian shelf region with anomalous area of open water seen in the ice concentra-
tion also features anomalously thin ice (as expected). What is not apparent from the
ice concentration alone is the anomalously thick ice in the Canadian Basin in April

and September. The simulated ice near Svalbard and the Canadian Archipelago is
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thicker than average in September 1990.

Serreze et al. (1995) note that the anomalous atmosphere conditions that are
thought to have changed the negative sea ice anomalies in the Siberian sector were
also present in the Alaskan sector, and yet no negative ice anomalies were observed
there. Figure 5.10(a) reveals a possible explanation. The modeled ice thickness prior
to the summer of 1990 was anomalously thick in the Alaskan sector, obscuring the
affect of the atmospheric anomalies on the ice concentration. In fact, near the Alaskan
coast in the model, conditions went from an average 4-meter thick ice cover in April
to ice-free in September. Therefore the simulated ice volume near Alaska eroded
considerably in the summer of 1990, but it was so thick at the beginning of summer
that the ice extent remained near normal.

The results from the standard case support the conclusion by Serreze et al. (1995)
that this minimum can be explained by atmospheric forcing (the oceanic forcing for
this model is steady). Furthermore the model shows an increase in the thickness of
ice in the central region despite positive air temperature anomalies that exist in May
and June (see Fig. 2, Serreze et al., 1995), because in the next section I will explore
whether the anomalously thick ice near Svalbard during this event has implications

for the ice export from Fram Strait.

5.4.4 Variability in the ice export through Fram Strait

In June of 1991, moorings were established at three location in Fram Strait to measure
ice transported out the Arctic Basin. While three sites were monitored in 1991, only
one was monitored throughout the period of record shown in Fig. 5.11(a). The
observed ice draft and simulated thickness at the same location are plotted in Fig.
5.11(a) and (b), respectively. The phase of the annual minimum is several months
earlier in the model than in the observations. This is possibly due to the lack of
proper data for prescribing an annual cycle of the ocean heat flux (F,) and currents.

The modeled mean thickness is about 25 cm to thin. However the overall decreasing
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trends in the model and observations are similar. The model trend is -100 cm for
1991-1994 for the curve in 5.11(a): the observed trend is about -120 cm for June 1991
through July 1994. (The change in the yearly mean modeled thickness from 1991 to
1994 is -44 cm.)

The simulated annual ice export through Fram Strait (the sum of all the ice
that crosses a straight line intersecting Spitzbergen and the northeastern corner of
Greenland each year) shows a negative trend for the same period (see 5.12). For the

1 which is about

period 1979-1994, the simulated mean export rate is 2600 km3yr—
16% less than the estimate from observations by Aagaard and Carmack (1989) (3100
km?®yr~!, for sea ice with salinity 3.2 psu). There is considerable variability in the
simulated annual mean transport: the standard deviation is greater than 25% of the
mean. About 70% of the variance in the annual annual ice export over the 16 years
can be explained by deviations in the annual mean ice thickness at the location of
the mooring in Fram Strait.

Ice transport can be correlated with mean thickness and mean component of the
ice velocity at Fram Strain (averaged along a straight line intersecting Spitzbergen
and the northeastern corner of Greenland). The annual mean ice export rate is more
highly correlated with the annual mean ice thickness than it is with the annual mean
normal component of the ice velocity (see table 5.1). In contrast, the monthly mean
ice export depends more on the monthly mean normal component of the ice velocity
than it does on the monthly mean ice thickness.

The correlation between the annual mean ice export rate and the annual mean ice
volume for the central region (Arctic Basin) is 7 = 0.71 (r = 0.59). These correlations
are lower for monthly mean ice volumes because the ice export rate is influenced more
strongly by the ice speed on monthly timescales.

The standard deviation of the annual mean ice export rate from the Arctic Basin
is 650 km®yr—!, or about 25% of the mean. Dickson et al. (1988) estimated that
the total freshwater excess during the Great Salinity Anomaly (GSA) in the 1970’s
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Figure 5.11: (a) Ice thickness measured by moorings in Fram Strait using upward
looking sonar. (b) Simulated daily ice thickness at the position of the mooring from
the period that the mooring data is available. Each point in (a) represents a seven
day mean, excluding instantaneous measurements of ice less than 0.20 m thick. The
curve in (b) is computed by linearly interpolating ice thickness from the model grid
to the location of the buoy and it is smoothed with a seven day running mean. (The
observed data in (a) are courtesy of Aagaard, Roach, and Moritz; manuscript in
preparation.)
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Figure 5.12: Simulated annual mean ice export rate through Fram Strait and the
annual average ice thickness at the equivalent mooring position in the model.

Table 5.1: Correlation matrix for average thickness (h), normal component of the ice
velocity (s), and export rate (e) for a straight line intersecting Spitzbergen and the
northeastern corner of Greenland at Fram Strait.

annual means monthly mean anomalies

h S e h s e

h | 1.00 -0.12 0.75 h | 1.00 0.10 0.46
s 1.00 0.51 s 1.00 0.86
e 1.00 e 1.00
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was approximately 2200 km?3. Hence the standard deviation of the simulated annual
mean export model is about 1/3 of the GSA freshwater anomaly.

The 1991-1994 measurements are the first direct observations of ice export from
the arctic into the North Atlantic. The trend in these data have generated much
interest in the community. Nonetheless, from the 16 yr simulation shown in Fig. 5.12,
it appears that the period of record for measurements at the Fram Strait mooring
correspond to an unusually steady time. The large variance and the long time scales
associated with ice export (Fig. 5.12) suggest that large freshwater anomalies should
be a ubiquitous decadal scale feature of the climate system (see also Deser and

Blackmon, 1993).

5.5 Sensitivity studies to reveal the interaction between dynamic and
thermodynamic processes and how they contribute to the natural

variability

5.5.1 Sensitivity of ice volume to air temperature and wind anomalies

To investigate the model’s sensitivity to the variability of the external forcing, I
compare integrations where I force the model with all possible combinations of daily
varying air temperature (7,;) and winds (G), and climatological® air temperature
(< Tair >) and winds (< G >). These experiments are designed to investigate how
variability in the external forcing influences the mean and variability of the ice volume.
Part of the motivation for this work is to see whether previous studies that were
performed with climatological air temperatures (or weakly varying air temperatures)
have correctly estimated the variability in the ice volume.

Figures 5.13(a) and (b) show how the monthly ice volume depends on the variabil-

ity in the forcing by the atmosphere. (Because the volume is normalized by the area

3 “Climatological” winds (air temperatures) are computed from the 16 yr mean annual cycle of

pressure (air temperature).
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of the region, the volume is equivalent to the mean thickness of the region and has
units of cubic meters per meter squared.) The mean volume is on average lower for
the standard case than the cases forced with either climatological air temperatures
or winds. The mean volume is moderately sensitive to variability in air temperature:
the mean volume is about 15-cm greater for the model forced with climatological
mean air temperatures than for the standard case!. The effect of replacing variable
winds with climatological winds on the mean volume is even greater: the ice is about
1-m thicker in both the central and shelf regions. The ice has not reached equilib-
rium in the integration forced with both climatological air temperatures and winds
(< Tuwir =0 > and < G >), but clearly the mean thickness will exceed all the other
integrations shown.

The climatological winds lack the wind speeds that are necessary to create realistic
ridging and export rates. Because ridging and export are sources of open water,
the minimum ice concentration (not shown) in the central (shelf) region is about
4% (40%) higher for the integrations with climatological winds compared to variable
winds. Bottom and lateral melt rates are strong functions of how much solar radiation
is absorbed in the open water fraction of the gridbox. The annual total volume of
ice transferred between thick and thin categories by ridging ice is equal to only a 6
cm layer of ice covering the Arctic Basin for the integration with climatological wind
forcing the model - less than 10% of that in the standard case. Although ridging is
a source of ice production during the cold season, here the lack of open water in the
summer dominates the effects of reduced ridging and export. Hence without variable
winds, less ice melts each year and the ice becomes thicker.

The variability of the ice volume is more easily seen when the annual cycle is
removed (see Fig 5.13(c) and (d)). Forcing with climatological versus variable air

temperatures has a considerable effect on the ice volume anomaly in the central

4 A similar increase in the mean thickness is found when the single column model is forced with

climatological mean forcing.
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Figure 5.13: Monthly mean ice volume, volume anomaly, and volume anomaly filtered
by 2-yr running mean for the central region (a,c,e) and shelf region (b,d,f). The curves
are as follows: (heavy solid line) the standard case which has variable air temperatures
and winds, T,;, and G; (light solid line) case with climatological air temperatures
and variable winds, < Ty; > and G; (dashed) case with variable air temperature
and climatological winds, T, and < G >; and (dots) case with climatological air
temperatures and climatological winds, < T,; > and < G >. Only the first three
curves are shown in the (c,d,e,f) because the anomalies for the case with climatological
air temperature and winds are nearly zero. Volume is normalized by the area of each

region.
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region and little effect on the shelf regions. In the shelf region, o, decreases by
only about 20% from the standard case when the model is forced by climatological
air temperatures. This suggests that volume anomalies in the shelf region are only
modestly influenced by air temperature anomalies. In the central region, however, the
standard deviation of the monthly mean ice volume anomaly (o3,) for the integration
with climatological air temperature is about half of that for the standard case (see
table 5.2(a)). Hence about 50% of the variability of the ice volume on monthly
timescales in the central region is due to air temperature anomalies.

Replacing variable winds by climatological mean winds has a substantial affect
on the monthly volume anomaly (compare columns 4 and 6 in table 5.2(a)). In both
the central and shelf regions when the model is forced by climatological winds, oy,
is about 1/3 of the standard case values. The interpretation of this result is not
straightforward, however, because in the absence of variable winds the mean state
of the model is very different from the standard case. Results with the SCM given
in chapter 2 showed that the ice thickness response due to atmospheric anomalies
depends strongly on the mean ice thickness. It is likely that the response also depends
on the amount of open water that is present.

When the ice volume anomaly is filtered with a 2-yr running mean (see Fig 5.13(e)
and (f)), the influence of variable versus climatological forcing on the low frequency
ice volume anomalies becomes apparent. Without variable air temperature, much of
the low-frequency variability is absent in the central region. Specifically, o, is 3.5 cm
with climatological air temperatures, compared to 12 cm for the standard case: oy,
is reduced by more than a factor of three. By comparing the last columns in table
5.2(a) and (b), note that most of the variability of the ice volume forced by variable air
temperatures and climatological winds occurs at 2-yr and longer timescales. However,
op for 2-yr and longer timescales for the shelf region is virtually independent of
variability in the air temperature. Hence variable air temperatures are essential for

creating low-frequency variability in the central Arctic and are insignificant in the
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Table 5.2: (a) Simulated mean h and standard deviation oy, of ice volume for the
subregions defined in Fig. 5.1 for integrations as follows: the standard case which has
variable air temperatures and winds, 7,;- and G; climatological air temperatures and
variable winds, < T, > and G; and variable air temperatures and climatological
winds, T and < G >. (b) Ice volume is filtered with a 2-yr running mean before
computing the standard deviation. Volume is normalized by the area of each region.
Statistics are for the hindcast years 1979-1994.

(a)

Region mean h (cm) op, (cm)

Tai'r < Tai'r > Tair Tm’r < Tair > Tair
G G <G>| G G <G>

Central | 310 329 402 17 8.9 5.7
Shelf 167 177 260 28 23 10
Basin 253 269 346 14 11 5.9

Region | 05, (cm), 2-yr running mean

Toir < Toir > Tair

G G <G>
Central | 12 3.5 5.0
Shelf 20 21 8.0

Basin 11 8.8 4.8
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shelf regions.

These results strongly suggest that previous studies that hindcast the sea ice in
the arctic which do not include realistic air temperature variations have seriously
underestimated the variability on 2-yr and longer timescales in the sea ice volume for

the central region.

5.5.2  Sensitivity of ice volume to annually periodic winds and no winds

It has been argued that the net effect of ice dynamics is to reduce the variability in
the ice volume that is borne of anomalous air temperatures. If true, then the ice
volume in an integration with no ice motion (u = 0), called the “thermodynamics
only” integration, should have higher variance than integrations performed with cli-
matological winds or with winds from one year repeated annually (to maintain high
frequency synoptic variability while eliminating interannual variability in the winds).

With u = 0, there is no ridging and opening. The ice in each gridbox reaches a
homogeneous thickness, and there is never open water in the perennial ice regions in
the thermodynamics only integration. I added 1.5 W m 2 to the ocean heat flux (F,)
everywhere to compensate for the lack of heat entering the mixed layer that normally
occurs through the absorption of solar radiation in open water. Without increasing
F,,, the mean ice thickness would exceed 6 m in most of the central region. Some
modelers use an arbitrary lead fraction to allow heat to reach the bottom surface of
the ice. Increasing F), serves the same purpose.

To maintain high frequency synoptic variability while eliminating interannual vari-
ability, I include an integration with winds from 1988 repeated annually. (Winds from
1988 are meant to represent a typical year.) For this integration, F,, is prescribed as
in the standard case.

The results, summarized in table 5.3 and shown in Fig. 5.14, compare the standard
case to the three integrations without interannually varying wind forcing as follows:

thermodynamics only, climatological winds, and 1988 winds repeated each year. If we
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focus on the central region where the ice edge does not play a roll in the variability an
interesting picture develops. Compared to the integration forced with climatological
winds, in the central region the ice volume from the thermodynamics only integration
is more variable, so it appears that dynamics forced by climatological (i.e., weak)
winds tend to dampen variability?. The opposite is true for the case with dynamics
forced by repeating the winds from 1988 throughout the integration (winds with
typical synoptic variability but no interannual variability). The relative magnitudes
of the standard deviations change very little when the ice volume is first filtered
with a two year running mean. These relations suggests that for the central region,
winds which cause unusually weak sea ice motion dampen variability, but winds which
cause typical sea ice motions enhance variability. One interpretation of this result
is that strong winds are needed to create enough open water to enhance the effect
of atmospheric anomalies. Weak winds do not create adequate opening, but they do
ridge and advect ice in a way that slightly decreases the variability.

For the shelf region, the ice volume from the thermodynamics only integration
is less variable than in the standard case. With the addition of either climatologi-
cal winds or 1988 winds repeated, the volume is slightly more variable than in the
thermodynamics only case, although still much less than in the standard case. Thus
interannually varying winds are essential for developing realistic variability in the

shelf region.

5.5.3 Sensitivity of ice export to changes in the external forcing

While the integration with 1988 winds repeated annually reproduces most of the

interannual variability in the volume of the central region, it seriously underestimates

5In chapter 2 we found the standard deviation is higher for thicker ice. In the central region this
relationship serves to strengthen my arguments because for the thermodynamics only case, the
standard deviation is higher than the climatological winds case although the mean thickness is

lower.
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Figure 5.14: Monthly mean ice volume, volume anomaly, and volume anomaly fil-

tered by 2-yr running mean for the central region (a,c,e) and shelf region (b,d,f).

All integrations have interannually varying temperature. The curves are as follows:

(heavy solid line) the standard case which has interannually varying winds G, (dots)

case with no winds G = 0, (dashed) case with climatological winds < G >, and
(light solid line) case with 1988 winds repeated G(1988). Volume is normalized by

the area of each region.
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Table 5.3: (a) Simulated mean h and standard deviation oy, of ice volume for standard

case which has variable winds (G), thermodynamics only (G = 0), climatological
winds (< G >), and winds from 1988 repeated annually (G(1988)). (b) Ice volume
is filtered with a 2-yr running mean before computing the standard deviation. Volume

is normalized by the area of each region.

(a)

Region mean h (cm) op, (cm)
G G=0 <G> G(1988) | G G=0 <G> G(1988)
Central | 310 353 402 287 17 7.3 5.7 14
Shelf 167 129 260 141 28 8.7 10 11
Basin 253 264 346 229 14 5.9 5.9 11
(b)
Region op, (cm), 2-yr running mean
G G=0 <G> G(1988)

Central | 12 5.9 5.0 11

Shelf 20 4.7 8.0 5.8

Basin 11 4.2 4.8 7.8
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Figure 5.15: Mean annual export through Fram Strait from integrations as follows:
(heavy solid line) the standard case which has variable air temperature and winds,
Twir and G; (light solid line) case with climatological air temperature and variable
winds, < Ty > and G; (dashed) case with variable temperature and 1988 winds
repeated Ty;, and G(1988).

the variability in the export at Fram Strait (see dashed line in Fig. 5.15). In fact, for
this integration the ratio of the standard deviation to mean for Fram Strait export is
only 5% (compared to more than 25% for the standard case). Yet, as in the standard
case, the correlation between the annual mean ice export rate and volume for the

central region exceeds is 70%.

On the other hand, the integration with climatological annual mean air temper-
ature in the Arctic reproduces less than half® of the interannual variability in the
volume of the central region, yet the export at Fram Strait is similar to that from the
standard case (see light solid line in Fig. 5.15). Furthermore, the correlation between

the annual mean ice export rate and volume for the central region is just 37%.

6 This estimate comes from comparing standard deviations of monthly volume anomalies filtered

with 2-yr running mean for this integration and the standard case.
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5.6 Sensitivity to model physics

5.6.1 Sensitivity to number of sea ice categories

I integrated the model with two and four thickness categories to see how the results
with three thickness categories (standard case integration) differs from two and four.
(The thickness distribution for two-four thickness categories is described in section
4.4.1.) Table 5.4 shows how the mean and standard deviation of the ice volume
(normalized by the area of the central, shelf, and basin regions) depends on the
number of thickness categories. Both statistics increase with the number of thickness

categories, more so in the central region than in the shelf region.

Table 5.4: Simulated mean h and standard deviation o, of monthly mean ice volume
for two, three, and four category models. The numbers in the second row refer to
the number of ice categories. The statistics are separated for the various subregions
defined in 5.1. Volume is normalized by the area of the regions.

Region | mean h (cm) oy, (cm)

2 3 41 2 3 4

Central | 241 310 348 | 15 17 19
Shelf 129 167 190 |21 28 32
Basin 197 253 286 |12 14 15

The histograms shown in Fig. 5.16 are analogous to those shown in Fig. 5.2
for the three category integration. The concentrations of thin ice for three and four
category integrations are similar, but the two category case fails to simulate anything
like thin or first year ice for the basin average.

The thickness distribution for the four category integration begins to represent

some distinct features that appear in measurements of the thickness distribution in
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Figure 5.16: As in Fig. 5.2, but for two (black bars) and four (white bars) category
integrations.

the Arctic (see, e.g., Thorndike, 1992a; Rothrock, 1986). In the fall we see the thin
and intermediate categories have concentrations and thicknesses that resemble first
and multi-year modes in observations. By summer the thin ice nearly vanishes and
the open water concentration is large while the intermediate ice thickness reaches a
minimum. Observations show a similar picture where the multiyear and first year ice
are blended into one mode by summer. The winter shows stages that are intermediate
between fall and sumer conditions. If we imagine that the thick ice category represents
a broad range of thicknesses then it resembles the ice that has ridged to thicknesses
beyond thermodynamics equilibrium in the Arctic. The four category thickness dis-
tribution has some deficiencies too. For example, the intermediate thickness category
is too thin to properly depict unridged multi-year ice. A better interpretation of
the unridged multi-year ice is that it partly represents the intermediate and thick

categories, neither of which have the right thickness.

The two category does not even begin to resolve the thickness distribution. While

the three category case represents the thin ice, it cannot represent first year ice (except
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Figure 5.17: As in 5.3 but for cases with (a) two and (b) four thickness categories. In
(a) the three curves for ice thickness greater than 10 cm are from one category which
is separated by gridbox into three thickness ranges as labeled. In (b) the curves are
each from a separate ice category.

in fall) and ridged and unridged multi-year ice. The four category thickness distri-
bution begins to look more reasonable; however, it is still very crude. An important
question for climate modelers is whether these differences influence the evolution of
the state of the ice in an essential way. In this section, I will begin to explore this
idea.

Figure 5.17 shows the simulated annual cycle of the ice concentration averaged
over the Arctic Basin for integrations with two and four thickness categories (compare
to Fig. 5.3 for three categories). We see that the growth rate for the 10-50 cm range
increases with the number of categories resolved in the integration, as does the relative

size of the melt rate for the > 250 cm range compared to the 50-250 cm range.

Comparing three and four category integrations we see that despite the larger
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Figure 5.18: As in 5.4 but for four categories case. The three curves are each from a

separate ice category.

overall mean thickness, the four category integration has a higher concentration of
thin ice (A;). More ice is transferred from the intermediate to the thin category
during the melt season in the four category integration than from the thick to the

thin category in the three category integration.

Figure 5.18 shows the annual cycle of the ice transfer rate by ridging averaged
over the Arctic Basin for the four category integration (there is no ice transfered by
ridging in the two category case). The behavior of the 50-250 c¢cm thickness range
indicates that it is a sink for ridged ice in the fall and a source the rest of the year in
Fig. 5.18. Also the > 250 cm thickness range gains more ice from ridging than in the
three category case. The total annual amount of ice transferred from the thin to the
intermediate category is 67 cm (slightly less than three category case) and from the

intermediate to the thick category is 37 cm (incomparable to three category case).

The time series of the normalized ice volume (Fig. 5.19(a) and (b)) highlights
the difference between the mean for the two, three, and four category integration.

It seems that the volume has not approached its asymptotic limit even with four



144

categories in the central region. For the ridging parameterizations I used in this
model (see section 4.4.1) the solution has not converged for four categories and if the
ice does converge with more than four categories, it will likely be too thick. This
suggests that the ridging parameterizations for three and four thickness categories
need further refinement. An obvious place to start is with the function that defines
which ice will participate in ridging (a(h) in Eq. 4.18) and the rule that determines
the thickness of ridged ice. This should be followed by developing a more physical
parameterization for the ice strength. Unfortunately such refinements cannot be
examined here, but will be the subject of future work.

The anomalies shown in Fig. 5.19(c) and (d) and the standard deviations given
in 5.4 indicate the variability of the ice volume is not very sensitive to the number of
categories in the thickness distribution. The small increase in o(h) with the number
of categories might be due to the increase in mean h with the number of categories.
There are subtle differences between the two and three category integrations and even
weaker differences between the three and four category integrations. Therefore the
results in this section suggest that varying the number of thickness categories resolved
by the model has only a modest affect on the variability of the ice volume, but, given
the simplicity of the parameterizations used here, it has a substantial affect on the

mean ice volume.

5.6.2 Sensitivity to ice strength

The ice strength is parameterized with a quadratic dependence on the ice volume
as described in section 4.4.1. Overland and Pease (1988) argued that the empirical
constant P* in Eq. 4.14 should be 1.44x10®* N/m? for modeling ice on the coastal
seas. Hikkinen (1993) used P* = 3x10® N/m? for the Arctic region simulated with
her thermodynamic dynamic sea ice model. I have tested the three category model
with a range of values and chose P* = 3x10® N/m? in order to best represent buoy

trajectories, the Fram Strait export rate, and a reasonable amount of ridging.
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Figure 5.19: Monthly normalized ice volume for integrations with two (dashed line),
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(a) and shelf region (b). Monthly normalized ice volume anomalies are shown in (c)
and (d).
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Figure 5.20: Observed and simulated buoy trajectories for four buoys in the Arctic
Basin during the period 1991-1994. The solid line is the observed trajectories and
the dashed and dotted lines are those simulated by the model standard case and for
the case when P* is doubled, respectively. The drifts shown last for approximately
250 days.

The linear strength parameterization from Hibler (1979) which is commonly used
for two category models is equivalent to this parameterization when A =1 for h = 3.5

m and it is higher (lower) for h < 3.5 m (h > 3.5 m).

When an integration is performed with P* doubled from that of the standard case,
the mean ice thickness for the Arctic Basin is 23 cm less, the total annual amount
of ice transferred between categories is reduced by 14%, and the export rate at Fram

Strait is 16% less. The variability in ice volume and export changes very little.

Modeled buoy trajectories are computed for four buoys based on daily drift vectors
along the course of the modeled trajectories. A qualitative assessment from Fig. 5.20
indicates the modeled trajectories from the standard case are more like the observed
buoy trajectories. The trajectories for the double P* case are particularly poor north

of the Canadian Archipelago.
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5.7 The limitations of using prescribed forcing

Important feedbacks between the ice-atmosphere and ice-ocean in develop coupled
model integrations that do not occur with the prescribed forcing fields used here.
In particular, the air temperature should respond to changes in the ice top surface
energy balance. In turn the fluxes of downward longwave radiation, sensible heat and
latent heat should adjust. Horizontal gradients probably play a roll in the adjustment

process as well.

5.8 Conclusions

During the 16 year period of the standard integration for 1979-1994, the model simu-
lates two periods with pronounced minima in the mean ice volume along the Siberian
shelf in the early 1980’s and 90’s with a maximum in 1987. The volume of ice sim-
ulated in the central Arctic experiences local mazima coincident with the minima
in the shelf region: the volume in the central and shelf regions are anticorrelated.
Because the air temperature anomalies in these two regions are typically in phase, ice
transport is mainly responsible for the out-of-phase relationship between the volume
anomalies.

I have analyzed the model simulation of the 1990 minimum in the ice extent that
has recently been studied by Serreze et al. (1995). The model results lend support
to the conclusion by Serreze et al. (1995) who determined that the minimum ice
extent can be explained by atmospheric forcing. The model also shows details of the
ice thickness where no observations exists. I find the ice is anomalously thin in the
Siberian sector for April prior to the summer of 1990. In September the model has
anomalously thick ice in the central region despite positive air temperature anomalies
during May and June (Fig. 2 Serreze et al., 1995). This suggests that more ice than
usual is swept out of the shelf region, depleting the volume of ice in the shelf region,

and moving it into the central region where it piles up, increasing the local volume
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of ice there.

The mean ice exported through Fram Strait for the period 1979-1994 in the model
is 2600 km®yr~!  comparable to the observed estimate of 3100 km3yr~' (Aagaard and
Carmack, 1989). The variability of the simulated export is striking: the standard
deviation exceeds 25% of the mean. The annual mean ice export is highly correlated
with thickness in Fram Strait and central region volume anomalies. The largest devi-
ations from the mean occur in 1981 (positive), 1885 (negative), and 1989 (positive).

Since 1991, the ice draft at Fram Strait has been monitored using upward looking
sonar moored to buoys. I have computed the ice thickness at the same location in the
model and compared the simulated time series to the observations of ice draft. The
average simulated ice thickness for June 1991 through July 1994 is 30 cm thinner
than the observed draft for the same period and the minimum in the simulated
annual cycle of the thickness is shifted a few months earlier. Although the trend in
the observations and in the model is considerable, about -100 cm over 3 years, the
variability simulated by the model for the full period of the integration indicates that
the decrease in the last 3-4 years is not unusual when compared to the full hindcast
record (1979-1994).

Sensitivity tests to determine how variability in air temperatures and winds con-
tribute to the volume anomalies reveal that air temperature anomalies primarily
influence interannual (greater than 2 yr timescales) variability in the central region.
Wind anomalies influence variability in the central region on interseasonal and, to a
lesser extent, interannual timescales. Air temperature anomalies affect the variability
in ice volume in the shelf region, although wind anomalies are the more important
forcing there.

I performed sensitivity tests to determine how ice dynamics affects the model
sensitivity to thermodynamic forcing by comparing results from the standard case,
an integration with no wind forcing, and integrations with annually periodic wind

forcing. Compared to the standard case, the integration with no winds indicates that
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the net effect of dynamics is to increase variability in the ice volume. Forcing by
annually periodic winds can either increase the variance of the ice volume that is
generated by air temperature anomalies or decrease it by hastening the return to the
equilibrium ice volume. The strength of the winds determines which is dominate.
Strong winds appear to be necessary to create enough open water to enhance the
effect of atmospheric anomalies. Weak winds do not create adequate opening, but
they do ridge and advect ice in a way that slightly decreases the variability.

I have tested the model sensitivity to the number of thickness categories. When
I compared integrations with two-, three-, and four-thickness categories, I found the
mean ice thickness increases with the number of thickness categories, as did the
variability. Because variance in ice thickness depends on the mean ice thickness, it is
not possible to separate the influence of the number of categories from the changes

in the mean.



Chapter 6

LONG INTEGRATION OF THE
DYNAMIC/THERMODYNAMIC SEA ICE MODEL
USING SYNTHETIC FORCING

6.1 Introduction

In the previous chapter, the dynamic/thermodynamic sea ice model was used to
hindcast the period 1979-1994. Although the integration is less than two decades long,
the simulations show evidence for interannual and perhaps even decadal timescales in
the Arctic. In this chapter I will describe the results from a 1000 year long integration
with the same dynamic/thermodynamic sea ice model forced by synthesized fields of
pressure and temperature. My analysis will examine low-frequency variability in the
sea ice.

I begin by describing a method for creating long forcing fields of pressure and
temperature anomalies based on statistical relationships between the observed fields.
I use singular value decomposition to explore the relationship between the pressure
and temperature for the period 1979-1994. With the results I show that pressure tends
to control the temperature patterns. It is possible to synthesize pressure fields based
on a separate statistical analysis of pressure and subsequently synthesize temperature
fields that are related in part to the synthesized pressure fields. Finally, I analyze the
synthesized fields with singular value decomposition to verify that the relationship is
reasonable.

Of course the synthesized fields will not depend a priori on the sea ice. There is

some evidence that local surface atmospheric conditions depend on sea ice concen-
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trations in preceding months (Rogers, 1978; Overland and Pease, 1982; Deser and
Blackmon, 1993), although there is stronger evidence that atmospheric variability
forces sea ice concentration anomalies (Rogers, 1978; Lemke et al., 1980; Walsh and

Sater, 1981; Wang et al., 1994; Fang and Wallace, 1994).

6.2 Creating the synthetic pressure and temperature fields

6.2.1 Singular value decomposition of observed fields

Singular value decomposition (SVD) is performed on the temporal covariance matrix
of the observed daily surface pressure and temperature anomalies from 1979-1994 for
the grid shown in Fig. 5.1 to produce two orthogonal sets of patterns known as the
singular vectors. The technique selects the modes such that the leading mode explains
the largest fraction of the squared covariance between the pressure and temperature
fields. The second mode explains the largest fraction of the remainder, and so on.

The covariance matrix is the time average of the product of the pressure anomaly
at every grid point ¢ and temperature anomaly at every grid point j for the model
domain (see Fig. 3.2). The covariance matrix may be computed with one field lagging
the other to determine what lag interval reveals the strongest correlations. In table
6.1 (upper) I show statistics from SVD analysis on covariance matrices at various lag
intervals. The correlation coefficient (r) and squared covariance (Cov?) are highest
when pressure leads the temperature by 1-2 days for the first six modes.

The six leading singular vectors (P and 7T) for the SVD analysis with pressure
leading temperature are similar for the 1-4 day lag interval. Hence only those for 1-day
lag are shown in Fig. 6.1 with their respective squared covariance fraction (A?). The
geostrophic flow associated with the first pressure singular vectors (P;) advects warm
Atlantic air to the region centered around Svalbard and Franz Josef Land which is
consistent the center of action in 7;. When P; occurs with opposite sign, flow across

the Siberian sector brings cold air to the same region. The geostrophic flow for the
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Table 6.1: Correlation coefficients (r) between expansion coefficients for the first six
SVD modes and squared covariance (Cov?) summed over all pairs of grid points.
Rows in the upper table are for various lag intervals where positive lags correspond
to pressure leading the temperature. Rows 2-6 in the lower table are for scrambled
ordered fields and the first row is for the properly order fields at one day lag. The

units of Cov? are arbitrary.

r(%) Cov?
mode
lag| 1 2 3 4 5 6
-1 132 41 21 25 26 20 46
0 42 47 31 39 33 31 71
1 53 49 39 41 38 28 86
2 54 47 40 38 31 22 81
3 51 45 36 33 23 18 68
4 46 42 30 28 18 15 54
r(%) Cov?
mode
order | 1 2 3 4 5 6
0 53 49 39 41 38 28 86
1 11 11 10 11 8 8 )
2 13 12 10 7 10 11 4
3 12 9 8 10 11 8 3
4 mm 9 8 9 7 8 3
) 8 6 2 4 4 0 6
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second mode creates sharp temperature gradients in the Laptev and Barents Seas,
near the maximum pressure anomaly. The center of action for 75 is shifted towards
the coast of Greenland and is smaller scale than for 7;. The pattern for Ps; has
strongest pressure gradients rotated 90° with respect to those for the first two modes.
This pattern is associated with to have temperature anomalies with opposite sign
the western and eastern Arctic. The singular vectors for higher modes tend to have

smaller scale structures.

Modes beyond the first six were not analyzed because they explain less than
1.5% of the variance. Table 6.1 (lower) shows the correlation coefficients for SVD on
scrambled ordered fields. Clearly the correlation coefficients for all six modes modes

for the properly ordered fields (first row) stand out above the rest.

The fraction of the explained variance for the singular vector patterns and their
respective expansion coefficients is given with the patterns in Fig. 6.1. The first
6 modes of the pressure SVD explain 83% of the variance of the observed variance
while the first 6 modes of the temperature SVD explain 65% of the variance of the
observed variance (variance is summed over all grid points). This suggests that the
most prominent patterns in pressure often appear with typical patterns in tempera-
ture. Common temperature patterns are more often unrelated to pressure than vice
versa. The results from this section indicate that the pressure leads and forces a
considerable portion of the temperature variability, although another portion of the
temperature variability is unrelated to the pressure. Hence I will construct pressure
fields independent of the temperature and then build the temperature fields based on
the correlation with pressure, and additional variability in temperature unrelated to

the pressure.
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Pressure, Mode 1 Temperature, Mode 1

A?=0.52

A?=0.31

A?=0.08

Figure 6.1: First six singular vectors of pressure and temperature for observed fields
with the fraction of explained squared covariance (A?). The fraction of explained
variance for the respective fields is given in the upper right corner of each pattern.
The patterns are nondimensional. Contours are evenly spaced with heavy solid line
for zero contour and dashed (solid) for negative (positive) contours.



Pressure, Mode 4

2?=0.03

A?=0.03

A?=0.01

Temperature, Mode 4

Figure 6.1: continued
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6.2.2 Empirical orthogonal functions of observed pressure fields and synthesizing

pressure

I construct synthetic pressure fields with the empirical orthogonal functions (EOF's)
of the observed pressure anomalies using a first-order autoregressive model (Markov
model) to make principal components (pc’s). The EOFs are computed from the

variance matrix for the observed pressure anomalies for 1979-1994.

Figure 6.2 shows the six leading EOFs (¥) with their respective explained vari-
ance fraction (pv). The first EOF (V) explains 40% of the variance and resembles
the climatological mean winter pressure pattern known as the Beaufort high. This
indicates that variations in the intensity of the Beaufort high dominates the variabil-
ity in the pressure. ¥, resembles the third singular vector in Fig. 6.1 and is likely to
be associated with the NPO as mentioned above. W3 bears some resemblance to the
first and second singular vectors in Fig. 6.1 and is perhaps associated with the NAO

as is the first singular vector.

The cumulative fraction of the variance explained by the first six pressure EOFs is
89%. The structures of the EOFs for modes higher than 6 have relatively small-scale
features which suggests that errors in the measurements are obscuring the patterns.
In order to represent as much real variance as possible without including modes
associated with measurement error, I will use just the first six modes to construct the
synthetic fields. Hence only 89% of the pressure variance will be captured because I
truncate the number of modes to six, assuming the synthesized principal components

are scaled properly.

Power spectra of the pc’s for each of the six leading pressure EOFs (Fig. 6.3)
show that the temporal dependence of the EOF patterns resembles red-noise. I show
the observed spectrum for each pc with the best-fit to a theoretical spectrum of a
discrete Markov model (as in section 2.3). The fitting parameter a is associated with

a timescale, —1/loga, which is 10 days for the first pc and 2-3 days for pc’s two
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Figure 6.2: First six EOFs for observed pressure with their respective explained

variance fraction (pv). Fields are nondimensional. Contouring convention as in Fig.

6.1.
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through six. Hence, ¥, is associated with the lower frequency variations than the

higher modes. Modes two through six have mainly synoptic frequency variability.

x 10° x 10°
12f 5[0 ‘ ‘ ‘
_ 1ot 2=0.90 N 59?@@ a=0.73
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Figure 6.3: Power spectra of first six principal components (pc’s) for observed pressure
with fit to Markov process and fitting parameter a.

It is important to consider the annual cycle of the pc’s separately because is not
represented by the Markov model. Figure 6.4 shows the annual cycle of first six pc’s

with fits to
Cr(d,) =1+ A cos(2m(d, — ¢y)/365). (6.1)

The fitting parameter A, is a measure of the range of the amplitude of the variation
at the maximum and minimum time during the year, d, is the Julian day, ¢y is the
number of days past the first day of year when the annual cycle reaches a maximum,
and k is the mode number. Hence the first EOF has a strong annual cycle with phase
such that there is more amplitude in the spring than in the fall. Compared to the

other modes, it has an especially important annual cycle for creating opening in the
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200 mode 2
A=0.37, =15.2

0 100 200 300

Figure 6.4: Annual cycle of first six principal components (pc’s) with fit to cosine
function and fitting parameters A and ¢ for each mode.

spring.
I synthesize pressure anomalies by numerically constructing daily timeseries for
the pc’s (¢) for the first six EOFs (where ~ denotes “synthetic”). Then the synthetic

A~

pressure anomalies (P) are simply
6
P = Z A (6.2)
k=1
The synthetic pc’s (@) depend on the fitting parameters from fitting a Markov spec-

trum to the observed pc’s () and the annual cycle of the observed pc’s.

First I use a Markov model to create a stochastically varying time series,

@i (d) = ar @i (d — 1) + z(d), (6.3)

where d is time in days, ay is the fitting parameter from Fig. 6.3, and z,(d) is a set of

normal random deviates. Then the timeseries ¢} is modulated by the corresponding
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fit to the annual cycle from Eq. 6.1 and the product is normalized so the standard

—1/2
deviation is equal to the standard deviation of the observed pc (¢ / ). Hence
—51/2

“ 2 “
O = (A%W%Ck, (6.4)
©rCk

for C} at d modulo 365.

6.2.3 Observed pressure principal components regressed on temperature and synthe-

sizing part I of the temperature

The synthesis of temperature anomaly fields is a two step process. First in this
section, I construct the portion of temperature anomaly that varies linearly with the
pressure (defined as 7). Then in section 6.2.4, I construct the residual temperature
anomaly (defined as T;) portion.

I synthesize Ty by computing temperature regression maps (Ry) by regressing the
observed pressure pc’s on the temperature anomaly field and then I multiply these
regression maps by the synthesized pressure pc’s (@) from Eq. 6.4,

6
Ty =) ¢l (6.5)
k=1

For the first mode at each grid point 7, I regress ¢; on the temperature anomaly

time series (¢;) to compute the regression coefficient,

tir
Til = —1—2 ; (6.6)

Y1
then multiply the pc by the regression coefficient to obtain a fitted time series; and
finally remove this fitted time series from the original one to obtain the residual
temperature anomaly field. The second regression coefficients is computed from ¢,
and the residual temperature field, and so on. This operation is performed six times
for the first six observed pressure pc’s with the residual temperature computed each
time between operations. The set of r; at each grid point comprise the regression

map Ry for mode k.
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T regression map, Mode 1 T regression map, Mode 2

Figure 6.5: Maps of first six observed pressure pc’s regressed on observed temperature
fields. Contours show 5 mK/mbar increments with heavy solid line for zero contour
and dashed (solid) for negative (positive) contours.
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I allow for the possibility that the pressure pc and temperature anomaly relation-
ship might be stronger at some lag by computing r; for every lag between -5 and
5 days at 1 day intervals. I select r; at the lag that maximized the map’s spatial
variance. The lags which maximized the variance for the first six modes are 1, 1, 2,
1, 2, and 0 days, respectively, with pressure pc’s leading the temperature for modes

one through five.

Figure 6.5 shows the temperature regression maps. The first regression pattern
(Ry) verifies the notion that high (low) pressure and cold (warm) air are observed
together during the Arctic winter: the corresponding pressure EOF, W, has large
scale high pressure (using sign convention shown in Fig. 6.2) centered in the Beaufort
Sea. Geostrophic flow for ¥, is from the west Siberian Arctic toward Greenland and
the Canadian Archipelago, bringing warm air into the west Siberian Arctic and cold
air toward Greenland and the Canadian Archipelago as is apparent in Ry. Compared
to the other regression maps, R; and R, have relatively weak amplitudes; therefore,
the first two pressure EOFs drive relatively weak temperature responses. R3 resembles
the first temperature singular vector which is not surprising because the corresponding
pressure EOF, W3, looks like the first pressure singular vector, P; in Fig. 6.1. The
next three regression maps look like combinations of the four leading temperature

singular vectors.

6.2.4 Empirical orthogonal functions of observed temperature residual fields and syn-

thesizing part I of the temperature

I compute EOFs of the observed residual temperature anomaly (777) for 1979-1994
to synthesize the part of the temperature anomaly that does not covary linearly with
pressure,

6
Ty =T - ¢xRx (6.7)
k=1
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1 Temperature Residual EOF, pv=0.23 2 Temperature Residual EOF, pv=0.16

Figure 6.6: First ten EOFs for observed residual temperature with their respective
explained variance fraction (pv). Contouring convention as in Fig. 6.1.



164

7 Temperature Residual EOF, pv=0.04 8 Temperature Residual EOF, pv=0.03

Figure 6.6: continued
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The same method is used to construct the synthetic residual temperature pc’s (%)
as was used in section 6.2.3 to construct synthetic pressure pc’s.

Figure 6.6 shows the first ten residual temperature anomaly EOFs (©) with their
respective explained variance fraction (pv). Ten modes are retained because more
temperature EOF's are needed to explain the same variance fraction as for pressure
EOF’s. In fact, the first ten modes only explain 78% of the residual temperature
variance, as compared to section 6.2.3 where six modes explain 89% of the pressure
variance. By retaining so many modes, there is some risk of reconstructing patterns
of that are due to measurement error. However, data is lacking to determine what
the real variability is. It is possible that some portion of the variance resembles
high frequency, small scale, random noise. Because the pattern of (at least) the first
four modes of residual temperature EOF's are quite large scale, they are likely to be
physically meaningful modes of variability in the system (instead of noise). The first
mode, in particular, is unlike any of the temperature regression maps in Fig. 6.5 or
the temperature singular vectors in Fig. 6.1. Most of the contours for this mode are
near the ice edge, which suggests that this mode may be correspond to variability in
the position of the ice edge.

Figure 6.7 shows the power spectra and fits to a Markov model (as in section 2.3)
for the pc’s of each of the ten leading residual temperature EOFs. The timescale
from the spectral fits is 14 day for the first pc and 2-6 days for pc’s 2-10. Generally
the residual temperature modes vary more slowly than the pressure modes (see Fig.
6.3. Modes four and seven have unusually fast timescale variability according to
the Markov model. The Markov model fits deviate considerably at low frequencies
compared to the spectra for the residual temperature pc’s. Fits to second order
autoregressive models (not shown) did not significantly improve the accuracy.

Figure 6.8 shows the annual cycle of the leading ten pc’s with fits to Eq. 6.1. The
amplitudes of the annual cycle (A) for the residual temperature pc’s are higher than

the A’s for the pressure pc’s, reflecting the tendency for the temperature anomalies
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Figure 6.7: Power spectra of the first ten observed residual temperature principal
components (pc’s) with fit to Markov process and fitting parameter a.



167

mode 1 mode 2
=60 A=0.53, ¢=115 =60} A=0.58, ¢=26.7
S < ‘

240 240
~ ~
20 20t
0 100 200 300

mode 3
=% A=0.51, ¢p=12.3
330
<
= 20

10 i
0 100 200 300

=
o

0 100 200 300

Figure 6.8: Annual cycle of principal components of observed residual temperature
thin line) and fit (thick line).
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to be small during the summer and large during the winter.

I synthesize the residual temperature anomaly TH from

10
T[[ = Z’T’k@k, (68)
k=1
where
—21/2
A T ~
Tk = kil/QTI;Ckﬂ (69)
(74Ck)?

analogous to Eq. 6.4. Finally, the two parts of combined to give the synthesized
temperature anomaly,

T =Ty +Tyr. (6.10)

6.3 Diagnosing the quality of the synthesized fields

6.3.1 Variance

Variance maps, shown in Fig. 6.9, for the observed and synthesized pressure and
temperature fields reveal how faithfully the synthesized fields represent the spatial
distribution of variance. On average, the variance for the synthesized fields is 91%
(83%) of the observed variance for pressure (temperature). The regions of the syn-
thesized pressure variance that are weakest are near the climatological mean position
of the ice edge. The synthesized temperature variance deficit is more spatially homo-

geneous.

6.3.2 Singular value decomposition

In this section, a summary of the SVD of the synthetic fields is compared with the
SVD of the observed fields from section 6.2.1. I show the first six modes of P and
7 with squared covariance fraction (A?) for 20 years of synthesized fields in Fig.
6.10. The pressure leads the temperature by one day, as in Fig. 6.1, for all statistics

presented in this section.
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P variance map synthetic P variance map

Figure 6.9: Variance map for observed and synthesized pressure and temperature.
Units for upper (lower) two panels are mbar® (Kelvin?).

Comparing the patterns in Figs. 6.10 with 6.1 reveals considerable success in
reconstructing the observed spatial patterns of covariance with the techniques de-
scribed above. P; and P, appear to be combinations (or rotations) of P; and P,
and 7] appears to be a combination of 77 and 75. However, '75 is remarkably similar
to 75. Singular vectors for modes 3-5 for both fields have much in common with
the observed singular vectors for corresponding modes. The agreement for the sixth

modes begins to break down.

The sum of the A\*’s for the first six modes is 100% (compared to 98.5% for
observed). A\? for the first mode is about 10% higher than that for the observed fields.
This increase is at the expense of the next 5 modes which are each a few percent less
than that of the observed fields. The squared covariance summed over all pairs of

grid points is 84, in arbitrary units (compared to 86 for observed); therefore, the
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Pressure, Mode 1

A?=0.61

A?=0.26

2?=0.10

Temperature, Mode 1

Figure 6.10: As in Fig. 6.1, but for 20 years of the synthesized fields.
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Figure 6.10: continued
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synthesized fields retain most of the observed covariance, but it is more condensed
into the leading modes.

Correlation coefficients of the expansion coefficients for the first six modes are 43,
48, 39, 25, 28, and 10% (compared to 53, 49, 39, 41, 38, and 28% for observed). The
correlations for first three modes compare well with observations, although the first
mode is low, perhaps due to the higher \?. The next three modes under represent the
correlation in the observed fields more severely. This error is not too serious because
these modes explain little of the covariance.

The differences between the SVD for the observed and synthesized fields are pri-
marily due (1) to truncating the expansion of pressure and temperature and (2) to
approximating the expansion coefficients with Markov models when building the syn-
thesized fields. Nonetheless, the principal modes of covariance are reasonably well

represented in the synthesized fields.

6.3.8 Time dependence

The time dependence of the synthesized pc’s generally under represent the inter-
annual variance because the spectra (not shown) are essentially equal to the spectra
for a Markov model from which they were derived. Because the observed data from
which the synthetic data are based only lasts 16 years, nothing directly can be said
about the accuracy of the synthesized data on decadal timescales. However, temper-
ature records at Longyearbyen station on Spitsbergen (see section 6.6) which extend
back more seven decades suggest that the Markov model under represents decadal
variance as well as inter-annual variance.

Results from the single column-model described in section 2.3.2 indicate that there
is a strong tendency for the climate system to scatter the relatively high-frequency
variability of the atmosphere to low-frequency variability in the sea ice thickness.
Therefore the dynamic/thermodynamic sea ice model should develop low-frequency

despite the low amplitude of the low-frequency fluctuations in the atmosphere.



173

6.4 Results from a one-thousand year integration

Based on the methods developed in section 6.2, pressure and temperature anomaly
fields were synthesized for 1,000 years and added to the 16 year climatological means
to force the dynamic/thermodynamic sea ice model. In this section, I describe the

results of the long, 1,000 year, integrations.

6.4.1 Ice concentration and volume

The annual mean ice volume from the long integration has variability on interannual
and longer timescales (see Fig. 6.11). Variability in the central region is concentrated
at lower frequencies compared to the shelf region. The standard deviation for the
area-averaged sea ice thickness (0p) is 24 cm and 29 c¢cm for the central and shelf
regions, respectively. Hence compared to the hindcast, o, is higher in the central
region and the same in the shelf region. Unlike the hindcast, the ice volumes in the
central and shelf regions are significantly (albeit weakly) correlated (r=0.30) for the
long integration.

When the long integration is broken into 16 yr segments, there are segments
where o, in the central region is equal to that in the hindcast. There are several
segments with negatively correlated ice volumes in the central and shelf regions, like
in the case of the hindcast. These comparisons suggest that the variability of the ice
thickness on interannual and shorter timescales for the hindcast and long integration
is indistinguishable.

The mean ice thickness for the Arctic Basin in the long integration is about 35
cm thinner than in the 16 year hindcast. Yet the climatological mean temperature
and pressure fields are identical in the runs. There is no 16 year period in the
long integration where the mean thickness in the Arctic Basin is as high as that for
the hindcast, so the mean thickness difference is too great to be within the natural

variability of the sea ice. The difference in the means must be due to subtle differences
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Figure 6.11: Annual mean ice volume and annual minimum concentration for the long
integration. The volume is normalized by the area of the region, so it is equivalent
to an area-averaged ice thickness for the region.
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between the character of the observed and synthesized forcing anomalies.

The ice concentration in the long integration is similar to the that in the hindcast.
The ratio of the standard deviation to mean for the annual minimum ice concentration
is 0.04 and 0.27 in the central and shelf regions, respectively. Hence compared to
the hindcast, the variability of the annual minimum concentration is the same in
the central region and lower in the shelf region. In both the hindcast and long
integration the concentrations in the central and shelf regions are uncorrelated. For
the long integration, the mean of the annual minimum ice concentration is 0.80 (same
as hindcast) and 0.43 (0.02 less than in hindcast) in the central and shelf regions,
respectively.

Figure 6.12 shows the power spectra of the annual mean ice volume and annual
minimum ice concentrations in the central and shelf regions. As predicted by the
single-column model (SCM from chapters 2 and 3), the spectrum of the volume is
strongest at low frequencies, a characteristic of red noise. If the volume depended
only on the ice thickness, according to the SCM, variability of the volume would tend
to be confined more towards the low frequencies where the ice is thickest. Comparing
the two curves in the upper panel of Fig. 6.12, the variability of ice volume in
the dynamic/thermodynamic agrees with this result from the SCM. However, lateral
inhomogeneities cause the curves to be closer than expected because variability of the
ice concentration in the shelf regions appears to increase the low-frequency variability
of the volume in a way that could not be predicted by the SCM.

The spectra shown in Fig. 6.12 are not smooth, instead they have considerable
structure. The power spectrum for the ice volume in the central region is repeated in
Fig. 6.13 with a fit to the theoretical power spectrum for a Markov model. Error bars
show 95% confidence levels based on the chi-squared probability distribution. None of
the spectral estimate for periods longer than about 2 years deviates significantly from
the fit to a Markov model; therefore, none of the peaks and valleys in the spectrum

is significant. The fitting parameter gives a characteristic timescale of 3 years which
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Figure 6.12: Power spectra of annual mean ice volume and annual minimum concen-

!'and yr! in the upper and lower

tration for the long integration. Units are m?yr—
panels, respectively. The spectra in this figure and in Figs. 6.13 and 6.15 are calcu-
lated for the last 900 years, N, of model output using a lead/lag correlation method
smoothed with a 60 year, L, Tukey window; therefore, the spectral estimates have

8N/3L = 40 degrees of freedom (Jenkins and Watts, 1968).
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is short compared to the ice modeled in the SCM whose timescale is 15 years.

frequency (1/yr)
0 QQOS 0.1‘25 0.;50 0.375 0.§00

0.7f

0.6[
N
o5 )

04t \

03f

0.2

0.1r

ol ‘ ‘
120.0 8.0 4.0 2.7 2.0
period (yr)

Figure 6.13: As in Fig. 6.12(a) (solid line) except with 95% confidence level and fit
to a Markov model.

6.4.2 Ice export through Fram Strait

Figure 6.14 shows the total annual ice export for the long integration. Like the ice
thickness, the mean export is lower in the long integration than in the hindcast. It
is 2000 km3yr~!, compared to 2600 km3yr~! from the hindcast. At 500 km3yr—! the
standard deviation is also lower than in the hindcast, although the ratio of standard
deviation to mean is about the same.

The power spectrum of the total annual ice export (see Fig. 6.15) has several
peaks and valley. The most striking peak at a period of 6 years is not quite signif-
icantly above the Markov model power spectrum at the 95% confidence level. The

characteristic timescale, determined from the fit in Fig. 6.15 is 1 year.
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Figure 6.15: Power spectrum of annual mean ice export at Fram Strait for the long
integration with 95% confidence level and fit to a Markov model. Units are in km®yr—3
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6.5 Discussion and summary

This long integration with synthetic forcing reveals new information about the low-
frequency response of the dynamic/thermodynamic sea ice model to high frequency
atmospheric forcing. The spectral variance of the ice volume is peaked at low-
frequency, like the ice thickness in the single-column model. However the charac-
teristic timescale is about 1/5 as long which indicates that the spectral variance
is not as confined to decadal timescales, and fluctuations on interannual timescales

contribute a large fraction to the variability.

A curious result from the long integration is the strong low-frequency variability
of the ice concentration in the shelf region. The shape of the spectral variance is
dissimilar to the theoretical spectrum of the Markov model. Apparently heat storage
in the mixed layer influences the simulated ice concentration in a way that cannot
be characterized so simply. Because measurements of ice concentration in the Arctic
only exist for a few decades, the simulated low-frequency variability cannot be verified

directly.

The frequency distribution of the annual minimum ice concentration of the shelf
region (see Fig. 6.16) for years 101-1000 exhibits minima at the level of the observed
1990 minimum sea ice concentration 22 times, or once every 40 years on average.
Recall, however, that the hindcast (section 5.4.2) overestimates the 1990 minimum
by 10%. Using the level of the simulated 1990 minimum sea ice concentration from
the hindcast, there are only 7 years that reach the level of the 1990, or once every

130 years on average.

Dickson et al. (1988) estimated that the total freshwater anomaly during the
Great Salinity Anomaly (GSA) was approximately 2200 km?. After developing over
a period of several years in the 1960’s in the Greenland Sea, the salinity eventu-
ally propagated to the Labrador in 1971-72 (Dickson et al., 1988). Based on these

measurements, I compare the sea ice export summed over three successive years to
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Figure 6.16: Histogram of annual minimum ice concentration of shelf region for last
900 years of the long integration. Dashed line shows the 1990 level of the observed

sea ice minimum concentration.
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Dickson’s estimate of the freshwater anomaly. The frequency distribution of the 3-
year sums of ice export for years 101-1000 exhibits 9 maxima at the level of the
observed freshening during the GSA, which translates into one GSA every 100 years
on average (see Fig. 6.17).

160 T T T T T T

140

120r _

100 ] ]

80

60

40

I
22 — ﬂ Hil_l —

-3000 -2000 -1000 0 1000 2000 3000

Figure 6.17: Histogram of ice export for 3 year running sum for last 900 years of the
long integration. Dashed line shows the level of freshening measure during the Great
Salinity Anomaly.

Finally the long integration is likely to underestimate the true variability in the

system because the forcing lacks the following:

e The synthesized temperature and pressure anomalies underestimate variability
at low-frequencies (compare power spectra of the pressure and temperature

principal components with the fits to a Markov model in Figs. 6.3 and 6.7).

e The model neglects interannual variability in the cloudiness, snowfall rate, ocean

heat flux, ocean currents.
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e The mean ice is too thin. According to the SCM, thicker ice adjust more slowly

and has higher (thickness) variance than thinner ice.

e The model is not coupled. On interannual timescales, I expect the surface
air temperature anomalies, to some extent, reflect sea ice anomalies, higher
concentrations of thick ice making the air temperature colder and vice versa.
Sea ice thickness anomalies decay because thick ice grows more slowly than thin
ice. Coupling between air and ice should reduce the damping associated with

growth depends on thickness.

6.6 Comparison of the simulated natural variability in the sea ice by
the SCM, GFDL GCM, and the dynamic/thermodynamic sea ice

model

In this dissertation, I have analyzed the sea ice thickness in three very different models:
the dynamic/thermodynamic sea ice model from chapters 4, 5 and 6, the GFDL GCM
in chapter 3, and the single column purely thermodynamic model in chapters 2 and
3. The GFDL model computes ice motion in a relatively simplistic way (e.g., ice does
not move when its thickness exceeds 4 m), hence ice advection and deformation may
play rather different roles in the three-dimensional models. Furthermore, the GFDL
model has relatively simple ice thermodynamics, which tends to decrease the model’s
sensitivity to atmospheric thermodynamic forcing.

From the long integration with the dynamic/thermodynamic model, the standard
deviation of the annual mean ice thickness averaged over the central Arctic is o5 =
22 cm. This is much lower than o, = 85 cm from the 1,000 year, standard case
integration with the SCM. From section 5.5.2, it is clear that the dynamics in the
dynamic/thermodynamic model increases o, in the central arctic. So this cannot
explain the difference between the these two models. Curiously, o is the same for

the dynamic/thermodynamic model and the 1000 year, “present climate” simulation
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of the GFDL climate model. Good agreement between for o, between these two
models does not imply that they behave similarly. To complete this study, I will try

to explain the difference and summarize the results.

In table 6.2, I summarize the standard deviation of the annual mean ice thickness
averaged over the central Arctic for the three models, including two integrations with
the SCM showing the affects of parameterizing export and removing part of the low-

frequency variability from the atmospheric forcing. Clearly, o, is much larger from

the SCM.

Table 6.2: Standard deviation of annual mean ice thickness for dy-
namic/thermodynamic sea ice model, GFDL GCM, and single column model (SCM).

1,000 year model integrations o, (cm)

dyn./therm. sea ice 22
GFDL GCM 22
SCM - standard case 85
SCM - with export 55
SCM - hybrid D 72

Further understanding about how these models compare is revealed by examining
the surface air temperature. In table 6.3, I show a summary of the variability of
winter surface air temperatures (o) from the POLES dataset, from Longyearbyen
station (on the coast of Spitsbergen), from the synthesized dataset used to force the
thermodynamic/dynamic sea ice model, and from the two coupled models. The syn-
thesized dataset compares well with observed o7 for monthly mean temperatures in

the central region (from POLES) and retains about 70% of o for monthly mean sur-



184

face air temperatures at Spitzbergen. The GFDL model overestimates® the observed
ot for monthly mean temperatures in the central region by 80% and at Spitsbergen
by 26%. Hence, the thermodynamic/dynamic sea ice model has the same oy, as the
GFDL model, although it is forced by surface air temperatures with less than half as
much or during winter months.

Compared to 10-year means observed at Spitsbergen, the surface air temperature
is severely under represented in both the GFDL model and the synthesized dataset
(whether or not the observational period includes the temperature “jump” in the
1920’s, see caption for table 6.3). The lack of low-frequency variability in o from
the GFDL model is consistent with the arguments in chapter 3 which indicate that
the variability in the ice volume in the central arctic is artificially low. It is not
too surprising that the o7 in the synthetic dataset is low because the method for
constructing the fields failed to reproduce the full magnitude of even the interannual
variability that is present in the POLES 16-year record (see Fig. 6.8).

The SCM is designed to represent the average response of sea ice in the Arctic
Basin. However, o7 for monthly means from integrations with the SCM are more
like the observations from the single station at Spitsbergen, than the average over
the central region from the POLES data. It is possible that the POLES data under-
represents the variability in the central region where the data set relies on sparsely
sampled temperatures measured by buoys and the soviet NP stations (S. Martin,
personal communication, 1997).

Compared to 10-year means observed at Spitsbergen, the SCM compares favorably
with the observations for the period that excludes the 1930’s “jump”. The origin of the
“jump” is still debated, but due to the low-frequency nature, it is probably connected

to oceanic processes. Such processes are not simulated by the single column model,

but should be in the GFDL model.

1 One explanation is that the winter air temperature does not experience the proper thermal inertial

at the surface because the GFDL sea ice has zero heat capacity.
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Table 6.3: Standard deviation (o) of surface air temperature from the POLES data
and from Spitsbergen (station at Longyearbyen) and from the two coupled models,
GFDL GCM and SCM. or of monthly means for November-March and for 10-yr
winter means (also November-March) are given. The POLES data are averaged over
the central Arctic (see Fig. 5.1). The GFDL GCM output is averaged over a similar
region chosen to represent the area covered by perennial ice (see Fig. 3.2). In the
1920’s Spitsbergen experienced a 2 K temperature “jump” (seen at many high latitude
stations) in temperature which is reflected in o7 for the 10-yr means. The number
in parenthesis is o for 1932-1993 (to eliminate the “jump”).

model integrations/ or (Kelvin) or (Kelvin)
observations for monthly means for 10-yr means
POLES data (1979-1994) 2.1

Spitsbergen (1912-93) 4.6 2.7 (1.6)
synthetic T 2.2 0.39

synthetic T near Spitsbergen 3.2 0.39

GFDL GCM 3.8 0.67

GFDL GCM near Spitsbergen 5.8 1.1

SCM - standard case 4.9 14

SCM - with export 5.1 1.5

SCM - hybrid D 3.9 0.85
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The quiescent nature of the low-frequency variability of the surface air tempera-
ture jeopardizes the veracity of the estimate for low-frequency variability in the sea
ice volume from the long integration with the dynamic/thermodynamic sea ice model.
A more accurate estimate could be made if the model is coupled to an atmospheric

general circulation model, which is an objective for future work with this model.



Chapter 7

DISCUSSION AND CONCLUSIONS

7.1 Summary

I have modeled the low frequency natural variability of the arctic climate system
with a single-column, energy balance model (SCM) of the atmosphere/sea ice/ocean
system. Variability in the system is induced by forcing with realistic, random per-
turbations in the atmospheric energy flux convergence and cloudiness. The model
predicts that the volume of perennial sea ice varies predominantly on multi-decadal
time scales while other arctic climate variables vary mostly on intraannual and inter-
annual time scales. The standard deviation of the monthly volume anomalies exceeds
25% of the mean. The variance of the simulated sea ice volume is most sensitive to
perturbations of the atmospheric forcing in late spring, at the onset of melt. This
suggests that much of the simulated variability develops during the late spring, when
melting snow abruptly exposes the sea ice surface and changes the surface albedo.
The variance of sea ice volume increases as the mean sea ice thickness increases and

as the number of layers resolved in the sea ice model increases.

I contrasted the SCM results to that found in the Geophysical Fluid Dynamics
Laboratory (GFDL) global general circulation model (GCM), and found that the
variability in the sea ice of the GCM was one quarter of that in the SCM. I used
the SCM diagnostically to help determine the reasons for the qualitative differences
between the SCM and the arctic climate simulated by the GFDL GCM, and sum-
marize the reasons below. When I inserted the GFDL sea ice physics into the SCM
and then forced the model with the synthetic energy transport that is statistically
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identical to that in the GFDL GCM, the sea ice thickness variance is similar to that
from the “present climate” integration of the GFDL climate model. My results sug-
gest that the GFDL GCM will exhibit substantially more natural variability in the
arctic climate system if the treatment of sea ice is more physically realistic and if the
variance of the atmospheric energy transport in the GFDL GCM is as energetic as
the observed variability on seasonal to interannual time scales. The results suggest
that the variability in the arctic climate is probably much more energetic than is
being simulated in most GCMs.

I have constructed a dynamic/thermodynamic sea ice model for use in climate
studies. Previous sea ice models used in climate studies have generally either em-
phasized ice thermodynamics or dynamics: almost without exception, the dynamic
(thermodynamic) models severely compromise the ice thermodynamics (dynamics).
In contrast, the model I have developed uses the viscous-plastic ice dynamics model
from Zhang and Hibler (1997) and the essential thermodynamic physics that I de-
termined are important for studying low frequency variability in chapters 2 and 3.
The essential difference between this model and other sea ice models used in climate
studies lies in the careful attention given to the thermodynamic treatment of sea ice
and the implementation of a three- and four-category ice thickness distribution.

I integrated the dynamic/thermodynamic sea ice model with the historical record
of forcing for 1979-1994 which is limited by the duration of reliable measurement of
daily varying temperature over the Arctic Ocean. Because the duration of this record
is only roughly equal to the timescale of natural variability for the ice thickness
simulated by the single column model from chapter 2, the variance of the ice volume
simulated by the dynamic/thermodynamic model is likely to underestimate the true
variance. However, much can be learned about ice variability by examining the
behavior of the model during the 16 yr period. Furthermore I have shown that
the model results compare well with observation to demonstrate that this model is

suitable for coupling to a atmosphere/ocean climate model.
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Sensitivity tests to determine how variability in air temperature (and thus down-
ward longwave flux anomalies) contributes to the volume anomalies reveal that air
temperature anomalies primarily influence interannual (greater than 2 yr timescales)
variability in the central region: without realistic air temperature anomalies, the
low-frequency variance of the volume will be seriously underestimated.

Wind anomalies influence variability in the central region on interseasonal and, to
a lesser extent, interannual timescales. Air temperature anomalies in the shelf region
are also important but the wind anomalies tend to dominate the ice response in the
marginal ice zones. Ice dynamics (including ridging and advection) forced by winds
with the proper synoptic scale variability increase the sensitivity of the ice to air
temperature anomalies. Interannual variations with typical magnitudes occur with
perfectly periodic winds as long as they have realistic synoptic scale events.

I integrated the dynamic/thermodynamic sea ice model with synthetic temper-
ature and wind anomalies to investigate the low-frequency ice variability. For the
central region the standard deviation of the monthly volume anomalies is 9% of the
mean and the characteristic timescale of the variability is 3 years. I examined the
frequency of ice concentration minima at the level of the 1990 ice minimum and found
they occur every 130 years. The frequency of export anomalies for 3-yr running sums
that could supply a freshwater anomaly at the level of the Great Salinity Anomaly is

one every 100 years.

7.2 Future Work

e Study sensitivity of long integration to synthetic forcing in a manner similar
to the experiments performed in Chapter 5 with the observed forcing datasets.
Integrate the model with thermodynamics only (synthetic temperature fields

with no geostrophic winds).

e Repeat the hindcast with the 1979-1994 forcing data sets truncated to the same
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number of modes as are kept in the long integration.

Explore how the individual modes of the pressure and temperature influence the
sea ice by performing integrations with the pressure and temperature anomalies

constructed one mode at a time.

Refine the ridging parameterizations for three and four thickness category mod-

els.

Couple the new advanced dynamic/thermodynamic sea ice model to an atmo-
spheric and ocean general circulation model to study sea ice variability in a
coupled model and to determine the Arctic sea ice influence on the climate

system.
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