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Abstract

Effective Mesoscale, Short-Range Ensemble Forecasting
Frederick Anthony Eckel

Chair of Supervisory Committee:
Professor Clifford F. Mass
Department of Atmospheric Sciences

This study developed and evaluated a short-range ensemble forecasting (SREF) system with
the goal of producing useful forecast probability (FP). Real-time, 0to 48-h forecasts from four
different SREF systems were compared for 129 forecast cases over the Pacific Northwest. Eight
analyses from different operational forecast centers were used as initial conditions (ICs) for
running the Fifth-Generation Pennsylvania State University—National Center of Atmospheric
Research Mesoscale Model (MM5). Additional 1Cs were generated through linear combinations
of the original 8 analyses, but this did not result in an increase in FP skill commensurate with the
increase in ensemble size. It was aso found that an ensemble made up of unequally likely
members can be skillful aslong as all members at least occasionally perform well.

Mode error is alarge source of forecast uncertainty and must be accounted for to maximize
SREF utility, particularly for mesoscale, sensible weather phenomena. Inclusion of model
perturbations in a SREF increased dispersion toward statistical consistency, but low dispersion
remained problematic. Additionally, model perturbations notably improved FP skill (both
reliability and resolution), revealing the significant influence of model uncertainty. Systematic
model errors (i.e., biases) should always be removed from a SREF since they are a large part of
forecast error but do not contribute to forecast uncertainty. A grid-based, 2-week, running-mean
bias correction was shown to improve FP skill through: 1) better reliability by adjusting the
ensemble mean toward the verification’s mean, and 2) better resolution by reducing unrealistic
ensemble variance.

Comparing the multimodel (each member uses a unique model) and the perturbed-model
(each member uses a unique version of MM5) approaches for accounting for model uncertainty, it
was found that a multimodel SREF exhibited greater dispersion (from more complete
representation of model uncertainty) and superior performance. It was also found that smaller
grid spacing leads to greater ensemble spread as smaller scales of motion are modeled. This
study indicates substantial utility in current SREF systems and suggests several avenues for

further improvement.
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Glossary

Analysis-Centroid Mirroring Ensemble (ACME) — The primary EF of this research whose ICs
are made up of variousindependent analyses and their mirrorsin model phase space using the
mean analysis, or centroid, as the reflection point.

Analysis— A complete description of the state of the atmosphere normally derived from some
combination of afirst guess (from an NWP model) and observations. It defines valuesfor all
state variables at all model grid points. See aso initial condition.

Analysis PDF — A probability density function of possible atmospheric states from which an
analysis (or IC) isarandom sample. It isdefined by aset of ICs.

Attractor — The union in phase space of all naturally occurring states of a dynamical system.
Centroid — The MM5 forecast that used the centroid analysis asits IC.

Centroid Analysis— The mean of many different analyses produced by operational forecast
centers.

Climate PDF — A probability density function of al possible atmospheric states for a given time
of year.

Dispersion — Thisterm is normally used interchangeably with predictability error growth but we
are using a modified definition. Dispersion is the increase in ensemble spread from the spread in
the ICs.

Ensemble Forecast (EF) — A collection of many different, equally likely NWP model solutions
derived from various ICs and/or models. Its purposeisto build aforecast PDF from which
forecast uncertainty and probabilistic forecasts can be derived.

Ensemble Spread — The unbiased (divided by n— 1 instead of n) variance of the ensemble
members.

Encompass Truth — When the verification value is bound by ensemble members (i.e., lowest
forecast in the ensemble < verification value < highest forecast in the ensemble).

Ensemble M ean — The average of all ensemble members at a certain forecast lead time.

Ensemble M ember — One of the many individual forecast model runs that make up the entire
ensemble.

Event — The occurrence above or below athreshold value (i.e., event threshold) of some
parameter, either instantaneously or over a period of time (e.g., surface temperature less than
freezing at 12Z; or 12-h cumulative precipitation greater than 0.5in; or wind speed above 20 kt).



Event Threshold — The critical value of a parameter for an event.
Forecast Event — see event

Forecast L ead Time— The amount of time (usually in hours) from the initialization time of a
forecast cycle to an instant being forecast.

Forecast PDF — A probability density function of possible future atmospheric states, defined by
the entire collection of ensemble members.

FP, Forecast Probability — The predicted chance of occurrence of a parameter exceeding some
threshold. (EX: 35% chance of cumulative precipitation greater than 10 mm in three hours)

Initial Condition (1C) — A starting point in a NWP model’ s phase space required to run the
model. Note that an analysisis aways considered an IC but an IC may not be an analysis sinceit
may be generated as a perturbation to an analysis.

Ideal Ensemble— An ensemble that completely represents al uncertainty so that the true stateis
always arandom draw from the EF’ s estimated forecast PDF.

Lateral Boundary Condition (LBC) — The state variables periodically updated (normally by
model data on alarger domain) on the domain edges of alimited area model.

M ember — see ensemble member

Monte Carlo— The method of generating I1Cs by adding scaled, random noise to the best guess
analysis.

Multimodel Multianalysis Ensemble (MMM A) — An EF approach designed to include
representation of both analysis uncertainty and model uncertainty, accomplished by applying a set
of ICsto different NWP models.

Numerical Weather Prediction (NWP) — The mimicking of the evolution of the atmosphere by
modeling the time rate of change of the state variables with approximations of the governing laws
of fluid dynamics, momentum, gas, and entropy over a discrete domain.

Observed Relative Frequency (ORF) — For abin of FP (i.e., a set of forecasts with similar FP
values), ORF isthe number of occurrences observed above the event threshold divided by the
number of forecastsin the bin.

Probability Density Function (PDF) — (Devore, 1995) A function f(x) such that for any two
numbers a and b with a < b, the probability P that a continuous random variable X takes on a
value betweenaand bis:

b
P(as X sb):_[ f (X)dx
a



Phase Space — A multi-dimensional plotting region where all time dependent variables of a
dynamical system are represented by a unique dimension. The instantaneous state of the system
isthen completely described by a single point, and the system’s evolution isaline or trajectory.

Physics Parameterization — An atmospheric quantity, factor, or process which is not completely
known and/or of too small a scale to be properly represented at a given resolutionin aNWP
model.

Perturbed-Modd Multianalysis Ensemble (PMMA) — An EF approach designed to include
representation of both analysis uncertainty and model uncertainty, accomplished by applying a set
of ICsto different (perturbed) versions of the same basic NWP model.

Poor Man's Ensemble (PME) — The EF comprised of the model runs from different operational
centers. The “poor man” refersto the fact that the only cost involved is downloading and
organizing the data.

Portray Truth —When the verification occurs within three standard deviations from the mean of
the forecast PDF of an EF. A verification valuethat is not portrayed is therefore an outlier with
respect to that PDF. Note that truth may be portrayed by not necessarily encompassed.

Predictability Error Growth — The magnitude of the difference between a forecast solution and
the verification as the forecast diverges from truth with increasing forecast lead time. The rate at
which errors grow determines the point at which the errors become saturated (i.e., equal to the
average error of the climatic mean) and predictability islost.

Reliability — The ability of FP to match the ORF.

Resolution — The ahility of an ensemble system to distinguish between events and non-events.
The sharpness of an ensembl e’ s forecast PDFs.

Spread — see ensemble spread

Short-Range Ensemble Forecast (SREF) — An EF designed to build a forecast PDF for short
range (normally 0-48 h but can be up to 60 h), mesoscale weather phenomena.

System Simulation Experiment (SSE) — A method to isolate and diagnose error sourcesin an
NWP model by running parallel model integrations with slightly different versions of the model
in each run.

State Variables— The basic set of meteorological parameters required to describe the atmosphere
at asingle point. E.g., horizontal and vertical wind components (u, v, w), temperature (T ),
moisture (), and pressure (p) or geopotentia height ().

Statistical Consistency — The ability of the mean square error of the ensemble mean to match the

average ensemble variance over alarge sample of data. The requirement that the verification be a
random sample from the PDF of the EF.

Xi



Surface Boundary Parameter (SBP) — A spatially dependent variable that affects the
atmosphere’ s evolution and is estimated in an NWP model (Example: sea surface temperature)

Target Variance — The total amount of uncertainty (i.e., variance) that should be produced by a
well-tuned EF system in order to achieve statistical consistency. The mean-square error in the
gpatially and temporally averaged EF mean.

Verification — The observed value of an atmospheric parameter at a specific forecast lead time
used to verify aforecast of that parameter.

Verification Rank Histogram (VRH) — A tool for evaluating an EF made from repeatedly
tallying the rank of the verification when pooled with the ordered forecast values from an EF.

Xii



Acknowledgments

I must begin by thanking the United States Air Force and Colonel Nathan Feldman for giving
me this opportunity to pursue an advanced degree while continuing to serve on active duty.
Additionally, this research was supported by the Department of Defense Multidisciplinary
University Research Initiative (MURI) program administered by the Office of Naval Research
under Grant NO0014-01-10745, as well asthe National Weather Service.

I would like to thank the following people for their contribution to this research:

First, big thanks to my advisor Cliff Masswho besides providing expert scientific advice,
supplied the extensive resources necessary for thisresearch. | also appreciated how he gave me
plenty of flexibility in exploring my ideas but also kept me well grounded and on track to meet
my graduation goal. Thanks also to all my committee members, Dale Durran, Greg Hakim, Brad
Colman, and Dave Baumhefner, for your outstanding review of this dissertation and extremely
helpful inputs.

Over the past three years Eric Grimit and | worked together to make tremendous progress on
short-range ensembl e forecasting—much more than the sum of what we would have
accomplished separately. | would like to thank him for all of our lengthy, enlightening
discussions and for his efforts and computer system expertise that made our SREF systems work
sowell inreal time. Thanks also to Dave Ovensfor al his help in designing the complex
computer processing of our systems.

I owe many thanks to my stepmother Jean Eckel who did afantastic, professional job editing
this dissertation. Lastly, thanksto al my classmates and friends who made my time at UW

unforgettably fun.

Xiii






I ntroduction

This dissertation describes a research study in the field of ensemble forecasting (EF),
accomplished at the University of Washington’s Atmospheric Sciences Department under the
supervision of Dr. Clifford Mass. As opposed to the more common, deterministic-style
numerical weather prediction (NWP) where only asingle model run is considered, EF is
stochastic in nature, using multiple runs of an NWP model with dlightly different initial
conditions (ICs) and/or model variations. The resulting set of solutions defines a probabilistic
distribution of future states of the atmosphere based on the inherent uncertaintiesin the analysis
and/or in the model.

When Vilhelm Bjerknes laid the groundwork for NWP in the early 20™ century, he noted that
errorsin the prognosis would arise from both an inaccurate IC and a deficient model (Bjerknes et
al., 1911). We can only speculate whether Bjerknes realized that there is amajor difference
between the character of these two error sources, or whether he believed that both problems could
eventually be reduced to insignificance. Analysiserror isthe predominant contributor to the
nonlinear error growth that limits predictability (Lorenz, 1969; Leith, 1974). It may be possible
to create anearly perfect model but even with a nearly perfect anaysis, IC errorswill grow far
beyond the model error.

Long before the advent of NWP, Jules Henri Poincare, a contemporary to Bjerknes, explained
the differences between the error sources with profound clarity (Poincare, 1914):

“If we knew exactly the laws of nature and the situation of the universe at the initial moment,

we could predict exactly the situation of that same universe at a succeeding moment. But

even if it were the case that the natural laws had no longer any secret for us, we could still
only know theinitial situation approximately. If that enabled usto predict the succeeding
situation with the same approximation, that is all we require, and we should say that the
phenomenon had been predicted, that it is governed by laws. But it is nhot always so; it may
happen that small differencesin theinitia conditions produce very great onesin the final

phenomena. A small error in the former will produce an enormous error in the latter.
Prediction becomes impossible, and we have the fortuitous phenomenon.”



The “fortuitous phenomenon” is one that appears to behave by chance but is actually governed by

deterministic laws, and “ about which the calculation of probabilities will give us provisional

information.” Poincare did not present this as a purely philosophical idea, but gave concrete

examples of its application, including meteorology:
“The meteorologist sees very well that the equilibrium is unstable, that a cyclone will be
formed somewhere, but exactly where they are not in a position to say; atenth of adegree
more or less at any given point, and the cyclone will burst here and not there, and extend its
ravages over districts it would otherwise have spared. If they had been aware of this tenth of
adegree, they could have known it beforehand, but the observations were neither sufficiently
comprehensive nor sufficiently precise, and that is the reason why it all seems due to the
intervention of chance.”

The potentia for small IC error to produce large forecast errors and the value of a probabilistic

forecast are exactly what EF isall about. The only complete way to make a prediction of the

future state of the atmosphere is to include the inherent uncertainty as part of the forecast process.

Unfortunately, the science of meteorology was too primitive at this point to apply Poincare's
premise. The significance was lost until after the development of deterministic NWP through the
efforts of Lewis Richardson (the first to solve the atmospheric primitive equations with numerical
methods), Carl-Gustaf Rossby (developed simplified dynamics capable of producing an adequate
analysis), John von Neumann (applied NWP to computers), and Jule Charney (devel oped the
filtered equations for the first successful NWP forecast) (Lorenz, 1993). Without the
contributions of these scientists, NWP (and therefore EF) would not be at the highly devel oped
statethat it is at today.

Edward Lorenz (1963) rediscovered the ideas of Poincare and brought to light their impact on
NWP. He demonstrated that the atmosphere is a chaotic dynamical system and that even if you
could create a perfect model, predictability islimited by sensitivity to theimprecise ICs. This
explained the primary reason for the limitations of deterministic NWP, which by this time was

meeting with some success.



Epstein (1969) realized that this sensitivity to ICs made deterministic NWP an inadequate
method for atmospheric prediction. In response, he formulated a stochastic dynamic forecast
model designed to directly forecast the mean and variance of state variables (rather than smply a
single deterministic value with unknown error) by incorporating uncertainty into the prognostic
equations. Thisisamore comprehensive way to consider the future state of the atmosphere, but
it requires overwhelming computational power. Leith (1974) proposed the method of EF as an
approximation to stochastic dynamic forecasting, focusing primarily on IC error or what he
termed “interna error.” Unfortunately, this method for probabilistic forecasting was impractical
at that time since there was only enough computer power to run an NWP model once and not the
multiple runs proposed by Leith.

By the 1990s, increasing computer power allowed application of Leith’s ensemble method for
dealing with the forecast problem raised by Poincare. Successful medium-range (2 - 10 days)
ensembl e forecasting (MREF) began at the National Centers for Environmental Prediction
(NCEP) and the European Centre for Medium-Range Weather Forecasts (ECMWF) (Toth and
Kalnay, 1993; Tracton and Kanay, 1993; Molteni et al., 1996). Operational use of short-range (O
—48h) ensembl e forecasting (SREF) has lagged behind because compared to MREF, it has
proven to be more difficult to design a SREF that can consistently capture al or at least most of
the short-range forecast uncertainty. The potentia benefits of SREF have not yet been fully
reaized and the value of SREF remains an open question (Hamill et a., 2000a). Some of the
reasons for the difficulty of SREF compared to MREF, which will be addressed throughout this
dissertation, may be:

1. The smaller-scale, surface parameters of interest in the short-range are less predictable so

their errors may saturate too quickly for an ensemble to be of use.



2. Modéd uncertainty likely has a more significant impact on small-scale, surface parameters
and is difficult to include in an ensemble since model errors are poorly understood.

3. The best method for defining the ICs for SREF is unclear since error growth is primarily
linear in the short-range. For MREF, awide variety of methods for defining ICs have
proven useful since nonlinear error growth in the medium range allows any IC differences
to grow to represent alarge spread of solutions.

The goal of thisresearch isto evaluate and find ways to improve the value of SREF by
applying ensemble methods to short-range, mesoscale, atmospheric modeling for forecasting of
sensible weather at the surface (e.g., surface temperature and surface wind). For thisresearch a
SREF system was built that ran the Fifth-Generation Pennsylvania State University—National
Center of Atmospheric Research Mesoscale Model (MM5) using analyses from different
operational forecast centers as ensemble ICs. Thiswas not an attempt to build an ideal SREF but
rather an opportunity to realize most of the potential SREF benefits by employing sub-optimal
but sound methods that are currently computationally feasible. With such a system, we were able
to address basic SREF issues that will apply to the development of more optimal SREF systems
of the future.

Chapter | covers background material of EF and SREF. Chapter |1 discuses the methodol ogy
of the techniques, ideas, and proceduresinvolved in this research. Chapter |11 details the results
and findings. Chapter 1V provides asummary of the entire research project. The appendices
provide important reference material and technical information. Additionally, aglossary, list of

acronyms, and alist of symbols are included for quick reference.



|. Background

A. EF Goal

The fundamental goal of EF isto produce aforecast probability density function (PDF) of
possible future states of the atmosphere from which the true state is consistently a random sample
(Talagrand et a., 1999). Upon reaching this goal, there are three genera applications of EF
(Epstein 1969; Leith 1974):

1) Usethe EF mean to improve deterministic forecast skill and maximize predictability.

2) Predict forecast skill using the EF spread.

3) Predict the probability of future weather events.

Of these three applications, this research will focus primarily on the third since it is the key for
making dramatic improvementsin the value of weather forecasting. (In fact, we will purposely
avoid the second application, the relationship between spread and skill, since fellow graduate
student Eric Grimit isinvestigating that using the same data.) Essential to understanding the EF
goal and these applicationsis aclear distinction between four different theoretical notions. the

true state of the atmosphere, the analysis PDF, the forecast PDF, and the climate PDF.

r
Thetrue stateisavector (T ) of state variables having infinite dimension and infinite
precision that completely describes the atmosphere at some instant. In other words, it is the exact

value of temperature, pressure, humidity, etc. throughout the atmosphere. In terms of chaos

theory, { is a phase space vector lying somewhere on the atmosphere’ s attractor. (Following
Lorenz (1993), the term attractor will herein be used as the union in phase space of all naturaly
occurring states of adynamical system.)

The analysis PDF is afrequency distribution of possible concurrent states from which an

analysisis arandom sample. This PDF exists only as an abstraction, arising from our limited



capability to observe and analyze the atmosphere at any point intime. Itisacloud of states
(Leith, 1974) within phase space that encompasses a small region about the atmosphere’s
attractor and is dense in the middle, slowly thinning outward. The size and shape of the cloud
represents our uncertainty in the true state as well asin the atmosphere’ s attractor since much of
the cloud may lie off the attractor. We may consider the true state to be a random sample from
the analysis PDF, but that isjust our illusion. Thetrue state is a deterministic result of the laws of
nature (Lorenz, 1993) and not a sample from our vague view of redity. In fact, the analysis PDF
istotally defined by our analysis capability, or lack thereof. The better and more compl ete our
objective analysis process, the narrower (i.e., less uncertain) the analysis PDF.

Theforecast PDF is similar to the analysis PDF except that arandom sample fromitisa
possible future state, rather than a possible current state. The forecast PDF is a frequency
distribution that represents our uncertainty in the prediction of the true state. Itisalsoacloudin
phase space floating about a small region of the atmosphere’ s attractor, but it is naturally larger
and more diffuse than the analysis' cloud since the atmosphere is a chaotic system. A NWP
forecast evolves from an analysis so the forecast PDF is defined by both our analysis and forecast
capability, or lack thereof. The better our analysis and NWP model, the narrower the forecast
PDF will be at any forecast lead time.

Lastly, the climate PDF is afrequency distribution of all possible states of the atmosphere, or
the possible states for one season. It can be thought of as aforecast PDF from an ideal ensemble
with avery long lead time. Theterm “idea ensemble” will be used to mean an ensemble that
completely represents all uncertainty so that the true state is always a random draw from the EF's
estimated forecast PDF. An extended run (on the order of weeks) with many members from such
an ensemble will produce the season’ s climate PDF since the ensemble members will spread out

to cover the full spectrum of climatologically possible states. Unlike the analysis and forecast



PDFsthat change form based on the skill of atmospheric observation and modeling, the climate
PDF is more concrete and defined by the variability of nature.

Whileit isimpossible to visualize these PDFs completely because of their extremely large
number of degrees of freedom, we can view limited slices (single variable over limited region) to
demonstrate the characteristics described above. Figure lais a histogram of mean sealevel
pressure (MSLP) observations from the Aviation Model analysis over our research 36-km domain
(see Figure 11) for one winter season. The distribution is obviously not Gaussian, and a good fit
may be aWeibull PDF (Devore, 1995). The important point is that this distribution describes all
possible values of truth, limited by the fact that it was derived by a model analysis. When we
then create an analysis PDF (Figure 1b) to try to represent a value of MSLP at one point and one
time, we cover a narrow region of the climate PDF. The forecast PDF does the same thing but
must cover awider region sinceit is more uncertain.

EF is often described as the process of sampling from the forecast PDF (Hamill, 2000), which
is equivalent to imagining EF as the attempt to construct a good estimate of the forecast PDF.
The actual forecast PDF can never be known since it would require an ideal ensemble of infinite
sizeto produceit. In fact, the forecast PDF is often not well represented by EF dueto limited
sampling and inadequate representation of analysis and model uncertainty. Herein liesthe
genuine and often overlooked difficulty of EF. Not only do we have to deal with the fact that we
see the future state as a PDF, but we also have significant uncertainty inthat PDF. This
uncertainty in our prediction of uncertainty isthe real challenge to EF and has implications for EF
verification aswell. Just aswe can never know the actual analysis error, we also can never know
the actual error in an EF' s estimate of the forecast PDF. This makes it extremely difficult to
evaluate an EF because, when the true state is not encompassed, it is difficult to determineif that

was aresult of abad forecast PDF or simply undersampling of a good PDF.



Figure 2 isasimplified demonstration of EF where the complex distribution of possible
atmospheric states is represented by atwo-dimensional, normal PDF. Alternatively, one can
think of the displayed PDFs as a distribution of possible values for a single parameter (such as
temperature) at asinglelocation. In Figure 2a, an ideal ensemble correctly estimates both the
analysis and forecast PDF, simulated by histogramming 500 random samples from the actua
PDFs (gray solid curves). Figure 2b shows atypica ensemble with incorrect location (mean, L)
and spread (standard deviation of the ensemble, o) in its estimation of the analysis PDF, which
then worsensin the forecast PDFs. An ensemble that errsin one or both of these quantities fails
to redlistically represent the actual uncertainty of where truth lies (Hamill, 2000). In other words,
the true state can not be considered a random sampl e from the ensembl €' s estimate of the analysis
or forecast PDFs. Possible causes of thisfailure will be discussed in the next section.

The long-term ability of an EF to correctly estimate the mean and spread of the forecast PDF
can be revealed by verifying the ensemble mean (i.e., verification — EF mean) over alarge sample
of forecasts. A poor estimate of the mean of the forecast PDF is revealed by asignificant biasin
the EF mean’serror. A problem in ensemble spread is found by comparing the magnitude of the
EF mean’ s error with the ensemble spread, which should be comparable (Buizza, 1995;
Talagrand, 1999; Hamill et al., 2000a). For most EF systems, it has been found that the error in
the ensemble mean exceeds the ensembl e spread, revealing a spread that is insufficient to
consistently encompass truth.

Theterm “encompass truth” will be used to mean that the verification value is completely
bound by the EF members. It should be clear that for an ideal ensemble with an infinite number
of members, truth must be encompassed by the EF s forecast PDF. This behavior gets a bit vague
when dealing with a finite number of members. Occasional failure to encompasstruthis

expected since truth can occur in the tail of the forecast PDF, beyond the most extreme ensemble



member. If truth were to fal outside the ensemble too often (above what is expected because of
undersampling), the ensemble is obviously underdispersive. The problem isthat smply
considering how often truth is encompassed does not reveal when truth is an outlier with respect
to the EF' s approximate forecast PDF (i.e., when truth is not sampled from the same PDF as the
EF members). We will therefore use the term “ portray truth” to mean that the verification occurs
within three standard deviations from the ensemble mean.

Figure 2 aso displays how an ensemble PDF can be used to produce a forecast probability
(FP) for some forecast event. We define a*“forecast event” as the occurrence above or below a
threshold value (called the event threshold) of some parameter, either instantaneously or over a
period of time (e.g., temperature less than freezing, or 12-h precipitation greater than 0.5in). For
illustrative purposes, let's say the PDF random variable in Figure 2 iswind speed at some
location and we want to know the chance of exceeding 20 kt. The ensemble-based FP is given by
the area under the PDF to the right of the event threshold, known asthe 1-p value in statistics
(shaded areaiin Figure 2).

An EF that consistently and accurately estimates the forecast PDF will display a high degree
of reiability (i.e., the FP will match up with the observed relative frequency (ORF), given alarge
number of forecast/observation data pairs). For example, consider 100 instancesin which
FP = 35% chance of wind speed = 20 kt. We should expect the wind speed to be faster than 20 kt
in exactly any 35 of those instances, for an ORF = 35%. It is clear for the deficient EF of Figure
2b that FP # ORF. However, this does not mean such an EF is useless since FP may still have
valuable predictive skill without perfect reliability (see Appendix ).

The other component of FP skill is resolution, the ability to distinguish between events and
non-events. Binary-type forecasts (i.e., yes, no or 100%, 0%) have the highest possible resolution

(regardless of their reliability) since they maximize the distinction between when an event may or
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may not happen. For fully probabilistic forecasts of any given event threshold, more certain
forecast events (i.e., greater agreement among EF members) tend to have extreme FP (i.e., near
0% or 100%) and thus a higher resolution while less certain forecast events have midrange FP
and lower resolution.

The utility (i.e., value to a user) of forecasts depends upon both their reliability and their
resolution. Ensemble-based FP normally has lower resolution but greater utility compared to
binary forecasts that suffer from poor reliability. The strength of ensemble-based FP comes from
the fact that it combines al the information of EF into a single product that encapsul ates the
uncertainty in the forecast process. Indeed, FP istheicing on the cake for EF because for
practical application, the overwhelming amount of data from multiple forecast solutions must be
condensed.

A common misconception is that EF can extend the atmosphere’ s limit of predictability.
However, the predictability limit is established primarily by the analysis error (Lorenz, 1969;
Leith, 1974; Rabier et al., 1996; Errico et a., 2002). EF does not correct for this error but uses it
as abasis to estimate the error growth during the forecast period. Therefore, EF can not extend
predictability, but it can reveal the predictability limit. When comparing long-term error statistics
of an ensemble mean vs. adeterministic forecast, it may appear that EF extends predictability
simply because a deterministic forecast often, but not necessarily, has much greater error. (This

concept will explained further below.)

B. The Requirementsof EF

In this section we will discuss theoretical aspects of how an EF must be designed to account
for the uncertainty of weather forecasting. This section will also describe how the challenge of

EF has been met to date.
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There are three basic requirements to meet in attempting to run a skillful EF system (Palmer
et a., 1990):

1) Representation of Analysis Uncertainty: Ensemble ICs must be formulated such that
differences between |Cs represent analysis error and the true analysis is arandom sample
from the EF' s analysis PDF.

2) Representation of Model Uncertainty: If model error issignificant, the resulting
uncertainty must be accounted for in the EF.

3) Sufficient Ensemble Size: There must be enough members in the ensemble to produce a
thorough statistical sampling of the forecast PDF.

The level to which the three requirements for EF must be met generally depends upon the specific
application. Animportant caveat with the first two requirementsisthat for an EF to have a
chance at being effective, the portion of forecast error due to IC uncertainty must be larger than
the portion due to model error (Murphy 1988; Palmer et al., 1990). If model uncertainty
dominates then the EF' s approximate forecast PDF may be of little value because its sample
states would be so much different compared to the true atmosphere. Such a PDF would have to
be very wide to portray the true state and thus would have extremely low resolution. This may be
areason for the difficulty of SREF since a mesoscale model is often deficient in representing the
small-scale phenomena of interest. Research so far (Houtekamer et a., 1996; Buizza et al., 1999,
Stensrud et ., 2000; Mylne et al., 2002) has shown that forecast errors due to the model are
significant for EF, but the model’ s contribution to forecast error relative to the contribution from
IC error has not been clearly demonstrated.

The two sources of uncertainty (analysis and model) present very different challenges for EF.

Their dissimilarity may seem obvious but clarification from the point of view of chaos theory is
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enlightening. It isaquestion of starting the ensemble in the correct spot in phase space versus
evolving the solution on the correct attractor.

If aperfect model is assumed, the only concern is the analysis uncertainty. In this context,
forecast errors of asingle deterministic model run arise solely because of IC sensitivity ina
dynamical system. To dea with this, a best guess analysis (generated by some objective analysis
cycle) can be randomly perturbed (scaled by the magnitude of the typical analysiserror) n —1
times, to produce atotal of n ICs. This Gaussian cloud of ICs then represents the uncertainty in
the true state at the initialization and defines the analysis PDF. Upon running the n ensemble
members in the perfect model, the true state will be well portrayed, given alargen.

This scenario istheideal EF system depicted in Figure 2a. Figure 2b shows what can happen
when there are problems in producing the ICs. Deficienciesin the analysis cycle can shift the
location of the EF s estimated analysis PDF and poorly scaled or formulated perturbations can
affect the spread. So even with aperfect model, the EF produces poor estimated forecast PDFs.

Now assume the reverse condition of a perfect analysis but an erred model. In this context,
forecast errors arise because our modeled solution evolves on an attractor that differs from the
atmospheric attractor. To deal with thisit is necessary to perturb about the uncertainty within the
model, an even more complex issue than perturbing about analysis uncertainty. What isneeded is
n different, valid models representing the uncertainty in the atmospheric attractor. Each ensemble
member then evolves on a unique but erred estimate of the true attractor, and truth would again be
well portrayed for alarge n.

Figure 2 can aso be used to imagine the erred-model scenario, except the analysis PDF must
be imagined as an infinite spike at one value (i.e., no analysis uncertainty). The forecast PDF till
spreads out with increasing lead time as the members’ solutions evolve on different attractors.

Figure 2b shows what happens when the model uncertainty is not well accounted for. Model bias
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can shift the location of the EF' s estimated forecast PDF and insufficient (excessive)
representation of the model error causes spread to be too low (high). So even with a perfect
analysis, the EF again produces poor estimated forecast PDFs.

Thethird requirement of EF, the need for alarge ensemble size, adds a further twist to Figure
2. When it comes to implementing an EF system, computational resources constrain the system
to afinite and often very limited number of ensemble members. This has severe implications for
the EF s ability to consistently construct a reasonable forecast PDF. This effect is often
overlooked when analyzing an EF system, with more attention being paid to the first two
requirements. Consider once again theideal EF of Figure 2awhere nislarge; then imagine
taking a subset of that same EF with only n=8. Whileit is still possible to produce the same
PDFs, error is more likely in both the PDF location and spread—yet another independent way to
produce Figure 2b.

A complete way to interpret an EF' s lack of success, such as depicted in Figure 2b, isthat it
resulted from failure to meet all three EF requirements, thus making diagnosis of the source of an
ensemble’s problems very challenging. An ensemble’ sinability to produce an accurate estimate
of the forecast PDF comes simultaneously from deficient accounting for analysis uncertainty,
deficient accounting for model uncertainty, and incomplete sampling. Failure to adequately meet
any of the three requirements leads to inaccurate depiction of predictability error growth by the
ensemble. Thisisafundamental concept in EF so we will explain it in detail first, before

elaborating further on each of the three requirements separately.

1. Predictability Error Growth

One way to describe and understand predictability error growth iswith an error variance
diagram (Figure 3). Thisdiagram, designed by David Baumhefner (2000) and based on the work

of Leith (1974), isavisua display of the basic limitations and potential benefits of EF.
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Predictability error growth is a measure of how forecast errors grow on average and when (at
what lead time) predictability islost. In Figure 3, predictability error growth is plotted using the
spatially averaged variance of the forecast error over increasing lead time for a particul ar
meteorological parameter from a single model run, called the control run, computed by:
() =23 (e om) -1 ) &
me1

where M is the number of forecast points, f.,; isasingle forecast at point mand lead timet, 0y, is

the verifying observation, and ft* is the average control forecast error for all M points at lead

timet. (The asterisk isused to denote the error in avariable.) To simplify the explanationsin
this section, we are restricting the analysis to asingle EF case (i.e., one forecast cycle) over agrid
of M points, but the error variance diagram is normally applied to many EF cases. (l.e., the
curves of Figure 3 are actually averages over many cases.)

When the error variance of the control reaches the climatic variance (g%, the long-term,
gpatially and temporally averaged variance of the parameter being forecast), the average error of
the deterministic forecast is the same as the average error of the climatic mean (). Thisisthe
limit of predictability for the control forecast. For lead times beyond that point, the climatic
mean is a better forecast. For awell-calibrated model (i.e., dispersive characteristics equivalent
to nature) the curve asymptotes to twice the climatic variance (20¢?), a feature discussed in detail
below.

The curvethat is closely related to the control’ s error variance is the variance of the

differences between ensemble members (IC perturbations only):
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where n is the number of ensemble members and g is an ensemble member forecast at a
particular point and lead timet. (Notice that the difference between forecastsissigned.) The
brackets, (), denote an average of all forecast points. D isthe number of differences among the

members:

n-

D:zé(n—i):n(n—l) ©)

and d isthe mean of the set of D differences:
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The differences curve reveals how the ensemble members diverge with increasing lead time and
depends upon the intrinsic variance of the model and the spread of the ICs. Since differences
between ensemble members are indicative of forecast errors, thisis areflection of how quickly
errors grow on average. This curve can be thought of as the predictability error growth for a
perfect model, given alarge n and properly sampled ICs. The curve does not depend on model
error (i.e., model —truth) since it is built from differences between model solutions.

One obvious distinction between Equations (1) and (2) is that the control error variance,
Equation (1), is a standard variance calculation over all points, but Equation (2) is an average
over all points of the EF variance at each point. Thisis not however the reason for the gap
between the control error and differences curves. The reason is model error. Recall that the ICs
are adistribution of possible truths that should contain the trueinitial state, thus defining many
possibleinitia errors. The differences curve then shows how the variance among these errors
increases over the forecast period. The deterministic control forecast begins with one of the
initial errors contained in the ensemble, so if a perfect model were used, the control’ s forecast

error (i.e., truth — forecast) would match up exactly with one of the differences within the EF
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solutions where both the control member and true evolution of the atmosphere are present. Over
alarge number of cases, the control’ s average error variance would naturally match up to the
average variance of the ensemble differences. In practice, the control’ s error variance is larger
because model error increases the control’ sforecast errors. Thus the farther apart the control
error and differences curves are, the greater the model error.

The last curve is the variance in the error of the ensemble mean.
13 (0 _
(Séz*)t =VZ((Q‘M _om,t)_<e*>t ) (5)

where <é*>t isthe average error of the ensemble mean over all M points at lead timet. The

ensemble mean (€) for aparticular point mat lead timet is:

Cmt = (% ZN: & ] (6)

n=1 m,t

The ensemble mean’ s error variance initially matches the control’s, then separates and
asymptotesto o” (Leith, 1974). Thisisthe key to the value of EF. Averaging the ensemble
members acts as a very selective filter, smoothing out the nonlinear errors that arose from the
erred ICs. The period between the ensemble mean’ s break from the control forecast to near the
0. asymptote is the period when EF adds value to forecasting of the parameter in question.

The asymptoting behavior of these curves results from the statistics of EF sampling, which
can be easily demonstrated. First of all, recall that the forecast PDF evolves to the climate PDF
for avery long forecast lead time. The ensemble mean would then exactly equal the climatic
mean, and the error variance of the ensemble mean must match ¢;”. The deterministic control
forecast, being a random sample from the forecast PDF, may have an error up to twice aslarge as
the ensemble mean. This of course doubles its variability, making the control’s error variance

asymptote to 207
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To demonstrate these rel ationships, we simulated 10° forecasts of MSLP by a well-caibrated
ensemble of eight members (an EF size of significance to thisresearch) at an extended lead time
so that the forecast PDF has spread out to the climate PDF. All samples were drawn from a
normal (4= 1011.37 mb, g, =10.33 mb) PDF to simulate the MSLP climate PDF in Figure 1.
The verification value of MSLP used to calculate error for each EF case was a separate random
draw from the same PDF. Using Equation (1), we found an error variance of the control to be
212.82 mb* (compared to 20;” = 213.52 mb?). Using Equation (2), the average variance of the
differences was 213.84 mb?, confirming the 2g;Z asymptote. Using Equation (5), the error
variance of the EF mean was 119.77 mb?, notably higher than the expected g;? = 106.76 mb?.
However, this result must be corrected by afactor of n/ (n+ 1) (explained below) to adjust for
the small sample size, thus yielding a matched value of 106.16 mb® Thissimulation
demonstrates that the asymptotic values of the curvesin an error variance diagram are a statistical
property of sampling from a PDF—the basic process of EF.

The major influence on error growth, which determines the EF value period, isthe
meteorological scale of the parameter under investigation. For the 500 mb height field (mainly
synoptic to planetary variability), Figure 3b shows that EF is useful for medium range forecasting
from about day 4 out to at least day 12. It isreasonable to expect that the EF value period for
smaller scale, more rapidly varying phenomena of interest to SREF (such as precipitation) should
be in the short range. However, this has not yet been clearly demonstrated.

This research involves forecasts to alead time of only 48 hours, typically well below the
limits of predictability. Therefore, we did not make use of the full error variance diagram.
Instead, we chose to analyze two other measures of an EF that are by-products of the above
guantities. Thefirst metric isthe average variance of the EF members about the EF mean as

opposed to the average variance of the differences between EF members in Equation (2):
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This quantity (or its square root, the standard deviation) isreferred to in the literature as the
ensemble spread, and is commonly how the predictability error growth is examined. The second
EF metric is the mean sgquare error (MSE) of the ensemble mean,
_ n 13, 2
('V'SEé )t = (n_ﬂj oM mzz; (em,t ~ Oy ) (8)

Note that in an ideal ensemble with large n applied to alarge M, this quantity matches up

perfectly with the error variance of the EF mean (Equation (5) ) since the average error of the

ensemble mean,<é*>t , JOes to zero.

The importance of these two metricsisthat MSE, should match up with <s§> fora

verification that is arandom sample from the forecast PDF. This concept, often referred to as
statistical consistency of an ensemble, was formalized by Talagrand et al. (1999). To putitin
plain language, the average difference between the ensemble mean and the verification should be
the same as the average difference between the ensemble mean and the ensemble members, so the
verification appears to be just like one of the members. Ziehman (2000) pointed out that it is
necessary to account for small sample sizesin order for statistical consistency to hold whennis
small. Equation (7) does this by dividing by n— 1 in the variance calculation and the standard
MSE in Equation (8) corrected by afactor of n/ (n+1). Thiscorrection for ensemble size also

agrees with Leith (1974).
Comparing MSE, and ensemble spread provides an excellent tool to test for realization of

the fundamental goal of EF—production of aforecast PDF from which truth is arandom sample.

For demonstration purposes, Figure 4 illustrates what we will call a dispersion diagram, showing
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the common problem in EF of insufficient predictability error growth (i.e., ensemble spread falls
short of MSE, and the EF is said to be under dispersive). We will use the term dispersion to

denote ensembl e spread above and beyond the initid spread in the ICs, so it is a measure of how
much the members spread out.

An underdispersive ensembl e fails to portray the truth and displays overconfidenceinits
probability forecasts. That is, it over forecasts high probability events and under forecasts low
probability events—a clockwise rotated curve on areliability diagram (see Appendix I). A
logical reaction isto increase the IC spread thus producing greater ensemble spread and increased
likelihood of portraying truth. However, that is counterproductive for improving the EF if it is
done outside the bounds of known uncertainty since that would typically degrade the ensemble’'s
resolution. While we discuss the three basic requirements of EF over the next few sections of this
chapter, we will explore factors that lead to low dispersion and possible ways to alleviate the

problem and improve skill at the same time.

2. Representation of Analysis Uncertainty

The key to successful representation of analysis uncertainty in EF is estimating the true

r
analysis error vector, E,.

E,=T-A ©)

r r
where T isagain the true state of the atmosphereand A isan analysis. It isthe fact that we can

1
never know E, which makes EF necessary. A set of ICs that portrays the true state can be

r
generated by making perturbations about a best guess analysis based on an estimate, E,, .
An estimate of the magnitude of the analysis error may be obtained by comparing many

analyses and re-analyses (made at alater time with additional observations). Perturbations about
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the best guess analysis may then be made in random directions (Figure 5a) scaled by that
magnitude, creating a cloud of ICs symmetric in al dimensions. This so-called Monte Carlo
(Leith, 1974) approach istheoretically effective for avery large number of ICs but is extremely
inefficient since the magjority of the members yield repeated information. Since most of the
perturbed ICs lie off the attractor, during the forecast evolution their trajectories converge toward
the members' trgjectories that started on the attractor. While this method should generate realistic
predictability error growth allowing the forecast PDF to portray the true state, it is not practical
for operational EF because of the large processing cost.

Having an estimate, or estimates, of the analysis error vector allows for an efficient EF
(Figure 5b). Such an estimate is actually a two-way vector with the best guess analysis at the
center, again scaled by the time average analysis error in each direction. Since the true state
should lie close to this vector, ICs are placed along it. All these ICsare on or very closeto the
attractor so their trajectories diverge and yield very different solutions which should portray the
future true state. Onerisk of this method isthat putting too much confidencein the EO can throw
the system off if the estimate is poor. Another risk isthe possibility of oversampling part the
PDF if the ICs are placed too close together.

Most of the EF research effort over the past decade concentrated on producing a good EO for
MREF (Stensrud et a., 2000). This has resulted in successful medium-range EF systems such as
the NCEP MREF (Toth and Kanay 1993; Tracton and Kalnay, 1993) and the ECMWF Ensemble
Prediction System (Molteni et al., 1996). At NCEP the estimates are made by the method of
breeding of growing modes while ECMWF uses singular vectors. Both of these methods are
designed to generate maximum dispersion among the ensemble members several daysinto the
forecast period. This may be a good idea for representing the tails of the forecast PDF but may

not produce the complete PDF.
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The focus on applying well-formulated ICs in the early MREF systems was likely the result
of two factors. First, Lorenz (1963, 1969) clearly showed that a dynamical system is sensitivity
to ICs. Secondly, Downton and Bell (1988) explained that for MREF in the midlatitudes the
perfect model assumption isreasonable. So it waslogical and productive for an EF such asthe

NCEP MREF to ignore the complications of model uncertainty.

a) Methodsfor Analysis Uncertainty Representation

In this section we will briefly review the six primary methods (three of which are used
operationally) for estimating the analysis error vector and generating a set of ICsfor an EF
system. Thereis an extensive body of literature comparing and contrasting the merits of the
various methods for MREF, for which these methods were primarily designed. There has been
no published research on which method may work best for SREF, whether any are appropriate at
all, or whether some new method isrequired. We will ssmply present the basic methods to justify
and put our choice (multianalysis) in perspective.

As discussed above, the pure Monte Carlo method of generating many random perturbations
isimpractical because it requires an extreme amount of computer power to get good results
(Lorenz, 1993; Wilks, 1995). A modified Monte Carlo method was devel oped by Errico and
Baumhefner (1987). Rather than having many members with totally random perturbations (equal
noise at all scales), they thought it would be more efficient and effective to have scale-selective
perturbations. Perturbations can still be random, but the amount of noise added to the control
analysis at each wavelength is based upon the suspected uncertainty at that scale. The scale-
sel ective perturbations are created by manipulation of the spectral decomposition of random
perturbations.

One important finding of Errico and Baumhefner (1987) with consequences for our research

isthat “...the forcing of small scales by large scalesis substantial.” They found that, when only
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the small scales were perturbed, the ensemble solutions were very similar at all scales, but when
they perturbed only the large scales, the ensemble solutions varied at al scales. A second
important finding for our research is that, when using alimited-area model (LAM), it isimportant
to perturb the lateral boundaries aswell asthe ICs. Ignoring that fact leads to limited
predictability error growth.

The method of Errico and Baumhefner (1987) has only been used as aresearch tool, asin a
SREF study by Du et a. (1997) in which a 25-member ensemble was run for a single forecast
case of explosive cyclogensis using MM4 at 80-km resolution and I1Cs as described above. The
focus was on producing a quantitative precipitation forecast (QPF). They found that short-range
QPF was very sensitive to analysis uncertainty for explosive cyclogensis, indicating rapid error
growth. They also reported that 90% of the root-mean-square error (RMSE) improvement by the
EF mean was found with 8-10 members, thus confirming the correction factor of Equation (8).
Finally, they made the tentative conclusion that “ SREF can now provide useful QPF guidance
and increase the accuracy of QPF when used with current analysis-forecast systems.” Thiswas
encouraging for SREF but hardly convincing considering the limitations of the study.

A second method for IC generation, also with a Monte Carlo element, is commonly called
Perturbed Observations (PO) and was devel oped by Houtekamer and Derome (1995) for
operational use in the Canadian Meteorological Centre's (CMC) EF system. This method
assumes that most of the error in an analysis comes from the errors and incompl ete coverage of
the observations. To generate another likely analysis, random errors (consi stent with known error
characteristics) are added to the observations followed by another separate analysis cycle. This
can be repeated n times to produce n analyses. Currently, the CMC' s ensembl e consists of 8
members run with a global spectral model and 8 members run with their Globa Environmental

Multiscale (GEM) model.
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A significant limitation to the PO approach is that the differences between the analyses are
limited by the fact that they all use the same processing methods in their analysis cycle. Errors
introduced by using the same model for the first guess as well as the same optimal interpolation
scheme make all the ICs share similar deficiencies. A more complete PO method would account
for the uncertainty in both model and optimal interpolation scheme within the analysis cycle.
Nevertheless, Hamill et a. (2000b) showed that the PO method is superior to the other two
operational methods discussed next.

A third method, called Singular Vectors (SV), generates ensemble |Cs mathematically
(Molteni et ., 1996). It usestheideaof Lorenz (1965) who proposed that “optimal
perturbations’ that grow the fastest in the short-range are revealed by the largest eigenvalues of
the eigenvectors (i.e., singular vectors) of a symmetric error covariance matrix (i.e., a description
of the forecast error PDF). Thejustification for using these modes as perturbations to the best
guess analysisisthat since only alimited ensemble can be run, choosing the fastest growing
modes should ensure that the true evolution of the atmosphereis consistently portrayed. The SV
method went operational in the ECMWF Ensemble Prediction System (EPS) in 1992, and is
presently run with 51 members at T255L40. To find the symmetric covariance matrix, an adjoint
(i.e., linear tangent) version of the global model is used to find the maximum growth at 2 days.

There are several notable problems with the SV method. Oneisthat it is computationally
expensive to find the optimal perturbations. Secondly, since it can only examine linear error
growth, it islimited to maximizing the 2-day growth. It is unreasonable to expect the optimal
perturbations at 2 days to continue to be the fastest growing modes into the medium range.
Lastly, SV by design tends to sample the extremes of the analysis PDF instead of providing a
purely random sampling. The sampling is also limited by the fact that not all the errors present in

the analysis project onto growing modes.
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A fourth method called Breeding of Growing Modes (BGM), described by Toth and Kalnay
(1993), was devel oped for the NCEP global ensemble and is actually a clever, efficient
approximationto SV. The basis of this method is that while an analysis cycleis designed to
produce acceptably small errors, the largest differences between the analysis and truth are
believed to project onto growing modes because of the use of the model first guessin objective
analysis. The BGM method produces alternative ICs by mimicking an analysis cycle. To make
2n ICs, BGM begins by making n unique, random perturbations (taken as + and —) to the best
guess analysis. A short forecast from each perturbation is compared to the next best guess
analysis to provide an estimate of a growing mode, which isthen scaled to provide a perturbation
for the ensemble. The NCEP global ensemble currently consists of 24 members run with the
Global Forecast System (GFS) model at T126L28 (T62 after 84 h). The BGM method suffers
from the same basic problem as SV in that it tends to reflect the extremes of the analysis PDF.
Additionally, Baumhefner (2000) demonstrated that the members are highly correlated and that
their differences do not resembl e the typical analysis error structures.

Thefifth, and perhaps most promising IC method for SREF, is the Ensemble Kalman Filter
(EnKF). It hasyet to be applied operationally, but is described by Hamill and Snyder (2000c)
primarily as a means to improve the analysis. One of the weakest parts of any analysis schemeis
poor knowledge of the error in the first guessfield (represented by an error covariance matrix)
that is to be combined with observations. A true Kalman filter would find the error covariance
matrix directly through linear dynamics, and is, for practical purposes, computationally
impossible for the degrees of freedom in NWP. The EnKF method assumes that an
approximation to the matrix can be provided by an ensemble of short-range forecasts, run parallel
to the analysis cycle, that applies the PO method. This process produces a greatly improved

analysis by minimizing the error based on the sensitivity to the variance in the observations.



25

More importantly, it also produces a set of 1Cs specifically conditioned for SREF since alarge
component of short-range forecast errors come directly from the error in the first guessfield,
which EnKF captures. One limitation to EnKF isthat alarge ensembleis required to properly
represent the error covariance matrix (Hamill and Snyder, 2000c). It is also unclear how model
error may impact the EnKF process.

The sixth IC method, which is applied in our research, is termed multianaysis and was
developed by Grimit and Mass (2002) as aresearch tool. It can be considered semi-operational
sinceit has been run in real time since itsinception in January 2000. The multianalysis method
uses several independent, large-scal e analyses/forecasts produced from different forecast centers
toinitialize and provide lateral boundary conditions for a mesoscale model. In essence then, the
goal of this processisto take the original synoptically diverse solutions and project them down to
the mesoscale, thus producing a SREF with differences that should estimate likely mesoscale
errors.

One key assumption then is that the differences among the analyses are representative of
analysis error. The other assumption, supported by Errico and Baumhefner (1987), isthat the
largest component of the mesoscale forecast error actually originates from synoptic-scale errorsin
the analysis. The validity of these assumptions, as well as all the limitations for the multianalysis
method, will be discussed in Chapter Il. The vital fact isthat Grimit and Mass (2002) showed
that running a multianalysis ensemble with only five MM5 members provides excellent
prediction of forecast error on the mesoscale. It was this result that led us to use this method to
definethe ICs for our research. All of the other methods for representing analysis error have

guestionable applicability to SREF or are beyond our computational capabilities.
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3. Representation of Model Uncertainty

There is evidence that even in the medium range, discounting model uncertainties leadsto
inferior EF performance (Buizza et a., 1999; Harrison et a., 1999). Thislikely applies even
more for SREF where the impact of model error can be amplified (Brooks and Doswell, 1993).
In short-range, high-resolution forecasting of sensible weather phenomena, the model is highly
sensitive to its parameterizations (Stensrud et al., 2000). Therefore, regardliess of IC quality or
ensemble size, a SREF system that ignores model uncertainty can not generate the proper
predictability error growth. While thereis still much research to be done on accounting for model
uncertainty (Hamill et a., 2000), itsinclusion appears necessary for construction of an effective
SREF.

Use of parameterizations within an NWP model play alargerolein limiting ensemble
dispersion when their errors are not accounted for. These parameterizations are best estimates of
guantities, factors, or processes that are either not completely known or of too small a scale to be
resolved by the model. In nature, the phenomenon (estimated with a constant in the model) is
often highly variable over space, time, and different weather regimes. A parameterization may
reasonably represent some natural process at times and poorly represent it at other times. When
the members of an ensemble all use the same limiting parameterizations, they all evolve with the
same model errors thus failing to account for model error. The members similarities result in an
underdispersive system.

Limited ensemble dispersion, commonly seen in ensemble systems (Buizza, 1997; Hamill
and Colucci, 1997; Tallagrand, 1999), may be due to either ICs which insufficiently project onto
growing modes or to poor representation of model uncertainty (Buizza, 1995; Houtekamer,
1996). We should imagine then that the total ensemble dispersion can be defined as the increase

in ensemble spread from itsinitial value and that both IC error and model error are
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simultaneoudly contributing to the dispersion (Figure 4). Our hypothesisisthat in the short
range, the percent contribution to ensemble dispersion from model uncertainty may be as big, or
bigger than from IC uncertainty, depending upon the parameter and scale. This does not
contradict the fact that dispersion in the medium range results mainly from analysis error, which
is another way of saying that predictability limits are primarily determined by analysis error
(Lorenz, 1963; Ziehmann, 2000).

The set of ICsiscritically important for defining the initial envelope of solutions, but the
differences between the members take time to grow. Generaly, their growth is relatively weak
and linear in the first 24 h and isfollowed by increasing nonlinear growth once they become well
organized (Gilmour, 2000). Mode errorstypicaly have high spatial variability so have very little
large-scale structure to project onto growing modes. Also, model errors do not have to organize
before growing, so they reach their peak influence on the solution shortly into the forecast cycle.
Inclusion of model uncertainty in a SREF should therefore significantly improve ensemble
dispersion, creating a much better estimate of predictability error growth in the short range.
Furthermore, model parameterizations have the greatest impact on the solution at or near the
surface (Mullen and Baumhefner, 1988), so the best way to improve SREF is to introduce model
perturbations (i.e., variations to model parameterizations) that focus on increased variancein
surface and sensible wesather variables (Stensrud et a ., 2000).

Ancther hypothesis of this research, supported by Mylne (2002), is that the addition of model
perturbations to a SREF can increase dispersion and simultaneoudly improve the resolution
component of FP skill. Addition of model perturbations does not simply add arbitrary spread to
an underdispersive ensemble, but rather it introduces actual uncertainty to the ensemble that was
previoudy omitted. The correct but difficult solution to the low dispersion problem of EF isto

thoroughly represent both IC and model uncertainty.
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It has been proposed that model deficiencies can be separated into two distinct classes,
namely systematic and stochastic (Hamill et a., 2000a). Systematic error refers to model bias
and is normally blamed on poorly tuned parameterizations. However, Buizza (1999) describes
how parameterized physical processes can lead to random (i.e., stochastic) error without any bias.
Thisis possible because over many model time steps a parameter may accurately represent the
average value of some sub-grid scale physical process (e.g., precipitation droplet growth) but be
in error by arandom value at any one time step. With that in mind, we will use the term
systematic error to simply mean model bias (i.e., any forecast error that regularly reoccurs) and
not tieit to any particular source. Sochastic error isthen the remainder of the forecast error
(whichisrandom) and is also what we refer to with the term model uncertainty.

The sources of model error can be broken up into three basic categories (Table 1), where each
category requires different basic methodology for inclusion in a SREF. Each source among the
categories may contribute differently to both systematic and stochastic error. Theterm physics
parameterization will be used in reference to a model’ s estimation of a poorly known and/or
unresolved quantity or physical process. The error in a physics parameterization could be
represented by perturbing about its estimated uncertainty during model integration. A surface
boundary parameter (SBP) islike a physics parameterization in that for asingle model run, it is
an estimate of the average value of some poorly resolved quantity. The differenceisthat itisaso
spatially dependent so should therefore be perturbed about its estimated uncertainty over the
entire model domain. Lastly, the numerical processing model error category contains the errors
associated with the mathematics of NWP and its application to computers. Perturbing about these
errorsis not straightforward since it would be very difficult to represent such error and maintain

equality among ensemble members.
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Our research compares and contrasts two different strategies for representing model
uncertainty in a SREF. Both use the multianalysis method of defining the set of ICs. One
strategy, commonly termed the multimodel approach, is to use more than one NWP model for the
ensemble members. Each member then has a unigue |C and may have a unique model or share a
model with some other members (depending on the number of models applied). Our application
of this approach is called a multimodel multianalysis (MMMA) ensemble. The other strategy,
called the perturbed-model approach, isto apply a set of ICsto just asingle modd framework but
use many different versions of, or perturbations to, that model. Each ensemble member then has
aunique IC and aunique, but related, model. Our application of this approach istermed a
perturbed-model multianalysis (PMMA) ensemble.

A hypothesis of thisresearch is that while the PMMA approach may be more theoretically
proper sinceit attempts to more rigoroudly account for model error, the MMMA approach is more
practical to employ and produces as good or even better results. When using an imperfect model
in an EF, it isimperative for the members to have various model attractors that bound the true
attractor; otherwise, the members will not be drawn from the forecast PDF (Hansen, 2002). In
the MMMA approach, each member has a model with a drastically different model attractor that
provides unique skillful information to the ensemble (Evans, 2000). The spread among the
various model attractors may be a reasonabl e representation of model uncertainty. In PMMA,
each member has a unique model but many of the same model aspects are shared. The resulting
set of model attractors may be too constrained to fully represent the uncertainty about the true

atmospheric attractor.

a) Perturbed-Model Theory

Since one of the main efforts in this research was the construction and implementation of a

PMMA, we need to discuss the theory of model perturbationsin more detail. The challenge of
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the PMMA strategy of representing model uncertainty is that the sources of error within the
model are numerous, mostly unknown, and vary greatly in character. Attempting to completely
and accurately represent all these errorsindividually in a SREF would be a daunting task.

In the ideal PMMA all aspects of model uncertainty are rigorously represented. This could
be done by defining the uncertainties with PDFsfor all the parameterizations and numerical
imprecision. An ensemble of distinct and equally likely models could then be made with various
combinations of random samples from all those PDFs. (Note that we can think of deterministic-
style forecasting as using only the expected value of those PDFs.)

Defining parameterization PDFs would certainly be a challenge, but the real difficulty comes
when trying to capture all the model uncertainty. To thoroughly span the space of models, it
would be necessary to run all possible combinations of the various parameter values from the
PDFs. Evenif only afew samples are taken from each PDF, the limits of today’ s computer

systems are quickly exceeded. We can compute the number of required model runs (M) by
- (10

M =N D P

M = Np* ...for constant p
where N isthe number of ICs, A isthe number of distinct aspects of the model being perturbed,
and p; is the number of unique perturbations per model aspect (like samples from a distribution).

Figure 6 gives a simple example where we start with only 4 |Cs and take just 2 random

samples each of 3 different physics parameterizations. To capture all the possible combinations,
which may al be equally likely, we need to process 32 ensemble members. Thisissimilar to a
decision tree in statistics: each branch of the tree is an ensemble member with a different and

equally likely version of the model. However, the various members are only al equally likely if

the model perturbations are independent and uncorrelated.
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Thetree diagram for a more thorough system would be gigantic. Say we use aset of 10 ICs
and we identify 20 distinct aspects of the model that may bein error. We also choose to generate
30 perturbed values (i.e., samples) for each of those model aspects—the standard minimum
number of samplesto represent a PDF. Equation (10) gives atotal of about 3.5x10% required
model runs! The only practical option isto use avery limited subset of those runs, asin the work
by Houtekamer et al. (1996) discussed in the next section. The point of the PMMA strategy is
not to thoroughly represent model uncertainty since that may be impossible, but rather to run each
member with a perturbed model in order to realistically increase ensemble dispersion.
Furthermore, for practical constraints only one tree branch is used for each IC but the branches
are as different as possible. For example, afour-member PMMA ensemble from Figure 6 might
be Al11l, B122, C212, and D221. While thisis an extreme approximation to the ideal PMMA,, its
efficiency may actually make sense. Running the complete set of model variations would likely
waste processing time since similar perturbation combinations would yield very similar solutions.
(E.g., model runs A111 and A112 would likely be nearly identical). Selecting only one model
variation per 1C should efficiently provide additional dispersion and alow the SREF to represent

asignificant portion of model uncertainty.

b) Researchinto EF and Model Uncertainty

Epstein’s (1969) formulation of a stochastic dynamic forecast model was designed to
incorporate model uncertainty into the prognostic equations but isimpractical for NWP since the
equations are unmanageable by numerical methods. Leith (1974) proposed the idea of ensemble
forecasting as an approximation to stochastic dynamic forecasting, focusing primarily on I1C error
or what he termed “internal error.” However, he did point out that

“...thereisan additional external error generated by the discrepancy between the dynamics of

the model and that of the real atmosphere arising in part from the limited dimensionality of
the model phase space.”
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We can only surmise that Leith (1974) chose to assume a perfect model for his study because he
believed analysis uncertainty dominates error growth, or perhaps the idea of including model
uncertainty was too overwhelming.

The pioneering effort for representing model uncertainty in an EF was Houtekamer et al.
(1996), who employed a limited perturbed-model approach. Using a spectra model (T63/L23),
the perturbed observation approach was used to create a set of 1Cs for alow-resolution, medium-
range ensembl e system with forecasts out to 15 days. A so-called system simulation experiment
(SSE) method was then applied to represent model uncertainty using many different versions of
the same model. (Note that this EF is different from our PMMA in that the set of ICswas
generated “in house” using one anaysis system. The PMMA employs various analyses from
different forecast centers’ analysis systems.)

Houtekamer et al. (1996) ran two different ensembles of eight members each. One ensemble
used a unique IC but the same model version for each member, while the other used a unique
model version for each member aswell asaunique IC. The setup for each of the eight model
versions was chosen from four model options (horizontal diffusion, convection/radiation, gravity
wave drag, and orography) with two choices each and three SBP options (sea surface
temperature, roughness length, and albedo), each with eight different choices. Applying Equation
(20), the eight members then represent only eight possible perturbed model combinations out of
8(4%)(3% =839,808. But even with this limited sampling of the model uncertainty, there was
notably increased dispersion.

The goal was to correctly boost the predictability error growth of an underdispersive medium
range EF that previoudy had no model perturbations. Figure 7 (using data from Houtekamer et
al., 1996) showsthat, while the dispersion was increased, the effect was quite limited in the

medium range. Houtekamer concluded that while including model perturbations doesimprove an
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EF, “more dramatic perturbations to the model” would be required to produce better error growth.
(The similarity of Figure 7 and Figure 3 is not coincidental. Recall that EF spread behaves just
like the MSE of the EF mean in an error variance diagram, a point that we exploit in our analysis.)

It is difficult to determine the implications for SREF from these results since the model and
resolution were geared toward the medium range. In addition, the study only used asingle
forecast case so the generality of the resultsis unclear. One curious fact that was revealed (and
not discussed since they were primarily concerned with the medium range) isan indication in
Figure 7 that model uncertainty may play a much bigger rolein the short range by contributing a
large part of the dispersion. (Recall that our definition of dispersion is EF spread above the initial
spread). Beyond the short range, nonlinear error growth from synoptic-scale differencesin the
| Cs dominates the dispersion, and model errors only add slightly more spread. In the short range,
model perturbations quickly make significant differencesin the solutions.

Stensrud et al. (2000) performed a study using the perturbed-model approach that did discuss
the relationship between forecast lead time and error growth by model error. They compared the
behavior of two very different, 19-member SREF systems using the MM5. The “1C ensemble”
had perturbed |Cs defined with the Mullen and Baumhefner (1988) approach, al using the same
model. The “physics ensemble” used one IC but 19 different versions of MM5 defined by 5
convective scheme options, 2 boundary layer options, and 3 levels of moisture availability. This
was an interesting way to isolate the error growth due to model error, but it is not appropriate to
do askill comparison of these two ensembles since the physics ensembleis unfairly degraded by
alack of representation of analysiserror. Another serious limitation isthat this study only
examined one complete forecast case.

Nevertheless, this work of Stensrud et al. (2000) does provide some evidence for the key idea

that use of perturbed models gives the ensemble members different systematic errors, thus
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providing a more appropriately diffuse forecast PDF. They showed that the spread in the physics
ensemble grew two to six times faster in the first 12 h compared to the IC ensemble. They also
concluded that the influence of model uncertainty on forecast error islargest in the short-range
for meteorological variables at the surface. Stensrud et al. (2000) summarized the benefit of the
perturbed model technique:

“By using different models, in conjunction with different initial conditions, it may be possible

to increase the accuracy and usefulness of an ensemble by creating greater divergence in the

ensembl e trgj ectories than would be created by using only different initial conditions.”
The studies of both Houtekamer et al. (1996) and Stensrud et a. (2000) were a major influence on
the choice and design of the PMMA technique applied in our research.

An alternative to either the multimodel or perturbed-model approach, called stochastic
physics, was applied by Buizza et al. (1999). The basic assumption with Buizza's method is that
random errors coming from the various parameterizations have a high degree of spatial and
temporal coherence and that the errors are proportiona to the tendency (i.e., rate of change).
Instead of trying to handle all the errors separately, stochastic physics attempts to capture their
influence by randomly perturbing the tendency of state variables with some appropriate degree of
spatio-temporal autocorrelation.

Buizzaet al. (1999) did find that this method increased ensemble spread and improved
performance, but others have found that stochastic physics fails to represent the full spectrum of
model uncertainty (Evans et al., 2000; Ziehmann, 2000; Richardson, 2001d). Forecasters have
found that subjectively, the differences among the ECMWF EPS members (that use stochastic
physics) fall well short of the synoptic differences found from a multimodel ensemble (Mylne et
al., 2002). Thelimits of stochastic physics may be due to the fact that all the members use the

same model attractor. The random perturbations give occasional kicks off the attractor to the
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trajectories, which then quickly reconverge. The effect then isthat the solutions are still very
similar. For all these reasons, we chose not to apply stochastic physicsin our SREF research.

A SREF study that explored severa questions of relevance to our research was accomplished
by Wandishin et al. (2001). They compared error growth and skill over arelatively large sample
of 43 total cases (27 cool season and 16 warm) of several subset ensembles of the NCEP SREF—
a 15-member MMMA ensemble (Du and Tracton, 2001). A weakness of this study isthat the
NCEP SREF uses ICs that likely do not adequately represent analysis errors. The 15 members
consist of five Etamodel runs that use multianalysis ICs (al produced at NCEP and thus highly
correlated), five more Eta runs that use bred-mode ICs, and five Regional Spectral Model (RSM)
runs using the same bred-mode ICs. Use of two models does provide an element of multimodel
representation of model error, but the system is seriously encumbered by the poor ICs.

Wandishin et al. (2001) conceded that their study was rather limited and that “future work is
needed to quantify the roles of model formulation and initial condition uncertainty.” They did
conclude however that SREF can give useful guidance on probabilistic QPF whereas information
from a deterministic forecast is quite limited and much less useful. Additionally, relevant to our
research, they found that error growth for mesoscal e parameters is very weak compared to the
growth found in a synoptic-scale parameter such as 500 mb GPH. They did not address whether
the weak error growth was due to error saturation, verification method, or some other effect.

A study by Evans et al. (2000) provides some insights into the value of the multimodel
technique for representing model uncertainty. Focusing on MREF with 9 cases, they compared
the skill of three, 34-member ensembles: 1) arandom subset from ECMWF s 51-member EPS
that used stochastic physics, 2) an ensemble that used the same | Cs as the ECMWF EPS but used
the United Kingdom Meteorological Office (UKMO) global model, and 3) acombination of 1 &

2, using 17 members from each.
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They came to the dramatic conclusion that the multimodel ensemble outperformed the
ECMWEF EPS in both deterministic skill of the EF mean and in the skill of probability forecasts.
Thisimprovement was not simply due to adding more members or forcing spread toward the
climate PDF, since they found improvement in both reliability and resolution. It waslikely “due
to the sampling of different, skillful populations provided by the individual systems.” They aso
concluded that for the medium range, model errors do contribute significantly to the total forecast
error so must be accounted for in an ensemble system.

The benefits of amultimodel ensemble in the medium-range were further demonstrated by
Ziehmann (2000). Over alarge sample of forecasts (90 cool season and 90 warm season), she
compared arandom subset of four ECMWF EPS (with stochastic physics) membersto a4-
member poor man’s ensemble (PME). The conclusion was that not only does the PME beat the
ECMWF EPS subset but that it even beat the full 51-member ECMWF EPS in severa key
aspects of EF performance.

Ebert (2001) explored the PME to see how a seemingly nonrigorous EF method can be so
effective. Using a 7-member ensemble comprised of global models from various operational
centers to examine the skill of QPF, she aso found ensembl e superior to the 51-member ECMWF
EPS. Ebert noted that:

“Because it [PME] samples uncertainties in both the initial conditions and model formulation

through the variation of input data, analysis, and forecast methodol ogies of its component

members, it isless prone to systematic biases and errors that cause underdispersive behavior
in single-model ensemble prediction systems.”
She also concluded that for probabilistic forecasts, there was no need for a calibration such as
applied by Eckel and Walters (1998). However, the dispersion of the PME was not investigated

(i.e., improper dispersion indicates a need for calibration) so her conclusion isreally a hypothesis,

which was explored in our research (see Chapter I11).
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An expanded version of the study by Evans et al. (2000) was conducted by Richardson
(20014a) to examine the possibility of improving upon the ECMWF EPS through inclusion of
multianalysis and/or multimodel techniques. This study included 60 forecast cases (mostly cool
season) and compared five different ensembles: 1) the 51-member ECMWF EPS, 2) the 27-
member UKMO ensembl e that used the same ICs as the ECMWF EPS, 3) a 54-member
combination of 1 & 2, using 27 members from each, 4) a 55-member multianalysis ensemble
made by applying 11 ECMWF EPS perturbations each to analyses from 5 different centers, and
5) a51-member ensemble made by applying the ECMWF EPS perturbations to a* consensus
analysis’ (Thisiswhat wewill call the centroid analysis).

Richardson also found that the multimodel ensemble beat the ECMWF EPS but added that a
comparable improvement was realized by the multianalysis ensemble. What helped him reach
this conclusion was the removal of bias from the model output. Model bias can be a significant
part of the forecast error and should be removed before considering the ensembl e of forecasts, but
curioudly it isregularly ignored in most EF studies and applications. Richardson showed that
bias removal improved the skill of the EF mean and the probability scores of his EFs and also
allowed for a more equitable comparison of ensemble systems that employ different models.
This key ideawas adopted and explored in our research.

The most extensive study to date concerning the benefits of aMMMA in the medium range
was accomplished by Mylne et al. (2002). Using 75 cool season and 85 warm season cases, they
followed the basic method of Evans et al. (2000), but their MMMA consisted of 54 members (27
members from the ECMWF EPS and 27 UKMO model runs), which could be directly compared
to the full ECMWF EPS. Their conclusion was that the MMMA improved upon the skill of the
ECMWF EPS by about 10%. (Thisisyet ancther example of the deficient representation of

model error by stochastic physicsin the ECMWF EPS.)
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Mylne reasoned that “...the benefits of whichever is the better system at a particular time and
place may be obtained al the time through better probabilities.” In other words, one model may
be superior overall but the relative skill among the models shifts over time and space. Only a
member that is consistently inferior can add no value to the ensemble system. The notion of
using unequally skilled members appears to go against the conventional wisdom of EF that
members have to be equally likely to be considered random samples from the forecast PDF. In
our research, we sought to resolve this matter.

To conclude, this literature review presented the source of many of the ideas and methods
that we applied in our research. Oneimportant issue not addressed in the EF literature to date is
the theoretical differences and relative merit of the perturbed-model vs. the multimodel approach

for representing model uncertainty. Thisis another major question we addressed in our research.

4. Sufficient Ensemble Size

The requirement of sufficient ensemble size is much more straightforward compared to
accounting for analysis and model error, but it isno less critical. Since more members makes for
abetter EF, one would like to run an EF system with many, many members. Unfortunately,
current computer capabilities limit the size of an operational EF to well below what is required
for thorough sampling. In our research, the number of members was also constrained by
choosing to use independent analyses as ensemble ICs, of which thereisalimited supply.

It is very important to understand the impact that ensemble size has on EF performance for
two reasons. 1) the ensemble size must be considered in designing a system to be of valueto
specific applications, and 2) to properly analyze the skill of a particular EF methodology, the
deficiencies caused by low sampling should not cloud the analysis.

Generaly, EF performance decreases as ensembl e size decreases (Buizza and Palmer, 1998;

Richardson, 2001b), but the impact of this effect depends upon what aspect of an ensembleis
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considered. The skill of the EF mean is only minimally affected, afact highlighted by Du et al.
(1997), who confirmed that 90% of the benefit of the EF mean can be achieved by an 8-10
member ensemble. Thisisagood example of separating out the deficiencies caused by low
sampling. Recall that in the discussion on predictability error growth we had to make a
correction to the MSE of the EF mean by afactor of n/(n+1) in order to arrive at the theoretical
MSE value for n=o0. The smaller the sample, the lower the skill of the EF mean. The reason for
thisis explained further below.

FP is severdly affected by low sample size. In fact, Richardson (2001b) went so far asto say
“An ensemble of ten or so members should not be expected to provide reliable probability
forecasts.” We strongly disagree with this statement on the basis that studies using ensembles
with 10 or fewer members have demonstrated skilled FP (Ziehmann, 2000; Ebert 2001).
Additionally, Richardson (2001b) made an error in his research (discussed in Chapter 11 when we
cover how to calculate FP from an EF). Nevertheless, we do agree with Richardson’s conclusion
that alarge ensembleisrequired for highly skilled FP and that the result of low sampling is an
overconfident EF. (l.e, the PDF tails are lesslikely to be represented, so high FP values are
normally overforecast and low FP values are normally underforecast.)

The basic problem with asmall ensemble is that it can not produce a consistent PDF, often
misrepresenting the distribution from which it was drawn. Say we have an ideal ensemble that
could produce a perfect analysis and forecast PDF when sampled infinitely so that the true state is
always arandom sample of the ensemble’ s PDFs. Using only a finite number of members from
this same ensembl e, we get an approximation to those perfect PDFs, thus harming our EF. The
approximate PDFs can still turn out to be excellent, but the smaller the ensemble the more
infrequent this becomes and the more unreasonable the approximation can get. Thisisabasic

property of statistics which can not be avoided in ensemble forecasting.



40

Since this problem arises from statistics, the theoretical implications can best be explored by
examining the how the sampling distributions of a PDF’ s moments (sample mean X and sample
variance s°) change with increasing sample size. A sampling distribution is produced by
generating M ensembl e realizations with afixed ensemble size n, then plotting the M values of
X and s>. Apart from using afinite n, we assume an ideal ensemble so all EF members are drawn
from the correct forecast PDF.

There are two relevant questions. How much error in the moments can we expect from any
one ensembleredlization? On along-term average basis (i.e., after many forecast cases so there
isalarge sample) do X and s* produce good estimates of their theoretical values? For each
simulated ensemble of N members we repeatedly generated n random samples from a forecast
PDF (defined below) and compared the sample statistics (which will naturally have some error) to
the population mean w1 and popul ation standard deviation o of the forecast PDF. This sampling
experiment mimicked an ideal ensemble’s effort at representing the forecast PDF. While such an
examination may seem oversimplified, it is actually very applicable to our complex problem of
sampling the high degrees of freedom of the atmospheric PDF. We can think of aforecast PDF
as amultidimensional collection of many single-variable PDFs, one for each state variable at
every grid point. So the basic arguments presented here for a single-variable PDF should extend
to the entire forecast PDF.

The sampling distribution of X follows anormal distribution, regardless of the governing
PDF. Inthelong-term, the expected value of X convergesto u according to the Central Limit
Theorem (Devore, 1995).

E(X)=u (12)
Thisisavery good thing for ensemble forecasting since it means that, over many forecast cases,

the EF mean matches the PDF mean no matter what nis. The amount of possible error in any one
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ensemble realization is determined by the variance of X , which is equal to the forecast PDF's
variance divided by the ensemble size.

2

V(X) = UT (12)

or, equivalently, the standard error is U/ \/ﬁ . So as stated previoudly, the error in the EF mean
decreases with increasing n.

The sampling distribution of s follows a x? distribution. In the long-term average, the
expected value of the sample variance converges to the true variance.

E(s?) = o° (13)
Thisis another very desirable fact for EF since it means that, regardless of n, the EF spread
matches the forecast PDF’ s variance in the big picture. The variance of s is not as
straightforward, involving many higher order moments. For our purposes here, we simply
calculated the variance of s* empirically for our assumed PDF, thus determining the amount of
possible error in ° for any one ensemble realization.

The governing forecast PDF was defined as the standard normal, N(0O,1), to make the results
generic and normalized about o= ¢® = 1. Thetop graph in Figure 8 shows sampling
distributions of X for n = 8 and successive doublings (n = 8, 16, ...1024). The distributions are
all centered about the population mean (¢/=0) asin Equation (11), but we are more interested in
the possible error for any one case. Larger errors are of course more likely for distributions with

greater variance, corresponding to the smaller sample sizes as described by Equation (12).
Dividing the standard error by ¢ gives the normalized standard error ( Xyg ) of ]/ Jn, plotted as
the solid curvein Figure 9. The typical value of the erred mean (X, ) for any PDF isthen

found by:
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Xypical = Hirue T X (14)
where X4 = (XNSE)GUUe is the magnitude of the standard error in the mean and 0 . is the forecast
PDF s standard deviation.

The bottom graph in Figure 8 shows sampling distributions of s%. The distributions are all
centered about the true variance (6° = 1) asin Equation (13). Notice that for large values of n, the
x? distribution approaches a Gaussian distribution but for low n there is awide, heavily skewed
distribution. Points on the dashed curve in Figure 9 were found empirically using 5000 sample
draws from N(0,1) with afixed n to produce a x? distribution from which variance of s* was then

calculated. The results are automatically normalized to 6?= 1 so the typical value of the erred

variance(sfypical ) for any normal PDF isfound by:

Sé/pical =0t2rue I Sgi (15)
where s& = (sﬁSE) 62, ISthe magnitude of the standard error in the variance, i isthe

normalized standard error in the variance and o7, is the forecast PDF' s variance.

The implications of undersampling to ensemble forecast are now clear. For small n, the
typical error in the mean isa significant portion of the forecast PDF s standard deviation, causing
anotable shift in the estimated PDF. The typical error in the variance for small nis an even
larger portion of the correct variance, causing a prominent squeezing or stretching in the
estimated PDF. A larger ensemble has narrower sampling distributions and an improved ability
to consistently reproduce the PDF from which the members are drawn, thus improving ensemble
skill. It appears that the most significant improvements should be expected as the number of
members isincreased into the 50 to 100 range since the standard errors decay exponentialy.

Beyond that, improvement becomes minimal as more members are added.
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So even with awell designed EF system, undersampling alone can result in a poor estimation
of predictability error growth. It istherefore quite encouraging that the rather small, experimental
SREF systems to date displayed some value and skill (Du et a., 1997; Stensrud et al., 1999;
Wandishin et al., 2001; Grimit and Mass, 2002). By expanding upon these prototype SREF
systems with improvements in ICs, model error representation, and larger ensemble size, we
believe that a valuable SREF system is possible. In the next chapter, we will discuss our design
and implementation of such a system. We will also revisit this simplified sampling experiment in

more depth to examine the likely impact of ensemble size to our SREF systems.
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Figure 1. Example anaysis, forecast, and climate PDFsfor MSLP. (a) Histogram of the long-
term observations. (b) Hypothetical analysis and forecast PDFs. The anaysis PDF has an
arbitrary ©=1004 mb and observed average o =1.0mb. The forecast PDF has an arbitrary
1=999 mb an observed average o = 2.5mb for a48-h forecast. The climate PDF istaken from
(a) and has #=1011.37 mb and ¢ =10.33mb.
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Figure 2. Simplified depiction of EF. The histograms represent alarge (n = 500) ensemble’s
estimation of the analysis PDF (solid curve at initial state) and forecast PDFs (solid curve at
forecast states). The PDFs show possible states of the atmosphere, or simply the possible values
of some parameter at a single point, such as surface temperature. (a) A well-calibrated ensemble
which correctly estimates the PDF. (b) An inferior ensemble that incorrectly estimates the PDFs
with adigtribution (dashed curve) having a mean shifted to the right and too low a spread. The
arrow is the event threshold, so the shaded region is the probability of exceeding that threshold.
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theoretical variances for alarge sample of control forecast errors, ensemble mean forecast errors,
and the ensembl e differences as a function of forecast lead time. (b) Results for 45 ensemble
forecasts of the 500 mb geopotential height field by the NCAR CCM3-T63 model, where
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K
1=y
C I— (b)
-, o
’/’ o o o
o N
y o o™ A E
’ o o © \ °'~ 0
[ o o o, ~o
[ ° © 0,00 ! =~
o o [I ) °‘i<‘°~~o-:g~
' o ° E, o E FPszo-o
v % o ) ! 0 SOI0I =90
\ o]
\ ° o [o) 1 ~
\ o] O’l \%
\\ °¢9 o /'
r* </ ° o o .- r
A AN oo _ O’, A
T T
<. ~ < ~N
7~
\4 \4

r
Figure5. Simplified 2D generation of 1Cs from a best guess analysis A given (a) only an
estimate of fhe magnitude of analysis uncertainty and (b) gstimates of the magnitude and
direction. E,isthethick gray vector which pointsfrom A tothetruestate T in both panels.



47

Figure 6. Tree diagram for an ensemble with 4 initial conditions (A, B, C, and D) and 3 model
perturbations (1, 11, and 111) having 2 choices each. Provided that the model perturbations are
uncorrelated and equally skillful, each of the 32 ensemble membersyields an equally likely
forecast.
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Table 1. Abridged list of three categorical sources of model error.

Model Error Category

Sources

Physics Parameterizations

- radiative transfer

- horizontal diffusion

- precipitation (droplet nucleation, growth, fallout, etc.)
- boundary layer behavior

Surface Boundary Parameters

- albedo

- roughness length

- ground temperature

- moisture availability

- sea surface temperature
- terrain height

Numerical Processing

- finite difference scheme truncation error
- precision of al variables and parameters
- interna precision of computer processor

51
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1. Methodology

In this chapter, we discuss the methodol ogy applied in this SREF research. To test our
hypotheses and assess the value of SREF, we desighed a SREF test bed consisting of four distinct
but related SREF systems (Table 2). The largest SREF system, Analysis-Centroid Mirroring
Ensemble (ACME), was designed to improve SREF by using additional 1Cs. Our Poor Man’s
Ensemble (PME) is a collection of large-scale models run at different operational forecast centers.
ACME™"*is our benchmark mesoscale SREF system that uses the PME’sinitid conditions (I1Cs)
and lateral boundary conditions (LBCs), and asingle version of MM5 for each member.
ACME™*" uses the same ICS/LBCs as ACME™®, but each member uses a different (perturbed)
version of MM5. These four systems have different strengths and weaknesses, and their
intercomparison yields answers to the questions raised in Chapter |. The methods we employed
in these systems for representing analysis and model uncertainty may be suboptimal but are
functional enough to achieve our goals. Recall that the goal isto research fundamental aspects of
SREF for the benefit of future systems and to design an effective SREF system with today’s
capabilities.

We are most interested in the cool season (Oct — Apr), when the Northern Hemisphere
midlatitudes are prone to more rapidly changing synoptic conditions and thus when a SREF is
likely to be of greater value. Additionally, SREF research to date has primarily focused on warm
season data in which model uncertainty may play a greater role since weak synoptic forcing
inhibits predictability error growth from analysis errors. In studying cool season data, we may
gain more understanding of impacts to SREF from both analysis and model uncertainty. The
20012002 cool season was atest and devel opment period for the ACME systems and istoo
incomplete for useful analysis. The probabilistic nature of EF requires alarge number of casesto

achieve statistical significance of results and reliable conclusions. During the 2002—-2003 cool
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season from 310ct 2002 to 28 Mar 2003, we archived 129 forecast cases with complete datain all
four SREF systems (Figure 10). Thiswas a substantial accomplishment considering the
complexity of the processing and extreme amount of data.

The common grid for the four SREF systems is a 36-km resol ution domain depicted in Figure
11a. Imported model data of the PME was fit to the 36-km grid using bilinear interpolation
programmed in the MMS5 preprocessing code. ACME, ACME™*, and ACME™*" ran on the 36-
km outer and 12-km inner MM5 domains (Figure 11b) using 32 sigma levels (31 layers).
Forecasts from all configurations wereinitialized daily at 00Z and run through 48h. The PME
data was downloaded twice daily at 00Z and 127 and archived at 6-h forecast intervals over the
48-h valid period (i.e., data at forecast hour 0, 6, 12,..., 48). All ACME model runs were
archived at 3-h intervals. Archived variablesinclude winds at 10 m, maximum 3-h 10-m wind
speed, moisture at 2 m, temperature at 2 m, maximum and minimum 3-h temperature, 3-h
cumul ative precipitation, and winds, temperature, moisture at the 850-, 700-, 500-, and 300-mb

levels.

A. Analysis Uncertainty

The mirroring approach used in ACME came out of a meeting with Dave Baumhefner in
August of 2001. Basicaly, ACME expands upon the SREF research of Grimit and Mass (2002)
which showed that analyses from different operational centers provide practical I1Csfor a SREF.
Their small, 5-member MM5 ensemble used multianalysis ICs (i.e., a set of five independent
analyses) and successfully predicted forecast skill.

The reason why the multianalysis |C methodology works so well for a SREF over the Pecific
NW is somewhat counterintuitive. Itislogical to think that the IC perturbations for a short-range,
mesoscal e ensemble should include an estimate of errors on all scales with perhaps special

attention to the mesoscale. Using global analyses as ICs provides little to no information
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concerning mesoscal e analysis errors since the differences among the analyses are predominantly
on the synoptic scale. So how can these ICs be useful for a SREF?

Errico and Baumhefner (1987) showed that in general thereis no need for ensemble ICsto
include small-scal e perturbations since predictability error growth is dominated by the synoptic
scale. An ensemble containing ICs with only small-scale perturbations has extremely low
dispersion while one with only large scale perturbations generates large dispersion on all scales.
Using different analyses as ensemble |Cs is therefore an excellent technique for SREF. One
possible drawback, which will be discussed further below, is that the analyses may be too highly
correlated to be considered random samples (Ebert, 2001).

Another reason for the success of using various analyses asthe ICs is that, in the cool season,
many mesoscale weather phenomena are driven by the synoptic-scale flow, particularly in areas
of complex terrain such as the Pacific Northwest (Mass, 2002). For example, the position and
intensity of the Puget Sound convergence zoneislargely determined by the characterigtics of the
large-scale, low-level flow impinging on the Olympic Range. Asaresult, errorsin the synoptic-
scale flow cause the largest part of the forecast error within the Puget Sound. This example
further supports the conclusion that the ensemble ICs should represent the likely errors on the
synoptic scale, hot small-scale errors.

By expanding the Grimit and Mass (2002) SREF, ACME’ s objectiveisto provide an
improved sampling of analysis uncertainty while maintaining the basic approach of using
different analyses for ICs. From the original five analyses of Grimit and Mass (2002), we first
dropped the NCEP MRF model analysis since it istoo highly correlated with the aviation (avn)
model analysis. Next, we added four more analyses from different centers, bringing the total up
to eight—collectively referred to asthe core of the ACME ICs (Table 3). Eight random samples

arelikely till too few to thoroughly represent the analysis uncertainty, leading to an ensemble
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forecast that may frequently poorly portray truth. We therefore attempted to use the ensemble
core to generate more I Cs, each with dlightly different synoptic structuresthat are both redlistic
and within the bounds of uncertainty.

We began with the basic assumption that the core is a sufficiently diverse sampling to
represent the general spread of the analysis PDF. Consider the core to be arather sparse cloud of
ICs that contains valuable information on analysis error. It seemed possible then to use the core
to produce an estimate of the elusive analysis error vector, Equation (9), which would provide
information on both error structure (i.e., direction in phase space) and error magnitude.
Additional independent 1Cs could be created by varying the magnitude (i.e., changing the length
of the error vector) within some predetermined bounds while maintaining direction (synoptic-
scale gtructural information). Such a process would fill inthe IC cloud and perhaps expand it,

sampling likely 1Cs not represented in the core.
K
Our method to find E, (the estimate of analysis error) begins with calculation of a centroid
analysis, &3 :

r 8 r
Cc==YA, (16)
=1

|

r
which is the mean of the eight A (core analysis) found by averaging all state variables, at al

r
levels, over the entire model domain. Thisis considered our best estimate of T (the true state)

r
because it likely filters out the small-scale differences of the various A 'sthat are likely to bein

error (Richardson, 2001a). The centroid isrun as yet another ensemble member and should on
average be the most skillful deterministic run over alarge domain, although it may occasionally

be beat by another ensemble member because of the undersample problem discussed bel ow.
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Richardson (20014) found that the centroid run from five independent analyses was dightly more

skillful than the ECMWF out to seven days.

1 r 1 r
Since C isour best estimate of T, we substituted C for T in Equation (9) to get

r r
Ey = C-A (17)

1 K 1
providing an estimate of E,. This E, may be considered to be a perturbationto C that

r
produced A . Such a perturbation could vary in magnitude or even reverse direction with respect

to &Z but till maintain structural error information, which is dominated by synoptic-scale errors.
K
Each of the eight analyses produces a different but somewhat correlated E,. A new, valid IC
r 1 1 1 1
(A") could conceivably be placed anywhere along the two-way vector (C—A or A —C) by

K
simply adding E, times some perturbation factor ( o) back onto the centroid:

r r r
A' = C+pE, (18)

In theory then, there are an infinite number of new possible ICs for each of the eight analyses of
the core.

However, testing revealed that most of the possible p values are not beneficial to our SREF.

Finding the best pvaluesto use turned out to be a trade-off between skill and dispersion. When

r 1
we used asmall p such as—1.0< p< 1.0, we produced an A’ that was too similar to either C

r r
and/or the parent A . Thus no new information was gained running the forecast from A’ and the

ensemble had weak dispersion. On the other hand, alarger o lowered the skill (in a RMSE sense)
in the resulting forecast and created unrealistically large dispersion.
A logical choice then wasto use only p=1.0 to produce forecasts with new, useful

information and skill on a par with the forecasts from the core analyses. A new IC isthen the
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mirror of its parent analysis across the centroid. From each analysis we generate one more IC,
giving us atotal ensemble of 17 members. Combining Equations (17) and (18), the mirror ICs
are generated by

r r rr

A" = C+ plC-A) (19)
However, using p= 1.0 creates a problem in that the variance of the full ACME ICsis reduced

compared to the core analyses, a statistical result of the small ensemble size. The sample

variance of the coreis

2 1 n 2

Score = z (Xi - i) (20)
n-143

where nisthe ensemble size, x; isthe value of member i, andX isthe sample mean, whichis
equivalent to the centroid. The variance of the ACME ICsis

2n 2

SiCME = < Z (Xi _i) (21)

2n &
where the sum goes to 2n and not 2n+1 since the centroid contributes nothing to the sum. Note
that the sample mean (i.e., the centroid) is the same for both. For large n, Equations (20) and (21)
produce the same result, but for an n as small as eight the ACME ICs have alower spread than
the core analyses. We corrected for this by using a o designed to adjust the ACME IC’ s variance
to match that of the core. (Note: Eric Grimit isto be credited for the following proof.)

To find the desired p, we begin by expanding Equation (21) as

SiCME = 2_];_] 2:1: [(Xn - X)2 + (Xn+i - X)2]

where X,.; represents the mirrored values. We can then apply Equation (19) to the x,.; term to get
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Shome = 2_1n Z [(Xi _X)Z + pz(Xi _7)2]

(e2) 3 sy

2n

Equating this result to Equation (20) we can solve for the desired p:

1 n 2 1+ 2] n _2
m;(xu_x) = S/z-\CME = 25 lz_];(xl_x)
n+1
= = 22
P n-1 (22

For n=8, p=1.13, which is the perturbation factor we used for ACME.

One difficulty in analysis-centroid mirroring isin handling the state variable for moisture
(relative humidity, RH). This problem exists because moisture varies over the interval bound by
absolute dryness (RH = 0.0%) and saturation (RH = 100.0%). Mirroring of alarge RH difference
toward either boundary can produce an unphysical RH value. Other state variables such as
pressure and temperature also have bounds, but the variable' s range within the troposphereis
rather limited, nowhere close to their bounds. (For example, MSLP has a physical boundary of
0.0 mb but it typically varies between 970 mb and 1030 mb. A mirrored value may end up being
extreme but is always physical.)

The easiest way to ded with this problem would be to truncate the mirrored RH value at 0.0%
and 100.0%. Thishowever produces a mirrored IC with unrealistic moisture patterns, having
large areas of dryness or saturation, and large moisture gradients. The alternative we employed is
related to the Zeno' s Paradox—the idea that you can never reach awall since you keep going ¥2

of the distance toward it.
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For example, refer to Figure 12ato see how we arrive at a perturbation value at some
hypothetical grid point where the centroid moisture (RHc) is80%. Given amoisture analysis
value (RH,) of 60% (solid dot), the thick arrow shows the perturbation of RH, to RH¢, which for
this example is exactly half way toward complete saturation. The mirrored moisture valueisthen
half way again toward saturation, yielding an RHy of 90% (hollow dot). Figure 12 shows how
we extend this technique so that the fraction

RH, —RH,
| RH,, —boundary |

isthen the fraction of the remaining distance from RHc to the boundary for arriving at RHy. This
makes the RHy, asymptote toward the boundaries as the perturbation increases and asymptote
toward RHy = RHc + (RHc —RH,a) as (RHe —RH4) — 0, just like Equation (19). Notice that we
use 10% as the lower boundary instead of 0% as thisis an MM5 preprocessing requirement.
While this technique may appear at first glance as somewhat arbitrary, it actually makes
physical sense. Infact, one could argue that the general mirroring technique does Zeno-type
mirroring for al the state variables. It is simply not apparent since the perturbations in the other
variables are so small compared to the distance to their boundaries that the mirroring has

effectively asymptoted to Equation (19).

1. IC Strengths

There are many aspects of multianalysis and ACME ICs that should be most beneficial to our
SREF systems. The primary strength is that they likely produce a reasonable sampling of
analysis uncertainty from day to day for several reasons.

To begin with, the eight analyses are produced with different models at different resolutions,
aswell as variations in observation data and data processing. (Note that an interesting twist in

this method is that thereis actually an ingredient of model uncertainty used in defining the
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analysis uncertainty.) The processing diversity resultsin a significant spread among the eight
analyses, which subjectively appear to be different enough to be considered random sampl es of
the theoretical analysis PDF. It isnot clear whether the mirrored ICs may also be considered

random samples, but they do contain unique, meaningful synoptic-scal e differences because use
of the centroid likely yields good estimates of E, .

The key quality of multianalysis ICsis that the differences among analyses are predominantly
on the synoptic scale—precisely what is desired for a set of 1Cs since the biggest error in an
analysisisin phase and/or amplitude of synoptic weather systems. Furthermore, it isthese large-
scale errors that experience the most growth during the forecast integration as extratropical
cyclones develop and propagate (Errico et d., 2002). A set of ensemble ICs should contain a
spread of similar synoptic waves with dightly different phases and amplitudes, but within the
bounds of analysis uncertainty. Whether or not the ICs a so include small-scal e perturbations
may be irrelevant since those errors grow insignificantly or decay.

Figure 13 is asimplified demonstration of how ACME further samples the spread of synoptic
waves. The solid lines, representing the core analyses of MSLP along alatitude line, give the
general spread of synoptic waves which we then build on.  The centroid, our best guess analysis,
isin the middle of the eight analyses, as should be expected. Notice that the centroid does not get
significantly biased in phase, amplitude, or frequency when compared to the averaged values of
theindividua analyses. Simplified experiments showed that the frequency of the centroid is
dightly lower (~1%) compared to the average frequency of the core analyses and that the
amplitude of the centroid can be lower by up to afew percent.

A mirrored IC was simulated in Figure 13 by taking the difference between the centroid and
one of the core analyses then projecting the reverse of that difference onto the centroid, asin

K
Equation (17). The new IC therefore contains synoptic-scale error information from E,, resulting
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in adifferent possible large-scale wave. Notice that the new wave is unique but subjectively
lookslike it could be just another one of the core analyses.

Another strength of using multianalysis ICsis the low computational requirement in the
preprocessing phase, which includes downloading data, fitting data to the MM5 grid, and
establishing the LBCs of the limited area domain (Figure 11). Each of the eight analyses can be
downloaded and run through the MM5 preprocessing within a matter of minutes. Their LBCs are
set by the forecast grids from the original model run. (E.g., the MM5 run using the avn analysis
IC usesthe avn’s original forecast grids to define the MM5 LBCs.)

The additional preprocessing for the mirrored ICs of ACME isfairly straightforward and also
computationally affordable. The mirrored LBCsfollow exactly the same perturbation method as
the mirrored IC fields. (E.g., for the MM5 run using the avn mirrored IC, the LBCs at the 6-h
forecast point are the mirror of the 6-h avn LBCs across the 6-h centroid LBCs.) Additionally,
the mirrored |Cs are dynamically balanced on the large scale so no special processing is required.
At small scalesthere are likely significant imbalances in the mirrored 1Cs since the core analyses
themselves are not balanced with respect to the scal es represented within MM5. MM5 handles

this problem with strong diffusion, quickly damping out gravity waves.

2. IC Deficiencies

There are severa possible deficienciesin the basic design of multianalysisand ACME' s ICs.
One problem isthe low sample size. Considering the extremely high number of dimensions of
the atmosphere, the 17 ICs of ACME or the 8 ICs of ACME™"* or PME are likely too few to
consistently produce a reasonable representation of the analysis PDF, regardless of how ideal
these ensemble systems may or may not be. A second problem is that the analyses may be too
highly correlated and not independent, random samples of the analysis PDF (Ebert, 2001). This

second problem would result in limited spread among the analyses (i.e., an analysis PDF with low
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variance). Thirdly, the analyses (and resulting forecasts) are not equally likely, thus violating one
of the basic tenets of EF. The combination of these deficiencies could seriously undermine our
guest for an effective SREF.

To explore how the undersampling problem impacts our n= 8 ensembles (PME, ACME™",
and ACME®*®"), we temporarily ignored the second potential problem by assuming that the
analyses are totally uncorrelated, random samples, and that differences between ICstruly
represent analysis errors. An infinite number of these analyses would provide a perfect and
complete analysis PDF, from which truth would always be arandom sample.

Back in section 1.B.4, it was shown that sampling with only afew random draws makes it
difficult to recreate the PDF from which samples are drawn. Even when ensemble members are
drawn from the same PDF as truth, as they should be, the EF estimate of the forecast PDF will
often bein error and sometimes severely so. Continuing the sampling experiment introduced in
section 1.B.4., eight samples of arandom variable x with a set PDF were taken repeatedly. For a
more realistic simulation of EF, the random variable was chosen as 48-h 500 mb height at some
grid point, drawn from a normally distributed forecast PDF with x=5400gpm and o = 15gpm,
atypicd forecast error. Over many trials then, an ensemble of eight members attempted to
represent that forecast PDF. We then observed the behavior of the sample mean X and the sample
variance §* to understand how their errors may affect the skill of our ensembles.

In Figure 14 (data values provided in Table 5) three example attempts to represent the
forecast PDF are shown to demonstrate that with only eight members, it is easy to misrepresent
the forecast PDF. Too high a spread (as depicted in Figure 14c¢) is not as significant a concern
because, while it may be misleading for uncertainty, it still may reveal the different forecast
possibilities and portray the true future state. Of more concern is too low a spread (as depicted in

Figure 14a) where uncertainty is underrepresented and potentially important parts of the PDF go
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unsampled. Equation (19) was applied to the data and displayed in the right hand side panelsin
Figure 14 to demonstrate how the generation of the mirrored ICs can ameliorate the
undersampling problem by filling in the distribution and sampling a slightly wider region. The
mirrored |Cs should provide redistic, independent samples for a more complete representation of
the analysis PDF.

After repeating 5000 realizations such as those in Figure 14, we plotted Figure 15 and Figure
16, which are repeats of the n = 8 curves from Figure 8, but include the experimental,
histogrammed sampling distributions from this simulation. It is evident that the high variance of
X and %, due to the small sample size, causes these sample statistics to frequently have
significant error, producing a poor estimate of the forecast PDF. For example, the spread in
Figure 14a, which is noticeably too low, is not an extreme value of the sampling distribution of s

One question that arises is: which error causes more problems for the EF, incorrect location
(ensemble mean) or incorrect spread (ensemble variance)? We can address this from the point of
view of the FP derived from an estimated forecast PDF. Using the results of Figure 9 and
Equations (14) and (15), the magnitude of the standard error in X is 5.3 gpm, and 120.1 gpm? for
&°. Using these values, the erred distributions along with the correct PDF are plotted in Figure
17a, and the PDF of their combined effect is plotted in Figure 17b. (Note that we chose the
positive X deviation, giving X = 5405.3 gpm, and a negative §* deviation for s*= 104.9 gpm?.)
For any given event threshold value of 500 mb height, each PDF yields a different value of FP
(areaunder the curve to right or left of the threshold). The exception is when the event threshold
falls beyond about 30 when each PDF yieldsan FP of 0.0 or 1.0. Figure 17c and d show FP for
the full range of event thresholds where the probability of exceeding the event threshold is

forecast. Plotting the FP error (correct — erred) in Figure 17e revealsthat the standard error in the



mean actually causes larger error in FP than that of the standard error in the variance, thus
highlighting the importance of bias correction.

The summary plot in Figure 17f shows how the combined effect of typical mean and spread
errorsimpact an n=8 ensemble’ s FP. Low sampling causes significant errorsin the midrange FP
when the event threshold falls within about 1.0 o of the governing PDF. Note that this effect can
not be calibrated out of the system because it istotally random. It is something we must live with
and consider when analyzing our results.

Let us now consider the second potential problem of correlation among the analyses. In any
ensemble system, the set of ICswill naturally be somewhat correlated since they are al
attempting to describe the same instantaneous state of the atmosphere. It may be that, for
multianalysis ICs, the level of corrdation istoo high because the analyses are built using
comparable observational data, making them share similar errors.

If we assume some high level of correlation among the eight samples in the above simulation,
the ability to reasonably represent the PDF worsens. A strong a correlation between the analyses
would reduce the sample variance, limiting the ensembl e’ s ahility to portray the true state. Also,
if the analyses share similar biases, the error in ¢ would increase. Ebert (2001) showed that the
correlation of precipitation forecasts among the members of a PME is acceptably low. Thisis
encouraging but it is unclear if it holdstrue for the state variables of the analyses.

Thethird potential deficiency—Iack of equal skill among the analyses—is like supposing that
the analyses are drawn from separate PDFs in which aless skilled analysisis associated with a
wider PDF. Inthat case, the ensemble’s PDF may be meaningless. However, since each of the
different analyses PDFs may be afair estimate of the true PDF, the ensemble’ s PDF may contain
agood representation of analysis uncertainty. We will explore thisissue further below whenitis

additionally complicated by the use of different models. For now, we simply note that one source
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of the inequality in the solutions of our SREF systems is the different levels of skill in the
analyses.

Asafina notein this section, there are some significant technical challengesfor a
multianalysis ensemble. Besides the problems of undersampling, such asystemis at the mercy of
the analysesin other waystoo. Thereisadelay in downloading al the analyses, reducing the
utility in running the SREF in real time. The system is also apt to occasionally miss analysis data
since so many data sources arerelied upon. Lastly, frequent updates in the techniques employed
at the operationa centersto produce the analyses affects our ability to design a calibration based
on identifying and correcting for systematic errors (Eckel and Walters, 1998). Alterationsto the

source model or objective analysis scheme invalidate a calibration based on the former analysis.

B. Model Uncertainty

This section discusses the methodology of two techniques—perturbed-model and multi-
model—for representing model uncertainty that we employed in thisresearch. Sinceasingle
model EF systemis generally found to be underdispersive, the goal of including model diversity
inan EF isto increase dispersion. This should produce a more accurate estimation of the forecast
PDF and thus more highly skilled forecast probability (FP).

One issue common to both techniquesis the lack of equal skill among the members. We
noted above that since there isinequality among the core analyses, we can expect single-model
SREF systems to have solutions that are not equally likely. Aswe attempt to account for model
uncertainty by varying the model, we are likely to make the relative skill among the members
even more disparate.

Mylne (2002) indicated that having unequal members is not problematic and may in fact be
advantageous. Expanding an EF by including inferior models can be beneficial to a SREF system

because of the added diversity. Evans (2000) points out that the key to the benefit of aMMMA
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system is for the models to sample different, plausible regionsin phase space, where the true state
may lie. Models having different strengths and weaknesses can be combined to make a system
that outperforms an EF that uses only one model. A model may beinferior overall but still add
some skillful information to the ensemble if it occasionally performs better at some locations or
with some phenomena.

Use of unequally skilled membersis an apparent failure to meet one of the fundamental
objectives of EF. Membersthat are not equally likely can not be considered independent, random
draws from the same forecast PDF. In fact, when different models are involved, each member is
really drawn from a different PDF since each model hasits own attractor. In amodel with higher
skill, error growth is slower, so its solution at some lead time (before error saturation) is drawn
from arelatively narrow PDF. Likewise, alesser skilled model solution comes from awider
PDF. The ensemble forecast PDF is actually an amalgamation of samples from many different
PDFs. Itisprecisely this mixing of information that results in accounting of model uncertainty

by either the perturbed- or multi-model approach.

1. Perturbed-Mode Application

ACME™*" (see Table 2) applies the perturbed-mode! strategy by using the same ICs as
ACME®"* and auniquely perturbed version of MM5 for each of the eight members. As
previoudy discussed, representing model uncertainty with the perturbed-model strategy is
potentially rewarding but difficult to apply. The variety and number of model error sources make
it nearly impossible to completely and accurately represent all model errorsin a SREF. The
methodology employed in ACME™*" is meant to capture a significant portion of the model error
in order to explore the benefits and potentialy to realize an effective SREF.

The focus of ACME™*" was not to improve deterministic MM5 forecasts but rather to

represent the uncertainty present in MM5. We perturbed as much diversity as possible in order to
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generate large and redistic dispersion, thus losing the ability to ascertain an optimally perturbed
deterministic model configuration. (I.e., we were not running as system simulation experiment,
SSE.) Furthermore, all perturbations were made in keeping with the original MM5 design. That
is, we did not use experimental perturbations designed to improve the model, but rather made
perturbations that preserved the origina design of the MM5 routines.

ACME™*" does have some similarities to a SSE since each model version is afixed
combination of model options and perturbed surface boundary parameters (SBPs). Referring
back to Figure 6, ACME™*" consists of afixed set of branches where each branch begins at a
different IC. The difference from atrue SSE isthat each branch is designed to be as unique as
possible. A SSE triesto determine an optimal model set up by limiting model option
combinations.

The major factors that were considered in designing the MM5 model variations (i.e., building
the branches) were:

1) Sensitivity. Since generating increased, useful dispersion was the main objective, the
primary consideration in choosing model aspects to perturb was their sengitivity. We
sought to alter anything that made alarge difference in the solution when perturbed within
its suspected uncertainty.

2) Uncertainty. Another critical consideration was to perturb model aspects that contain
large uncertainty. A parameterization that shows large sensitivity but iswell known or
well represented may not be worthwhile to perturb. Thisis likewise for a parameterization
that has large uncertainty but little sensitivity.

3) Feasibility. Thefinal consideration was that the model aspect should be fairly easy to

ater within the MM5 model. For example, the forecast is certainly sensitive to the
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numerical methods within MM5, but altering them would involve a major rewrite of the
MM5 code. Such a perturbation is beyond the scope of this research.

Table 4 lists the eight branches chosen for ACME®™*®". By Equation (10) there are actually
1,228,800 possible branches to choose from. We only used eight of these since our objectiveis
not to span the space of model uncertainty but simply to represent model uncertainty in a SREF.
One thing to note is that the focus of these model perturbationsis on the solution at or near the
surface. Thiswas not originally intended as part of the design but came about naturally as
perturbations were selected because model parameterizations cause the greatest error at the
surface and lower atmosphere (Stensrud et d., 2000).

Table 4 also shows the MM5 version shared by all members of ACME and ACME™®, the
single-model SREF systems. Over the course of many previous studies at the University of
Washington, these are the model options determined to perform the best over the Pacific
Northwest and are therefore used in the high-resolution deterministic forecast system. Itis
therefore expected that the MM5 versions of ACME®*®" should exhibit less skill compared to the
paralel component forecasts of ACME™®. But as discussed above, amember may add valuable
information to an ensemble if it can occasionally perform better. Figure 18 shows an example
forecast verification comparison between the eta member of ACME®"®, and the plusO3 member of
ACME®™*". PlusO3 was able to outperform the eta over significant regions, showing that it isa
valuable EF member.

One last thing to note from Table 4 isthat not only are the model variations held constant, but
they also remain tied to a particular IC. One could argue that this severely constrains the SREF
system since applying more randomness among the variations from day to day would capture
much more of the possible model error over many case days. We opted to fix the system because

of that fact that the members have unequal skill. With afixed system, we have a chance to
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remove bias and possibly produce cdibrated probabilities. (A bonusisthat itisaso much easier
to program.) Each member of ACME™*®" likely has unique biases, coming from both the IC and
model version. To produce more skillful probability forecasts, this bias should be removed. By
keeping the IC and mode! version for each ACME™*®" member fixed, we can determine bias from

arecord of previous forecasts and observations.

a) Modd Options

An important question for the perturbed-model method concerns whether the differences
between model options really represent model uncertainty. For example, consider two values for
cumul ative precipitation produced by the Goddard and the Shultz precipitation schemes. Does
the difference in the two values reflect either scheme’ s (or the model’ s) inability to accurately
represent the precipitation process? Or are the two schemes both so oversimplified and
parameterized that the difference between them is meaningless? Unfortunately, these questions
can not easily be answered. For this research we made the large and potentially harmful
assumption that differences between model options are reasonabl e approximations of model
uncertainty. The solution from different schemes can often be dramatic because they may not
simply be using different values of some parameter but also a completely different methodol ogy
of modeling a physical phenomenon.

We were able to generate considerabl e diversity among MMS5 solutions by choosing various
combinations of model options for each ensemble member, which given our assumptions means
that this diversity represented much of the likely model uncertainty. In order to get the most
variety, the MM5 versions shown in Table 4 were set up to be as different as possible, but some
[imitations were imposed by the design of the MM5 code. For example, the land surface model

(LSM) code isonly compatible with the MRF and Eta PBL schemes.
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The Reisner I1, Skip 4 cloud microphysics scheme is amodified version of the standard
Reisner Il scheme. To speed up this extremely costly code, production terms are held constant
for four time steps. Garvert (2002) found that this does not change the solution appreciably but

decreases total run time by about 1/3.

b) Perturbationsto Surface Boundary Parameters

Accounting for the uncertainty in a SBP is accomplished in a more idealized sense by
designing random perturbations to mimic the suspected errors. Thisis much different than
applying different model options where we hope that differences represent model uncertainty.
When perturbing a parameter directly, we have much more flexibility. The reason all model
aspects were not similarly handled is that these errors are often poorly understood and/or
extremely difficult to directly perturb. We generally have some idea of the errorsin SBPs, and
they are also fairly straightforward to perturb. In this section we will describe how our
perturbation methodol ogy for sea surface temperature (SST), moisture availability, albedo, and
roughness length is designed to provide a reasonabl e representation of model errors from these
sources. Note that even though we have more flexibility in designing SBP perturbations, we
chose to keep them fixed once constructed since varying the SBP perturbations randomly from
day to day would likely have reduced the effectiveness of the bias correction.

The four SBPs we chose to perturb were selected because they strongly satisfied the design
considerations of sensitivity, uncertainty, and feasibility. The model solution is quite sensitive to
small changesin these SBPs, they have a significant amount of uncertainty in their value, and
they arefairly easy to adter. Their most significant direct impact isto the surface energy equation:

oT,
Cq— =Ra-H-G-LE (23)
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where Cy isthe dab thermal capacity [J m2 K™, Ty isground temperature [K], R, isthe net
radiation at the surface [W m?], G is the heat flux into the substrate [W m?], H is the sensible
heat flux into the atmosphere [W m™], L, is the latent heat of evaporation (2.5 x 10° Jkg?), and E
is the evaporation rate at the surface [kg m? s*]. This equation is used to estimate the tendency

in Ty, amajor component in the behavior of the planetary boundary layer (PBL). Indirectly then,
our perturbations significantly affect phenomena such as lower atmosphere air temperature,
stahility, surface winds, cloud height, and precipitation. Indeed, these are exactly the phenomena
for which we wish our SREF to represent the full range of possible values. Note that our model
option variations are also directly or indirectly affecting Equation (23). For example, R, is atered
in our variation of the radiation scheme.

The four SBPs affect Equation (23) and other model aspects in various, complex ways. To
make accurate perturbations for these SBPs, and any model aspect for that matter, it is desirable
to thoroughly define their uncertainty. To demonstrate how difficult such an investigation is,
Appendix Il includes alengthy review of how MM5 models evaporation rate with the moisture
availability SBP. Even after that investigation, oneisleft with only a vague idea of the
uncertainty involved with moisture availability. Therefore, in this dissertation we avoid alengthy
discussion of exactly how the SBPs are modeled, their various direct and indirect effects, and
implications of their uncertainties since such discussion is not productive to our goals.

The difficulty in quantifying model uncertainty for constructing model perturbationsis abig
problem we faced in designing ACME™*" and a general problem that EF will likely always have.
The best we can do isto use completely different modeling approaches by selecting different
model options, and make reasonabl e approximations for the uncertaintiesin SBPs. Inthe end, if
the ensembl e with the increased dispersion from model diversity performs better, then we can

conclude that the methodology was at least sound.
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Disregarding SST, one aspect of the uncertainty in the SBPs that we could quantify somewhat
came from the manner in which the SBP values are employed. A single value for each SBP for a
certain model grid box istaken from alook-up table (Table 6) by having each model grid box
assigned one of 24 land use values. The SBP valuesin the MM5 land use table were designed to
produce long-term average results that agree with climatology, which means the SBP values can
be significantly in error on any particular forecast cycle (Bretherton, 2002). The use of fixed
valuesin agrid box further increases the uncertainty since the land use identification is simply
determined by the dominant type of surface present. For example, Figure 19 shows that the 36-
km grid boxes over the Puget Sound are all considered to be evergreen needleleaf forest, although
most contain a significant amount of open water. Therefore the model will likely underestimate
the evaporation rate in these grid boxes by applying too low a value of moisture availability.

To account for the uncertainty in moisture availability, albedo, and roughness length, we
designed a unique PDF for each SBP at each land use to represent the possible values of the
SBPs. This process involved a combination of empirical evidence, logic, conjecture, and a good
deal of imagination. All PDFs were based on the gamma PDF, Equation (24), because of its

ability to take on awide variety of shapes.

f (X; a”@) = ﬁj‘ Xa—l exp(— X) (24)

~

I(a) = _[ Ooox“‘1 e*dx

where x is the random variable (albedo, moisture availability, or roughness length), a is the shape

variable, and Sisthe spread variable. For additional flexibility, we added two more variables:
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where pisareversing variable and ¢ isatrangation variable. Thuswe needed to define four
adjustable variables (p, a, £, and {) to define each unique PDF using Equation (25).

The only concrete evidence we had concerning the possible range of values for the SBPs was
the two seasonal (summer vs. winter) valuesin the standard land use table and empirical data
from tables 7-2 and 11-4 in Pielke (2002). This gave us ageneral idea of how much uncertainty
(i.e., variance) to build into each PDF. Additional variance was included to account for the
limitations in the gridded land use process. The values of the 576 required gamma variables (4
variables for 3 different SBPs with 24 land uses and 2 seasons each) of the PDFs arelisted in
Appendix Il. A few example PDFs are shown in Figure 20.

Once al the PDFs were defined, we produced eight new land use tables (listed in Appendix
1), one for each member of ACME™*". The process involved generation of arandom deviate
from each PDF as perturbed values of the SBPs. Assuming our PDFs represent the uncertainty of
the parameters, each resulting land use table is as valid as the original standard. One limitation of
this method is that in using a unique but fixed land use table for each ensemble member, we
restricted the diversity of the perturbations to being uniform in space aswell asintime. That is,
the same perturbed value for a particular parameter and land use is applied throughout the
domain, rather than a different perturbation at every grid box with that land use. Thiswas done to
satisfy our strategy of preserving the basic MM5 modeling structure where every grid box with
the same land use uses the same parameter values.

SST is modeled much differently in MM5 compared to the other three SBPs, so our
perturbation technique is different. During the preprocessing phase, MM5 ingests a SST anaysis
field (for example see Figure 21) produced at 127 daily by the Fleet Numerical Meteorol ogy and
Oceanography Center (FNMOC) with the Optimum Thermal Interpolation System (OTIS,

described by Clancy and Sadler, 1992). The 0.2°x0.2° dataiisfit to the MM5 grids with bilinear
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interpolation and then held constant during MM5 forecast integration whereit is used to
determine the heat and moisture fluxes over water.

Given the significant influence that the eastern Pacific has on our forecast region, small SST
errors over large areas may result in notable forecast errors. Suppose SST was analyzed 1.0°C
too low over alarge region where an extratropical cyclone is devel oping before moving on shore.
The model’ s surface evaporation rate would be slightly too low, which, given time, would result
in reduced moisture well up into the atmosphere. Thiswould lead to a cascade of further effects
but, most notably, reduced precipitation when the storm makes landfall.

Holding SST constant during the 48-h forecast period introduces asmall error. In the open
ocean, the diurnal variation of SST is on the average 0.2°C to 0.3°C (Clancy and Sadler, 1992).
This can be much higher near land or if the water is suddenly well mixed. The more significant
error comes from the SST analysis cycle (a process similar to an atmospheric analysis cycle)
where an objective analysis routine combines buoy and satellite observations with an OTIS model
first guess. Clancy and Sadler (1992) suggest that the typical SST RMSE is 0.5°C —1.0°C in our
domain. Furthermore, the errors have a high degree of spatial correlation with alength scale of
roughly 150 km (Cummings, 2002).

We attempted to design SST perturbations to mimic the likely error field. This was done by
seeding a small field with random numbers, which were then smoothed and stretched to produce a
field covering our domain and having coherent structure and a somewhat conservative average
perturbation of 0.7°C. Asan example end result, Figure 22 shows the perturbation for member
plusO1 of ACME™*". Theinner domain’s perturbation was made to match up with the outer
domain to maintain consistency. Figure 21b isthe resulting SST analysis when the perturbation
isapplied to the original SST analysis (Figure 21a). See Appendix Il for all eight SST

perturbation fields.
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2. Multimodel Application

Application of the multimodel strategy is quite straightforward compared to the perturbed-
model strategy. The challenge of deciding how to represent the various sources of model
uncertainty is accomplished by simply using many completely different modelsin the ensemble.
Each model may contain unique physics packages, SBPs, numerics, resolution, boundary
techniques, and vertical coordinate. In general then, we should expect much more diversity
among members of aMMMA ensemble versus those of a PMMA ensemble, and thus greater
dispersion aswell.

Whether or not the greater dispersion of the multimodel method is a more complete
representation of uncertainty has to be determined. Just aswith PMMA thereis still the question
of whether the model differences between MMMA ensemble members are representative of
model uncertainty. When different models share similar limiting assumptions, the differencein
their solutions would underestimate model error. It isalso possible that drastically different
models produce such dissimilar results (perhaps with oppositely signed errors) that their
differences could overestimate the error of either model. In that case, aMMMA ensemble would
be overdispersive, producing a forecast PDF with too much variance.

Our MMMA ensemble system is the PME, a group of independent, operational, large-scale
models (Table 3). With our focus on the mesocale, the origina purpose of importing al these
datawas to provide the ICs and LBCs for the ACME systems. We soon realized however that
there is value on the synoptic scale in considering these original forecasts as a separate, complete
EF system. While the PME suffers from a much lower resolution, it may benefit from the greater
diversity generated by the differencesin the eight models.

By comparing the PME with ACME®" we can explore how the increased dispersion

provided by the multimodel technique affects ensemble performance. Furthermore, by
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comparing the PME with ACME™*" we can assess the differences between the PMMA and
MMMA methods in accounting for model uncertainty. Model resolution becomes a serious issue
when performing this later comparison. Comparing the skill of a set of mesoscale models to that
of aset of global modelsis sketchy at best. We will attempt to account for thisin our analysis by

evaluating only large scale features, using the outer 36-km domain.

C. Postprocessing and Analysis

In this section we will discuss how the SREF data were processed after completion of the
MM5 runs. We begin with a description of the data used as verification, which has large
implications for post processing and analysis. The two major postprocessing steps described here

are bias removal and calculation of FP.

1. Verification

A variety of statistical tools and metrics were used to evaluate and compare the skill of the
four SREF systems, including standard deterministic error measurements such as root-mean-
square error (RMSE) plus statistical tools tailored specifically to measuring EF skill such asthe
verification rank histogram, reliability diagram, Brier skill score, and relative operating
characteristic diagram (see Appendix I).

Themost critical question in any type of model verification iswhat to choose astruth. Since
the true state of the atmosphere can never be known precisaly, there exist many different
approximations for it. The characteristics of the approximation employed in verification must be
considered since this can significantly influence the results.

The primary type of truth used as verification was model-based, gridded analysis. The big
advantage isthat it provides complete coverage (both horizontally and vertically) over the model

domain so we can generate a large sample of forecast/observation datapairs. A large sampleis
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absolutely essential when assessing the quality of an EF system because of the probabilistic
nature of EF. The disadvantages of verifying with agridded analysis are: 1) thevalueis
dependent on the quality of the analysis (e.g., biasesin the analysis from use of model first guess
can lead to poor error estimation); and 2) the scales resolved by the analysis must be compatible
with those of the forecast.

For the outer 36-km domain, we chose to use the centroid analysis as verification, rather than
one of the eight PME analyses, as truth since the centroid analysis likely contains the least
amount of error and bias. The verification centroid analysisis slightly different from the from the
centroid analysis used as an IC in ACME in that we omitted one of the analyses from the Taiwan
Central Weather Bureau since it proved to contain much more error compared to the other 7
analyses. Also, because of itslow resolution, the centroid analysisis not appropriate for verifying
the mesoscal e forecast information of our inner domain. In fact, it does not even contain many
variables of interest, such as temperature at 2-m (T,) and 10-m wind speed (WSyo). Therefore we
chose to use the mesoscal e analysis provided by the Rapid Update Cycle 20-km resolution
modeling system (RUC20, Benjamin et a., 2002). The RUC20 produces a new analysis every
hour using a 3-Dimensional Variationa Data Assimilation (3D-Var) schemeto combine afirst
guess from its 50-level mesoscale model with alarge variety of observational assets.

To make the RUC20 analysis afair verification of the 12-km MM5 data, the 12-km forecast
data was smoothed out to the RUC20 grid using bilinear interpolation. Figure 23 gives asample
result of this refitting process and a RUC20 analysis. The grid alignment is different between the
two grids so the 12-km data appears skewed within the 20-km domain. Wind barbs are at every
5™ grid point on the 12-km plot (60 km apart) and every 3" grid point on the 20-km plots (60 km
apart). The smoothing of the isopleths from the 12-km data to the 20-km datais most evident

over land, but the solution remains essentially the same. It isunclear why the RUC20 analysis
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MSLP appears smoother compared to the 20-km MM5 forecast. Additionally, the RUC20
analysis has notably more variancein its T, analysis, and subjectively appears to be amore
appropriate representation of mesoscal e features compared to the MM5 forecast.

To confirm some of our results, we also used raw instrument measurements, i.e., surface
observations of precipitation, wind, and temperature. Their advantages are: 1) they verify the
sensible weather parameters that we are most interested in; and 2) they verify mesoscale
information. Their disadvantages are: 1) the observations must be fit to the model grid or vice
versa; 2) instrument error is often aconcern; and 3) it samples subgrid scale frequencies that the
model can not produce. (l.e., closely spaced observations compared to the lower resolution

model data create an overestimation of the error.)

2. BiasCorrection

Richardson (2001a) showed that, for medium-range ensemble forecasting (M REF), correcting
for biasimproves skill. This effect may be even greater for SREF since, as previously discussed,
model deficiencies (including model bias) contribute alarger portion to the total forecast error in
the short-range, before error growth from IC errors becomes very large. It istherefore critical to
correct for model biasin order to realize the full potential skill of a SREF. Additionally, we
found that it is difficult to analyze the results of SREF output without bias correction. In fact, our
conclusion of the importance of accounting for model uncertainty in a SREF became much
stronger using bias-corrected results.

In designing a bias removal method, our goal was not to pursue completely unbiased
forecasts with some complex routine (e.g., multiple regression as used by Model Output
Statistics) but simply to remove the bulk of the bias with an effective method and then to study
the effects on ensemble performance. Scatter plots (Figure 24) of forecasts vs. observations

reveal that the biasis predominantly linear and easily identifiable at a given model grid point. A
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fairly ssimple method of using a mean bias correction is therefore appropriate. We also found that
the biasis highly dependent on location, forecast lead time, flow regime, and ensemble member
(i.e., moddl), which somewhat complicated our simple method.

Using the complete dataset, Figure 24 shows how the MSLP, 48-h forecast bias (defined as
forecast/observation) variesfor different models at the same grid point. The ngps and gasp
forecasts have completely opposite biases while the ukmo forecasts (at this grid point) are nearly
unbiased. Notice however that when the ukmo ICs and LBCs are used in MM5 for ACME®", the
forecasts then exhibit bias (of MM5). Even though all members of ACME®* use the same
model, they dtill have different biases. In amesoscale model, there is evidently a component of
bias from both model and from the ICs and LBCs.

Figure 25 shows how MSLP forecast bias varies over space and lead time for a given
member. One glaring fact isthat the bias behaves very differently over land and ocean. The high
bias over the ocean (especially the northern Pecific) islikely due to underforecasting the intensity
of cyclones. Over land, there is a predominantly low bias, which could be due to incorrect
heating in the boundary layer and/or problems with the reduction of pressure to sealevel over
high terrain. It isvery evident that the biases are significant and highly dependent upon location
and forecast lead time.

For a given parameter, we defined bias by

_iN

J (26)

where N isthe number of forecast casesin the training data, fi; isthe forecast at grid point i, j
and lead timet, and o;; isthe verifying observation. This bias was then applied to a new forecast

(not in the training data) to create a corrected forecast by
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fiTJ',t = bl'j’t (27)

1.t

In general alarge amount of training data (i.e., long training period) is desirableto insure a
sound statistical sampling of the bias. However, we found that along training period (e.g., the
last 60 forecast cases) produced rather small improvements. Thisislikely dueto aslow but
steady shifting of the bias due to changesin the flow regime. For example, amodel that typically
underforecasts T, at some location may do so with varying severity depending upon season or the
prevailing synoptic situation, as evidenced in Figure 26. At the other extreme, we found that
using an very short training period (e.g., thelast 5 forecast cases) produced highly variable results
with amix of spectacular improvements and large degradations. Thislikely reflected regime
shiftsin which similar errors occur for several daysinarow. Sinceit isbeyond our ability to
predict such shifts, we compromised on a 2-week training period to smooth out the variability.

Since we wanted to demonstrate a method that could be applied in real time, we used a
running bias remova where a unique bias correction was computed each 48-h forecast period,
based on model performance over the previous 2 weeks. An example training period for the
forecast initialized at 00Z on 29 Jan 2003 is shown in Figure 10. Where there are missing case
days, the training period is extended to always include 14 forecast/observation data pairs. The
bias-corrected dataset, a subset of the full dataset, begins on 25 Nov 2002 and consists of 112
total forecast cases (Figure 10).

This bias removal technique worked quite well for MSLP and T, but not very well for WSy,
for two reasons. One problem is that while a multiplicative biasis appropriate since WS bias
appearsto increase with wind speed (Figure 274), unrealistic bias values can result for very small

WS, values. Secondly, unlike MSLP and T, the variance of WS, errorsincreases with wind
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speed and also becomes very large toward the 48-h lead time. Of most concern isthat the errors
can vary widely from case to case, often producing an inappropriate bias.

Figure 27b shows that applying the above bias removal technique can result in a severe
overcorrection. This effect is greatly relieved by simply removing any instance of forecast or
observed WS, below 1.0 m/s, thus avoiding unrealistic bias values (Figure 27¢). However, there
are still an unacceptably large number of notable underforecasts, which isalarger concern for
operational forecasting than overforecasting. Raising the cutoff further reduces this problem, but
aproblem of undersampling then arises. With a higher cutoff, the 14-day training period often
contains only afew samples, making it very unreliable. We therefore chose to keep the cutoff at
1.0 m/s and reduce the resulting multiplicative bias from Equation (26) by 50%. In other words,
once the biasisidentified, the forecast is given an adjustment in the right direction but lessened to
avoid the problem of overcorrection. We expect aslight overforecast biasto remain, but that isa
better option than having alarge number of underforecasts. It isthe large variability of the WS,
errors that makes the reduced bias-correction necessary.

Figure 28 through Figure 34 show the results of our bias-correction method for all SREF
systems and forecast parameters of interest. The RMSE and bias (forecast — analysis) were
averaged over al grid points of the bias-corrected dataset. The results for the ensemble mean
forecast are included for each SREF system since removing its biasis what we are redly trying to
dointhisprocess. The goa isto produce more highly skilled FP by forcing the forecast PDF to
be centered about the verification in the long-term average.

As one might expect, alarger improvement was realized where there was alarger bias. This
is most evident in the MSLP results where the PME members are on the low extreme with small
average biases and percent improvements, and the ACME®™*" members are on the other extreme.

The lower bias of the PME membersis likely due to the lower resolution and better tuning of
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these large-scale models. A mesoscale model may produce more bias asit attempts to represent
smaller scale phenomenawith smaller grid spacing and more complex parameterizations.

The reason that ACME®™*" generally has larger biases and RMSE values compared to that of
ACME®*®is because many of the model options selected are inferior to the standard MM5
version (Table 4). Notice that thisinferiority is mostly reflected in biased error since the
differences between parallel members of the two systems before bias correction are dramatic but
negligible after bias correction. We concluded, by comparing the results of ACME™* avn and
ACME™*" plus01, that this effect is due to the model option variations and not from bias
introduced through our SBP perturbations. These members have nearly identical model options
and the same average bias and RMSE, but they produce quite different solutions due to plus0l’s
perturbed SBPs. Thislikely meansthat the SBP perturbations are performing precisely as
desired, producing an equally likely solution by perturbing within uncertainty.

Notice that amodel can have a shifting bias so that it displays little bias on average. Consider
ACME®"® avn MSLP (Figure 29) at 24 h, which shows negligible average bias before and after
correction, but a 14% improvement in RMSE. The explanation is that the forecasts contained
opposing biases that mostly averaged out over space and time but were corrected for by our
method.

There are severa conclusions to be made by comparing MSLP bias and RMSE between the
PME and ACME®* (Figure 28 and Figure 29). The MMJ5 forecast from the same ICs are
generally worse than the paralldl large-scale model, especially for the superior models such as
avn and ukmo. This may be partly due to the effect of MM5's higher model resolution artificialy
increasing RMSE, but it is more likely due to the fact that the global models can more accurately
predict the development of large-scale weather systems. Such information is only weakly

trandated into the MM5 solution through LBC updates so synoptic waves within the MM5
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domain can drift off considerably from the large-scale model’ s solution. Also hote the similarity
in bias and relative RMSE of the parallel component members of the PME, ACME™", and
ACME™*" (Figure 28 — Figure 30). Thislikely indicatesthat, for a predominantly synoptic-scale
parameter such as MSLP, the primary source of forecast error isthe ICs since applying the same
ICsto different models makes only small differencesin the error.

For T, bias and RMSE of ACME™"® (Figure 31) there is almost no difference among the
various members. Thisindicatesthat for T, , a primarily mesoscale parameter, forecast error is
mostly influenced by the model and not the ICs since the error is virtually the same no matter
what IC isapplied. Thisconclusion isreinforced in Figure 32 where the different models of
ACME™*" do exhibit notable variationsin bias and RMSE. Lastly, the fact that thereis very little
growth in the error with forecast lead time is a third indication of the predominance of model
error. (Thiswill be discussed further in the next chapter.)

An interesting result of the T, bias correction is the disparity between the 12/36-h bias and the
24/48-h bias. Since al forecasts were made at 00Z (5PM local time), the differenceisfor the late
night bias vs the late afternoon bias. Evidently, MM5 greatly underforecasts the late afternoon
temperature from the daytime heating. Thisistrue for the ssandard MM5 version and even more
pronounced for some members of ACME™". The late night T biasis much weaker and varies
depending on MM5 version. The strong late afternoon bias points to a serious deficiency in the
radiation and PBL schemes.

The results of the WSy, bias correction (Figure 33 and Figure 34) are unimpressive compared
to those of MSLP and T,. The higher variahility in WSy, errors makes any bias removal scheme
less effective. Furthermore, the effect of the 50% reduction in the multiplicative biasis aso
evident as much of the overforecast bias remains after correction. All of our attemptsto fully

remove the bias resulted in degradations of RMSE (not shown).
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The variability of the WS4 bias and RMSE among the membersis larger than with T, but not
aslarge aswith MSLP. This suggests that for WS, the source of the error is afairly even mix of
model and IC. This makes sense since surface winds are determined by the large-scale pressure
gradient at the surface (which is mostly determined by the ICs) and by mesoscal e features such as
local terrain and heating (which are determined by model physics). Examining the source (model
vs. IC) isan important issue in this research and will be explored further in the next chapter.

Lastly, to confirm the value of this bias removal technique, we used observation-based
verification over a one week period to evaluate both uncorrected and bias-corrected forecasts.
Thisisan indirect way to determine the quality of the gridded analysis used in the bias correction.
It is possible that our bias correction simply adjusted the forecasts toward a poor or biased
representation of truth. If the grid-based bias removal also improves the forecast with respect to
station observations, we can be more confident in the quality of the gridded analysis. The big
advantage of a grid-based vs. an observation-based bias removal isthat the grid-based provides a
domain-wide improved forecast, rather than only at the limited areas covered by observations.

Figure 35 shows that for MSLP the grid-based bias removal does work rather well with
respect to station observations. Although the negation of bias and percent improvement are not as
impressive asin Figure 29, they are still quite positive. This result leads us to conclude that the
centroid analysisisin good agreement with station observations. One significant disparity
between Figure 29 and Figure 35 isthe much larger RMSE for the observation-based verification.
Thisis most likely due to the concentration of station observations over land for Figure 35 (where
MSLP is more variable), whereas Figure 29 was made using the entire 36-km domain.

The observation-based verification results for T, are mixed. Figure 36 shows that while we
obtained excellent results for negating the bias at all lead times, we were only able to improve

RMSE in the late afternoon times and actually degraded the forecast in the late night lead times.
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The reason for the nighttime degradation is likely due to the higher variability of T, errors,
making it possible to correct a bias but difficult to improve RMSE. Additionally, the RUC20
analysis probably does not agree well with the station observations at night since the RUC20

model may have serious deficiencies in modeling the nighttime boundary layer.

3. Forecast Probability Calculation

Back in Chapter I.A, we introduced the idea that potentially the most val uable application of
EF isthe production of FP of some forecast event. Thisis because it combines all the EF
information into a single product, encapsul ating the forecast uncertainty and providing a product
useful in decision making. In this section we will describe the FP cal culation method that we
employed. To simplify the discussion somewhat, the equations and sample calculations will all
be for the probahility of the verification exceeding the event threshold.

There are many possible waysto calculate FP from an EF. In Chapter |.A we described how
one could use the appropriate area under a PDF that was directly fitted from the ensemble. This
method, revisited in Figure 37 for a hypothetical forecast PDF of WS,o, would only be effective
for avery large ensemble. For anideal ensemble of infinite size, the resulting FP = 77.1% for an
event threshold of 20.0 kt represents the genuine probability of occurrence. Notethat if the
ensembleis nonideal but infinitein size, this method does not guarantee skillful FP. To achieve
high resolution (i.e., sharp forecasts) and high rdiability (FP = ORF ), the EF system still hasto
meet the other demands of properly accounting for analysis and model uncertainty.

For practical purposes, a different method is required to obtain FP since it is not normally
possibleto reliably fit a PDF to an ensemble of finite size and to a distribution of unknown shape.
Consider asimulated ensemble of WS, forecasts at some grid point, created by drawing eight

random, ordered samples from the true forecast PDF (thick curve in Figure 37):
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WS, ={16.5, 21.1, 23.3, 25.3, 27.4, 34.4, 40.2, 47.8kt}
For demonstration purposes, we fit a continuous PDF (thin curve in Figure 37) to this datato
show how low sampling alone creates an erred FP = 81.6%, but again, such atechnique is not
practical because of the difficultiesin making areliable fit.

The most common method (used in current, operationa EF) to calculate FP is often called
democratic voting (DV). Asthe name implies, each ensemble member gets an equal vote on
what the true state of the atmosphere may be. Mathematically, the probability of the verification
(V) occurring above the event threshold (7) is simply found by

14, .
P(V>r)=ﬁiz_1:(1|f % >7,0if X <7) (28)
where x; isthe value of the " ensemble member. Using the same 7 as above, FP = 7/8 = 87.5%
since seven of the forecasts were greater than 20.0kt. The large error of 10.4% compared to the
genuine FP of 77.1% is partly due to the small sampling but is aso aresult of asystematic
problem with DV.

DV effectively bins FP into n+1 possible values (the topmost valuesin Figure 38). Thereis
nothing necessarily wrong with binning FP, but for DV the resulting bin values are fixed in a
biased way with respect to the ordered EF values. The gaps (ranges of values between two
members) among the ordered EF members should be considered to be an evenly spread
continuum of probability since on average the members represent evenly divided quantiles. The
horizontal arrows in Figure 38 show how possible positions of an event threshold get binned. DV
effectively pushes FP toward the extreme values, so that high FP is normally overforecast and
low FP isnormally underforecast. This exacerbates the problem of low sampling as we will

demonstrate bel ow.
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An alternative method which we adapted from Hamill and Colucci (1997) is called uniform
ranks (UR). Inthelower part of Figure 38, UR begins by uniformly breaking up the tota
probability into n+1 ranks that match the possible rank positions of the event threshold when
pooled with the ordered EF members. Similar to DV, the prabability from the ranks that exceed
the event threshold is summed. Then, rather than simply add on half the probability from the
rank where the threshol ds occurs, we add on afraction of the probability proportional to the
distance from 7 to the surrounding members' values. For a r with aranking of i (when 1<i<n)
among the ensemble members, the probability of the verification occurring between 7and the i

member is

p(T<V<xi):[&} 1 29

X — %4 n+1
This procedure assumes that the random variable is uniformly distributed between ensemble
members. Inour example, theresultisFP=7/9 +[ (21.1-20.0) / (21.1 - 16.5) ] * 1/9 = 80.4%,
avalue much closer to the genuine FP of 77.1% compared to the DV FP of 87.5%. Such an
improvement is not consistently the case for the two methods, but UR is a superior method on the
whole.

The biggest improvement of UR over DV isfor extreme FP values, i.e., when 7 isranked 1
or n+1 when pooled with the ensemble members. Continuing with the same example but now
with a 7 = 50.0kt, DV would give FP = 0.0% since al the forecasts are below the threshold.
However, since the discrete members of the EF are actually representing a PDF and 7 is so close
the largest member, thereis till a nonnegligible chance that the verification will exceed T.

In UR, we calculate the fraction of probability from the outside ranks with a separate
procedure (Figure 39a). Aswith the interior ranks, the probability is found by taking a portion of

probahility in the outside rank based on the numerica distance between the highest member and
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. However, using alinear proportion isinappropriate since we are dealing with the tails of the
PDF. Additionally, thereis no (n+1)" EF member with which to calculate a linear proportion.
Therefore, the tota probability of rank n+1 is considered to be the upper extreme end of the

sampl€’ stheoretical Gumbel cumulative density function (CDF) (Wilks, 1995):

E-x
F = -
(X) exp( exp( 5 D (30)

556 F=x- B

71

where x isthe random variable, and S and £ are the Gumbel parameters estimated using the
sample standard deviation s and the sample mean X . The Gumbel distribution was used because

of its ability to characterize extreme events (Hamill and Colucci, 1997; Wilks, 1995). The

probahility of the verification occurring above the event threshold is then:

(v=r)=[ SR @

where F(7) isthe Gumbel CDF value at 1, F(x,) isthe Gumbel CDF value at the value of the
highest ranked ensemble member, x,. After fitting our example EF to the Gumbel, we calculate
FP=[ (1-F(50.0))/ (1L-F(47.8)) ] (1/9) = 8.5%. Thisisalow but significant chance of
occurrence for which DV would assign an FP of 0.0%.

The opposite extreme of 7 occurringinrank 1 (i.e., 7 falls below the lowest ensemble
member) is handled in asimilar fashion by reversing the Gumbel CDF sinceit istheright tail that
represents extreme events so well. For random variables such as WSy, that are bound by 0.0 on
the left, we mimic a fixed CDF with an exponential, thus assuring that probability dropsto zero

asrequired:
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P(v >7)= (1—()83} ni+1 (32)

where x; isthe value of the lowest ranked ensemble member.

When the ensemble produces a poor estimate of the forecast PDF, UR can not provide a
much better approximate FP. In such cases, which of course occur more frequently for smaller n,
the FP from both UR and DV suffersequally. (The only way around that problem isto increase
ensemble size since a poor sampling can not be identified apriori.) Ironically though, URisa
more dramatic improvement over DV when nis small since DV suffers more for smaller n.
Therefore, the real improvement of UR over DV isfor small n on cases that are reasonable
approximations to the forecast PDF. On average, over alarge number of redizations, UR
produces superior FP sinceit either performs the same or better than DV.

Richardson (2001b) showed that the result of undersampling on FP is an overconfident EF.
Sincethetails of the PDF are less likely to be represented, high FP values are normally
overforecast and low FP values are normally underforecast. This effect isrevealed in ardiability
diagram by a curve with aclockwisetilt. What Richardson (2001b) failed to realizeis that DV,
which he used to calculate FP, exacerbates the problem with its biasing of FP toward the extreme
values.

To demonstrate this fact, we performed a sampling experiment similar to that of Richardson
(2001b) where a perfect ensemble was simulated by taking an observation and n random draws
from the same WS, PDF. The event threshold applied was again r = 20.0kt and the PDFs were
similar to Figure 37 but allowed to vary from case to case to get afull range of FP. FP was
calculated by both DV and UR using a set of 10° smulated forecast cases. Figure 40 shows that
both methods result in an overconfident EF, but UR is adramatic improvement over DV for small

n. Asnincreases, both methods approach perfect reliability and the improvement by UR
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diminishes. This experiment also provides us away to estimate the expected Brier Skill score
(BSS) improvement by the ACME system (n = 17) over ACME™® (n = 8). Repeating the
experiment with those ensembl e sizes we found that there was an increase in BSS of ~0.03.

While the UR method produces a better estimate of FP, the result isjust as uncalibrated as
DV. Both methods assume that the ensemble members are all equally likely and that there are no
systematic errors. Figure 39b shows how the UR method can be changed into the
weighted ranks method to account for systematic errors (Eckel, 1998). Instead of multiplying by
1/n+1in Equations (29), (31), and (38), we multiply by the historical probability of verification
occurring in that rank. Thisis provided by a verification rank histogram, a record of where the
verification has occurred among the ordered EF members over many past cases. By using rank
probability based on past performance of the ensemble, systematic errorsin the ensemble are
compensated for. In Figure 39b, the ensemble is evidently underdispersive so thereis a greater
chance of verification occurrencein the last rank. The fraction of the rank’s probability is
calculated asin UR, but the final value of FPis now higher, reflecting the greater odds that the
event will occur given this particular EF.

The weighted ranks method produces a more reliable and calibrated FP (Hamill and Colucci,
1997; Eckel and Walters, 1998). We did not, however, apply this technigque because FP
calibration is not a specific issue of thisresearch. We chose to be satisfied with the results of the

UR method.
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Figure 10. The 129 forecast case days of the research dataset over the 2002-2003 cool season. A
48-h forecast cycle wasinitialized at 00Z on each date. Darkly shaded dates contain at least one
incomplete or missing member of one of the ensemble systems, so were dropped from the dataset.
The lightly shaded 2-week period is an example training period that was used to compute a bias
correction for the indicated example forecast period. The bias-corrected dataset consists of 112
cases, which are the complete cases beginning 25 Nov 2002.
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Figure 11. Grid domains (Lambert conformal projections) of the SREF systems. (a) 151x127,
36-km resolution domain. (b) 103x100, 12-km resol ution domain.
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Figure 12. Display of the mirroring of RH for three different values of the centroid RH (thin solid
line): (8) RHc = 80%, (b) RHc = 50%, and in (c) RHc = 20%. Thethick solid line gives all
possible values of RH, (moisture analysis). The dotted line is the resulting mirrored RH with
truncation of bad values. The dashed lineisthe Zeno-mirrored RH value.
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Figure 13. 2-D demonstration of the mirroring technique. The solid lines represent eight

analyses of MSLP across alatitude line and the dotted lineisthe centroid. The thick lineisthe

analysis used to produce the example mirrored 1C (dashed line).
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Figure 14. Smulated EF attempts to represent a hypothetical forecast PDF (solid curve). The
plots on the | eft are normalized histogram (class interval size = 5.0 gpm) of eight random samples
and their fitted normal (dashed curve), representing ACME™®. The plots on the right represent
an expansion of the ACME™* plotsinto the full ACME (core, centroid, and the mirrors). (a) A
casewith X too big and stoo small. (b) A case of excellent reproduction of the PDF. (c) A case

with X too small and stoo big.
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except the sampling theory PDF (thick solid curve) isax? distribution. The average s”is
223.7 gpm? and the standard deviation is 130.6 gpm. For reference, the variances of the three
cases in Figure 14 are indicated along the distribution.



95

0.04 T
(@)

>
2 omsl
[«]
=]
8
f—
LL

002 [~
B
®
£
O 001
zZ

%340 5355 5370 5385 5400 5415 5430 5445 5460 %340 5355 5370 5385 5400 5415 5430 5445 5460

500mb Geopotential Height (gpm)

> 1 T T T
= 09 — —
=
Q 08 — -
o
& o7 - _
@ 0.6 - -
g
o 05 ] ]
L
L 04 = =
=
® o3 - -
=]
e 02 — —
>
8 01 - -
a l l l l N | l l l l L |

%340 5355 5370 5385 5400 5415 5430 5445 5460 %340 5355 5370 5385 5400 5415 5430 5445 5460

500mb Geopotential Height Threshold
01 T T T T~ T T 01 T T T T T T T
/ k\

© ,

Error in Forecast Probability

| | | | | | | | | | | | | |
—4 -3 -2 -1 0 1 2 3 4 —4 -3 -2 -1 0 1 2 3 4

Standardized Threshold (o units)

Figure 17. Impact on forecast probability of the standard error in mean and variance of an
idealized eight member ensemble. The thick solid curve isfor the true (i.e., correct) forecast PDF.
Thethin solid curveisfor the standard error in the mean. The long-dashed curveisfor standard
error in the variance. The short-dashed curve on the right hand side panelsis for the combined
effect of both errors. Panels (a) and (b) are the PDFs, panels (¢) and (d) are the decumulative
density functions, and panels (e) and (f) resulting errorsin FP vs. possible event threshold
(standardized to o units by subtracting £ then dividing by o).



96

7 T T T e h T — T T
- : N NN E, LR
“ Seoy—14.49 mE

A

o, e,
[~ ! S TG 4,
O™ e o
L e et
==

|
h K\\'l r”rf/"a_?'_gl,/ i
2 | (0] i i
= g

N il N e e
=~ 5 I\.g-,"l\”;ﬁ_.r
y el ARl

_2 ||:i.|'

i wih

[
2 Bt
L
6 —_
J 1
i ¥
- i S N AT
e
NRES T
—— e ek

; A e

WL i
T ,\_\_Lw_;\\.\\\\: \3\\ %:.

0] r I
/ s Ny
R v 7/ SRR E
i e
ASY =S ENRAY W et
k e S
Ol 15 ENY
R R B T A = X
F i |,I..|\f[ RS

I P 4 1
T I.: I 2 ) PN :l| 5
! i — - —2 1 o
[ |—2.46 T 1}'?
[ OH, i
.1
2
. %

Plusi3MSLPMAE|( [ | & nﬁ
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Figure 20. Sample surface boundary parameter PDFs. The solid curveis for summer and the
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standard MM5 land use table. For awider PDF there is more uncertainty in the value of the SBP.
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Figure 21. Example SST (in °C) fields from 8 Jan 2003. (a) The unperturbed field used by all
ACME™* members. (b) The perturbed field used by member plus01 of ACME™*", made by
applying the perturbation shown in Figure 22 to (a).
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Figure 22. Plot of the SST perturbations for member plusO1’'s outer domain and inner domain,
which are made to match up. Isopleths are positive (solid) and negative (dashed) perturbation
values. The apparently high gradient at the shorelineis an artifact of the plotting routine and not
present in the actual perturbations.
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Figure 23. Sample ACME®™® avn 3-h forecast data taken from the 12-km MM5 grid (top plots)
and fit to the 20-km RUC20 grid (middle plots), valid 3Z, 21 Dec 2002. Left column plots are
MSLP and WS, and right column plots are T,. The bottom plots are the RUC20 analysis data

used to verify the middle plots.
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Figure 24. Scatter plots of 36-h forecast MSLP vs. centroid-analysis verification at point 111, 69

in the 36-km domain, a grid point in eastern Washington.
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Figure 25. MSLP bias (multiplicative) for the avn member of ACME™" at forecast lead time of

(@) 24h, and (b) 36h.
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Figure 26. Scatter plots of 24-h forecast T, vs. RUC20 verification at point 50,50 in the 20-km
domain, agrid point in southern British Columbia. The top plot includes all 129 case days and
the two lower plots are for subset, 14-day periods, asindicated. The open diamond in the two
lower plotsisthe next, sequential forecast (after the 14-day period) showing that itslikely biasis
normally more closely related to that of the recent past cases.
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Figure 27. Scatter plots of 39-h forecast WSy, (in m/s) vs. RUC20 verification at agrid point in
southern Puget Sound, WA, from member plusO1 of ACME®™*®". (a) The uncorrected forecasts
and observations showing the increasein error and variability of error with increasing wind
speed, but with an obvious overforecasting bias. (b) Using the regular bias-correction method

resultsin an overcorrection. (¢) Using the regular bias-correction with a cutoff of 1.0 m/s (fcst.
and obs. < 1.0 m/s are ignored), greatly improves the correction, but there are still too many
underforecasts. (d) Reducing the multiplicative bias by 50% prevents the underforecasting

problem.
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Figure 28. Results of MSLP bias correction for PME averaged over al bias-corrected cases,
using the outer, 36-km domain. (@) and (b) show RMSE (clear histograms) and bias (shaded
histograms) before and after bias correction, and the percent improvement (also shaded) in RMSE
isgivenin (c). Theresultsfor the EF mean of PME is also shown.
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Figure 29. Asin Figure 28 but for ACME™",
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Figure 31. Asin Figure 28 but for ACME®*® T, data from the inner, 12-km domain, fit to the

RUC20 20-km analysis grid.
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Figure 32. Asin Figure 28 but for ACME®™*" T, data from the inner, 12-km domain, fit to the

RUC20 20-km analysis grid.
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Figure 33. Asin Figure 28 but for ACME™"* WSy, data from the inner, 12-km domain, fit to the
RUC20 20-km analysis grid.
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Figure 34. Asin Figure 28 but for ACME™*" WSy, data from the inner, 12-km domain, fit to the
RUC20 20-km analysis grid.
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when comparing to Figure 29. Observation-based verification of the EF mean was not available.
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Figure 36. Asin Figure 35 but for T, datafrom the inner, 12-km domain. Note the downward-
shifted scale in (¢) when comparing to similar figures.
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ensemble with infinite members. The thin curve is a PDF fit to an ensemble of eight members
(see text) drawn from the same ideal ensemble. The arrow indicates the event threshold (WS, >

20 kt) so the genuine FP for the event isthe solid area under the thick PDF to the right of the

event threshold. The hatched areais the 8-member ensembl e’ s estimated FP.
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Figure 38. Schematic calculation of FP by DV and UR for the example ensemble WS, forecast
and an event threshold of 20.0kt. A “gap” isthe range of values between two ordered members.
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Figure 40. Effect of ensemble size and FP calculation methodology on FP skill. Resultsfor FP
calculated by DV are the dashed lines with circles. Resultsfor FP calculated by UR are the
dotted lines with squares. The solid diagonal is the line of perfect reliability which both
calculation methods should produce since a perfect ensemble was simulated. To make the
comparison fair, the continuous FP of UR was binned into the same number of bins (i.e., n+1) as
set by the DV method. The Brier skill score (BSS) and its components, resolution (res) and
reliability (rel), areinset in each plot for the two methods.
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Table 2. Brief description of the four SREF systems. (SMMA = SingleMo del Multianalysis,
PMMA = Perturbed-Model Multianaysis, and MMMA = Multimodel Multianalysis)

# of |Configuration EF |Domain | Forecast
Mbrs| Name ICs Type | (km) |Interval (h) Description
ACME - 8 Analyses (core) | SMMA | 36/12 3 - Analysis-Centroid Mirroring
17 - 1 Centroid Ensemble
- 8 Mirror - All members use the same
version of MM5
ACME™* | 8 Analyses(core) | SMMA | 36/12 3 - Core subset of ACME
- All members use same
version of MM5
ACME®*®" | 8 Analyses (core) [PMMA | 36/12 3 - Core subset of ACME
8 - Each member has different
version of MM5
PME 8 Analyses (core) [IMMMA/| 36 6 - Poor Man’s Ensemble

- Each member has a different
model (see Table 3)
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Table5. Data of three core samples of n=8 from the normal distribution & =5400 gpm and
o = 15gpm, and the resulting centroid and mirror values.

Case| EF Group Data X S
@ Core 5398.3, 5399.7, 5394.5, 5407.3, 5417.0, 5411.9, 5418.7, 5409.1 | 5407.050 | 8.868
A Centroid 5407.1
'\é Mirrors |5415.8, 5414.4, 5419.6, 5406.8, 5397.1, 5402.2, 5395.4, 5405.0 |5407.050 | 8.295

(b) Core  |541256, 54137, 5385.4, 5417.9, 5399.1, 5397.8, 5372.0, 5400.3 |5399.835 | 15.431
Centroid |5399.8
Mirrors |5387.1, 5386.0, 5414.3, 5381.8, 5400.6, 5401.9, 5427.6, 5399.4 |5399.835 |14.434
(c) | core  |5367.0,5383.2,5408.9, 5395.8, 5404.5, 5424.3, 5396.1, 5364.6 |5393.047 | 20.558
A Centroid 5393.0
¥ Mirrors |5419.1, 5402.9, 5377.2, 5390.3, 5381.6, 5361.8, 5390.0, 5421.5 |5393.047 |19.231

mZO>
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Table 6. The standard MM5 land use table, in the exact file format employed in the MM5 code.
The perturbed surface boundary parameters are albedo (ALBD, as a %), moisture availability
(SLMO, as afraction of 1.0), and roughness length (SFZO, cm) . The other parametersinclude
emissivity (SFEM, as afraction of 1.0), thermal inertia (THERIN), snow-effect factor (SCFX),
and heat capacity (SFHC).

USGS

24,2, "ALBD SLMO SFEM SFZ0 THERIN SCFX SFHC '

SUMVER

1, 18., . 10, . 88, 50., 3., .52, 18.9e5,' Urban and Built-Up Land'

2, 17., . 30, .92, 15., 4., .60, 25.0e5,'Dryland Cropl and and Pasture'
3, 18., . 50, .92, 15., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 18., . 25, .92, 15., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture'
5, 18., . 25, .92, 14., 4., .60, 25.0e5,' Cropl and/ G assl and Msai c'

6, 16., . 35, . 93, 20., 4., .60, 25.0e5,' Cropl and/ Wodl and Msai c'

7, 19., . 15, .92, 12., 3., .60, 20.8e5,' Gassland'

8, 22., . 10, . 88, 10., 3., .62, 20.8e5, " Shrubl and'

9, 20., . 15, . 90, 11., 3., .60, 20.8e5,'M xed Shrubl and/ Grassl and’

10, 20., . 15, .92, 15., 3., 0., 25.0e5,"' Savanna'

11, 16., . 30, . 93, 50., 4., .56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 14., . 30, . 94, 50., 4., .50, 25.0e5, "' Deci duous Needl el eaf Forest'
13, 12., . 50, . 95, 50., 5., 0., 29.2e5,' Evergreen Broadl eaf Forest'
14, 12., . 30, . 95, 50., 4., .50, 29.2e5,' Evergreen Needl el eaf Forest'
15, 13., . 30, . 94, 50., 4., .54, 41.8e5,' M xed Forest'

16, 8., 1.0, .98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 14., 60, . 95, 20., 6., .55, 29. 2e5, "' Herbaceous Wt and'

18, 14., 35, 95, 40. , 5., .58, 41.8e5,' Woded Wt and’

19, 25., 02, . 85, 10., 2., 62, 12.0e5,'Barren or Sparsely Vegetated'
20, 15., 50, .92, 10., 5., 60, 9.0e25,"' Herbaceous Tundra'

21, 15., 50, . 93, 30., 5., 60, 9.0e25,' Woded Tundra'

22, 15., 50, .92, 15., 5., 60, 9.0e25,'M xed Tundra'

23, 25., 02, . 85, 10., 2., 62, 12.0e5,'Bare Ground Tundra'

24, 55., 95, . 95, 5., 5., 0., 9.0e25,"' Snow or |ce'

W NTER

1, 18., 10, . 88, 50., 3., .52, 18.9e5,' Urban and Built-Up Land'

2, 23., 60, .92, 5., 4., .60, 25.0e5,'Dryland Cropland and Pasture'
3, 23., 50, .92, 5., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 23., 50, .92, 5., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 23., 40, .92, 5., 4., .60, 25.0e5,' Cropl and/ Grassl and Msai c'

6, 20., 60, . 93, 20., 4., .60, 25.0e5,' Cropl and/ Wodl and Msai c'

7, 23., 30, .92, 10., 4., 60, 20.8e5,"' Grassl and'

8, 25., 20, . 88, 10., 4., .62, 20.8e5," Shrubl and'

9, 24., 25, . 90, 10., 4., .60, 20.8e5,'M xed Shrubl and/ Grassl and'

10, 20., 15, .92, 15., 3., 0., 25.0e5,"' Savanna'

11, 17., 60, . 93, 50., 5., .56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 15., 60, . 93, 50., 5., .50, 25.0e5, ' Deci duous Needl el eaf Forest'
13, 12., 50, . 95, 50., 5., 0., 29.2e5,' Evergreen Broadl eaf Forest'
14, 12., . 60, 95, 50., 5., 50, 29.2e5,"' Evergreen Needl el eaf Forest'
15, 14., . 60, 94, 50., 6., 58, 41.8e5,' M xed Forest'

16, 8., 1.0, 98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 14., .75, 95, 20., 6., 55, 29.2e5,' Herbaceous Wetl and'

18, 14., .70, 95, 40. , 6., 58, 41.8e5,' Woded Wt and'

19, 25., . 05, . 85, 10., 2., .62, 12.0e5,'Barren or Sparsely Vegetated'
20, 60., . 90, .92, 10., 5., 0., 9.0e25,' Herbaceous Tundra'

21, 50., . 90, . 93, 30., 5., 0., 9.0e25,' Woded Tundra'

22, 55., . 90, .92, 15., 5., 0., 9.0e25,'M xed Tundra'

23, 70., . 95, . 95, 5., 5., 0., 12.0e5,'Bare G ound Tundra'

24, 70., . 95, . 95, 5., 5., 0., 9.0e25,"' Snow or Ice'
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[11. Results

In this chapter, we discuss the analysis of the four ensemble systems. Since each system has
such unique attributes, intercomparison of the systems reveal s answers to many questions
surrounding SREF and indicates areas in need of further research. Appendix | reviewsthe
various tools and metrics used in this chapter. Of particular note are two new measures—the
standardized verification (V) and the verification outlier percentage (VOP).

The results presented in this chapter may be influenced by the somewhat anomal ous weather
pattern of the 2002-2003 cool season. Figure 41 (borrowed from McMurdie and Mass, 2003)
compares the Zsq mean and root-mean-square (RMS) of the time-filtered Zsy for the past two
cool seasons. Higher RMSvalues are indicative of larger Zsy variance and therefore more
frequent storms. In atypical cool season, such asin Figure 41a, the Pacific NW experiences a
fairly continuoustrain of extratropical cyclones from the predominantly zonal flow aloft over the
eastern Pacific. In contrast, during the 2002-2003 cool season of Figure 41b, there were many
prolonged periods of upper-level blocking that left the Pacific NW under a fair-weather ridge.
Such blocking patterns are not unusual for the Pacific NW but are normally not so frequent. We
suspect that the dominance of the fair-weather ridge pattern influenced our results, as we will
describe later, but our general conclusions are not affected.

Unless otherwise noted, the analysis dataset was the 112 forecast cases of the bias-corrected
subset (see Figure 10). Results using bias-corrected forecasts are denoted with an asterisk prior to
the ensemble system’ s name (e.g., *PME). The entire outer 36-km or inner 12-km grid domain
was anayzed except for the outer most 5 rows and columns where lateral boundary condition
(LBC) information was updated. All analysis of the predominantly synoptic-scale parameters,
500 mb geopotentia height (Zsy) and mean sealevel pressure (MSLP), was performed on the

outer 36-km domain data using the centroid analysis (without tcwb) as verification. All anaysis
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of the mesoscal e parameters, 2-m temperature (T,) and 10-m wind speed (WS,,), was performed
on the inner 12-km domain data using the RUC20 analysis as verification by fitting the MM5 12-

km forecasts to the RUC20 20-km grid.

A. Impact of Bias Correction

In the previous chapter, we demonstrated the need for and the positive results of our bias
correction method from a primarily deterministic point of view and only touched on the possible
impacts to SREF. Now we present results to describe two distinct benefits of removing biasin a
SREF system: 1) that the quality of all SREF products, particularly forecast probability (FP), is
increased, and 2) that redistic evaluation and comparison of SREF systemsis possible. Thefirst
benefit was anticipated but the improvement in SREF by bias correction exceeded expectations
because the model biases are so large. The second benefit was unexpected, for asthe analysis
progressed, we discovered that only with bias-corrected data could we draw any firm conclusions.

From Figure 28 — Figure 34, it isclear that correcting biasin a SREF system reduces the MSE
in each member and the ensemble mean. The benefit to EF isthat FP skill isimproved by
approximately centering the forecast PDF on the mean of the verification’s PDF so that the
average error (verification —forecast) is close to zero. Recall from Figure 2 that a proper shift in
the forecast PDF’ s location can adjust the FP toward the observed relative frequency (ORF).

To explore improvement in SREF quality by bias-correction, Figure 42 displays areliability
diagram for ACME™*", before and after bias correction, in which the P(MSLP < 1001 mb) in the
outer domain was forecast. This event threshold was chosen somewhat arbitrarily as the ~25™
percentile of climatologic MSLP (Figure 1). Whilethis event isnot of direct concernin
operational weather forecasting, it is worthwhile to analyze since MSLP is a common parameter
among our SREF systems and important to forecasting in general. Think of the FP for this event

as the chance of stormy weather (i.e., the probability of low MSLP). In Figure 42, itis clear that
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* ACME™*" provides far more reliable (i.e., closer to the diagonal) FP compared to ACME™*",
To confirm this conclusion, Table 7 provides the data for calculating and plotting the reliability
diagram. Notice that * ACME™*" also improved resolution and not just reliability, which will be
discussed in detail below.

Figure 43 summarizes the reliability diagram results for FP of MSLP < 1001 mb at all lead
times and for al our SREF systems except ACME. The plots of reliability (rel) and resolution
(res) are on much different scales and the ordinate axis of the reliability plot is reversed so that
upward is better on al plots. Recall that BSS= (res—rel) / unc, where BSSis the Brier skill
score and unc is the uncertainty term.

Thefirst thing to notice in Figure 43 is that all the SREF systems are highly skilled in the
short range at forecasting this event (i.e., BSSfar above 0.0), which should be expected for a
predominantly synoptic-scale parameter such asMSLP. The improvement in BSSby the bias
correctionisrelatively large (~3%) for the ACME systems but insignificant for PME since the
PME members displayed much less bias compared to ACME systems, as discussed in Chapter 1.
To more intuitively quantify the significance of the ~3% improvement in BSSfor the ACME
systems, we can examine the skills of the systems before and after bias correction across lead
time. On average, the skill of *ACME™"* or *¥ACME**" isthe same as that of the uncorrected
systems six hour previoudy. In other words, there was a six-hour improvement in FP skill by the
bias correction—a great improvement in the short-range. Lastly, note that there are roughly equal
contributions from both reliability and resolution to the BSSimprovement by bias correction,
which holdstrue for all parameters and events that we examined.

Figure 44 provides the BSSresults for forecasts of P(T, < 0°C) in the inner domain—a more
operationally significant event and one intimately connected with model physics and surface

boundary parameterizations (SBPs). The BSSimprovement by bias correction is about twice as
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large as that for MSLP because, as we saw in the last chapter, T, has a much more pronounced
bias. Thereisasoadiurnal cyclein BSSthat appears contrary to RMSE of bias-corrected T,
(Figure 31) in which the late afternoon (i.e., 24- and 48-h |ead times) T, has lower RMSE and
should therefore correspond with higher FP skill rather than lower asin Figure 44. The sharp dip
in uncorrected FP skill in the late afternoon is due, in part, to the extreme bias during that period.
After bias correction, the late afternoon reliability is on a par with the other times of the day but
the dip remainsin the BSS due to the resolution fluctuation. The marked diurnal signal in the
resolution istied to the variability in uncertainty. Intuitively and mathematically, one would
expect more skillful FP in the late afternoon when uncertainty is at a minimum with T, < 0°C
occurring less often (i.e., lower sample climatology, SC). However, an event that occurs less
often in space or time is more difficult to discriminate, thus the drop in late afternoon resolution
and lower BSS.

Theincrease in resolution by the bias correction is an important finding that indicates a
sharpening of the forecast PDF, or areduced variance among the ensemble members. Referring
back to Figure 37, one can imagine that for any given event threshold, amore narrow PDF is
more likely to produce FP toward the extreme values (i.e., 0% and 100%), which of course
increasesres. Table 7 shows that the bulk of the better resolution of * ACME™*" compared to
ACME™*" came from a 17% increase in the number of forecastsin the 100% FP bin. Thereis
actually a~1% decreased weighting in the lower extreme FP by * ACME**®" because the bias
correction shifted the PDF to the right as well as reduced the spread.

The reason for the reduced spread is that the bias correction adjusts each ensemble member
toward the verification (gridded analysis) differently. The members have different biases, both in
magnitude and direction from the verification, but are all corrected toward a common center, thus

reducing variance. Figure 45 shows evidence of the decrease in EF spread by bias correction,
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which should be expected if EF spread is areflection of uncertainty. In effect, removing model
bias in an ensemble eliminates bogus uncertainty in the sense that there is no uncertainty in
systematic errors that can be identified and corrected. Before systematic errors are removed, they
appear to be part of the uncertainty since they contribute to the forecast error. After systematic
errors are removed, the stochastic error remains as the true uncertainty, which can not be
corrected but may be accounted for with awell-formulated ensemble system.

Besides significantly improved FP, our second point about the importance of bias removal is
that it allowsfor realistic evaluation and comparison of SREF systems. Consider trying to
determine if ACME™*" provides benefit over ACME™* in Figure 44. ACME®™*" performs better
than ACME®* a some lead times (e.g., 6 h — 15 h) and the same or worse at other lead times
(e.g., 18h—24h). Itisonly after bias correction that * ACME**®" clearly stands out as superior to
*ACME™®,

As another example of bias-removal benefit to analysis, Figure 46 shows verification rank
histograms (VRHs) of MSLP for PME, ACME™"*, and ACME™*" before and after bias
correction. Forecasts with a significant and consistent bias cause a shift of the rank probability
toward one side. Notice that in the PME VRH the overdispersion is much more evident after the
biasremoval. A more disconcerting problem comes about if forecasts have adua bias that
changes over time, resulting in a strongly u-shaped histogram which may lead to an incorrect
conclusion that the ensemble is underdispersive (Hamill, 2001). Removing the bias by a method
such as ours eliminates that possibility.

Asafinal comment on Figure 46, notice that bias correction barely altered the verification
outlier percentage (VOP) for PME and ACME™*, but VOP was improved for ACME®™®", One
could attribute alower VOP to an increase in ensemble spread, which may allow truth to be

portrayed more often. However, as discussed above, bias correction decreases ensemble spread,
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Ecore+

especialy for ACM in which there is more variability among the model biases (i.e., compare
Figure 31 with Figure 32). We conclude then that bias correction does not cause better portrayal
of truth by simply adding unrealistic spread but by shifting the PDF toward regions of verification
values previoudy not portrayed. The additional benefit of increased resol ution from a sharper

forecast PDF occurs simultaneoudly.

B. Model Uncertainty

1. Multimode vs. Perturbed-model

This section addresses the rel ative merits of the multimodel and perturbed-model approaches
for accounting for mode! uncertainty by comparing the results of the PME to the ACME™*"
system. This comparison is restricted to the 36-km domain because the PME consists of only
large-scale models with coarse grids. Additionaly, the PME does not contain many of the
surface forecast parameters of interest (e.g., WS,o and T,) so only Zsy and MSLP were considered

in thisanalysis.

a) Dispersion

We begin by examining dispersion diagrams (Figure 47a & b) to explore the systems’ ability
to represent forecast uncertainty. Recall that the dispersion diagram islike an error variance
diagram except that the plotted curves are the EF spread (i.e., variance of ensemble members) and
the MSE of the EF mean, which are required to match for statistical consistency after adjusting
for ensemble size asin Equations (7) and (8). The MSE of the EF mean should be thought of as
the ‘target variance' that an ensemble should have to properly represent forecast uncertainty.
Since each of our SREF systems has a different EF mean MSE, each system should be plotted on

a separate diagram to avoid confusion. For example, the plotsin Figure 45 contain results for
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both PME and ACME®*" in which the higher spread of PM E suggests improved statistical
consistency by PME since ACME™*" is underdispersive (shown later). However, itis
meaningless to directly compare the EF spread of the two systems since the target variance is so
different between the systems. An exception is that ACME™* and ACME®*®" have such asimilar
target variance (i.e., similar EF mean MSE) that it isinstructive to plot and analyze them together
(covered in the next section).

Before interpreting Figure 47a & b, there are afew more things to note:

1) The apparent decrease in EF spread from 0 to 12 h is due to both the bias correction
(which was not applied at the 0 h) and the MM5 spin-up period. Figure 45a shows that
without bias correction the error growth islargein thefirst 12 h for PME, but only slight
for the ACME systems. In the early part of forecast integration, the MM5 adjusts the
information from the large-scale modelsto fit the MM5 attractor so the ACME systems
solutions become more similar and error growth is restricted.

2) The 12-h MSE islikely an underestimate of the actual error since the verification (centroid
analysis) contains much of the forecast information due to use of the forecasts as first
guess fields in the objective analysis routines of the core analyses. By the 24-h lead time
and beyond, the centroid analysis can be considered independent of the forecasts.

3) For reference, we included the climatic variance (g;%) to show how far below error
saturation the results are in the short range. The g values were found using all the
verification data for the full dataset from the avn analysis for Zsy and MSLP (e.g., see
Figure 1a), and from the RUC20 analysis for WS, and T,. Asaconfirmation, our Zsy o2
of 14,500 gpm? is comparable to what is shown in Figure 3b.

The most striking difference between PME and ACME™*" in Figure 47 isthat the PME is

dightly overdispersive while the ACME®*®" is very underdispersive. The forecast PDFs
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produced by the PME are evidently too wide compared to the PDF from which truth is drawn so
the PME identifies more uncertainty than is actually present—highly unusual for an EF system.

ACME®"" shows the more typical result of an EF system producing too narrow a forecast PDF,
and failing to represent all the uncertainty.

Since PME and ACME®*®" used the same ICs, the difference in their dispersive
characteristics likely reveals that the multimodel system (PME) is able to more accurately
represent model uncertainty compared to the perturbed-model system (ACME™*"). We expect
the PME to exhibit greater dispersion since it has more model diversity, but the overdispersion of
PME may mean that the model differences among the PME members aretoo great. Regardless,
the severity of PME’s overdispersion is much less than the large underdispersion of ACME™*",
It appears that even with the extensive efforts in building model diversity into ACME®*, the
perturbed-model approach does not represent many critical aspects of model uncertainty that the
multimodel approach can, such as the model humerics.

Examining Zsy and MSLP VRHs in Figure 48a & b confirms the results of the dispersion

diagrams and provides more details. For these synoptic parameters, * ACME®*®*

performed well
(nearly uniform VRHS), but it is clear that * PM E was more successful at portraying truth. The
VOP scores show that for MSLP, truth was not portrayed 1.55% of the time by *PME vs. 6.67%
of thetime by *ACME™*". The dight overdispersion of *PME is evident in the subtle n-shape of
the*PME VRHSs.

While the superior statistical consistency of *PME over * ACME®*®" is unquestionable, there
are other possible reasons for the difference between the two systems besides the systems
relative ability to represent model uncertainty:

1) The coarse grid resolution of the PME members (c.f. Table 3) may account for part of the

PME’slower MSE, which makes the PME appear more stetistically consistent. However,
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since only the 36-km domain was considered in this analysis, the effect of resolutionis
likely minor. Also, some PME members have fairly high resolution (i.e., etaat 32 km and
avn at ~55km).

2) Asdiscussed above, thereis a spin-up period in the ACME®™*®" solutions that restricts error
growth early in the forecast cycle. While the spin-up effect does account for some of the
low spread of * ACME®*®", Figure 49a shows that the lower dispersion of *¥ACME®*" is
not due to the spin-up effect. Once the spread of both systemsis matched at the 12-h lead
time (well after spin-up), * PME clearly shows more dispersion than * ACME*"*".

3) It has been shown that an ensemble that uses a limited-area model (LAM) has lower
dispersion compared to an ensembl e that uses a much larger model domain (Nutter, 2003).
Beyond the issue raised by Errico and Baumhefner (1987) who pointed out that when
using aLAM, the LBCsaswell asthe ICs must be perturbed to avoid limiting
predictability error growth, Nutter (2003) described how the use of periodically updated
LBCs may act to filter out short waves and reduce nongtationary wave amplitude from the
large-domain model providing the LBCsto the LAM. This effect can cause errorsin the
LAM solution, but more importantly, it may cause an ensemble of LAM solutions to share
similar errors even when they have different perturbed LBCs (asin ACME®*®"), thus
reducing spread and causing underdispersion during the forecast cycle.

To explore how much of the weaker dispersion of ACME®*" may be from filtering of waves
in the LBCs versus use of incomplete representation of model diversity, we can examine plots of
standardized verification (Vz). In Figure 50 Zsq V7 is plotted using bias-corrected forecasts since
the biased forecasts have unredlistically high standard deviation and thus V; values that are too

small. Zso Was used so that synoptic-scal e wave effects could be studied. The forecast casein
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Figure 50 is one with above average VOP in which truth really got away from the ensemble.
Forecast cases with an average or low VOP level had similar results but were not as definitive.

As shown in Figure 50, at the 12-h lead time there was |ong wave trough aong the West
Coast with arapidly approaching short wave around 150°W that initialized near the boundary
(not shown). Asthe short wave dove into the long wave trough at 24 h and 36 h, the high V7
values reveal that in this region truth evolved quite differently compared to all the* PME
members and much more so for * ACME™*" members. The EF mean isincluded in these plotsto
show the solution about which the members are varying. Looking at both the EF mean and V, it
appears that the * ACME™*" members are too clustered about a solution with a slower and deeper
short wave off the Pacific NW coast and thus failing to portray the truth. By the 48-h lead time,
the *PME is portraying truth fairly well but the * ACME™*®" members continued to stay clustered
together with solutions much different from the truth.

How much of the truth not portrayed by * ACME**" is due to weak model diversity and how
much from use of aLAM? The short wave analyzed above was initialized partly within the
domain so it may have suffered some filtering as it completed its entry through the lateral
boundary. Additionally, effects of downstream devel opment could have played arole so that
filtered waves entering later produced further limits to the * ACME™*" error growth about the
wave of interest. Thelarge-scale models of the PME were able to more accurately develop the
wave as well as represent more likely possihilities (i.e., higher and meaningful dispersion) since
waves on all scales are represented over a much larger domain. It appears possible that some of
the higher VOP of *ACME™*" is due to filtering information in the LBCs , which makes
* ACME™®" members share similar errors and reduces dispersion.

However, thereis also strong evidence in Figure 50 that it is the weak model diversity of

*ACME™*" (relative to *PME) that increases the VOP. Consider again the 12-h lead time in
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Figure 50 in which * ACME**" developed an area of truth not portrayed on the Oregon coast and
greatly expanded the area over British Columbia compared to *PME. At only 12 hinto the
forecast cycle and thousands of kilometers from the lateral boundaries, it is highly unlikely that
these problems were caused by LBC wave filtering but rather were due to the weak model
diversity of ACME®®". Furthermore, such evidence of the large impact by the weak model
diversity leads usto speculate that model diversity was also alarge factor (perhaps larger than the
LAM effect) in the above analysis of the short wave that caused so much trouble in Figure 50.
We can not make firm conclusions regarding the relative contribution of LAM and model
diversity effects on the different dispersions of PME and ACME™*" sinceit is extremely difficult
to separate out the two effects. However, the analysis results and consideration of the design of
the two systems (multimodel vs. perturbed-model) suggest that the lower dispersion of ACME™*®*
isprimarily aresult of itsinability to capture the amount of meaningful model uncertainty that is
captured in PME. Asan aside, noticein Figure 50 that much of the difficulty with portraying

truth originates from the core analyses and their forecasts (i.e., PME) and are amplified in

ACME™*". We will discuss this further below when covering the performance of ACME.

b) Skill and Utility
Returning to Figure 43, consider the FP skill of the multimodel and perturbed-model
approaches. Measuring skill improvement again by forecast lead time, * PME outperformed
* ACME™*" by about 11 h. Even though the multimodel approach overrepresents uncertainty, it
yields far superior results to the perturbed-model approach that grossy underrepresents
uncertainty. Note that the higher BSS superiority of *PME is completely due to better resolution.
The reliability of *PME is basically the same or dightly lower compared to * ACME™*", but this

does not mean increased model diversity cannot improve reliability. The lack of differencein
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reliability between the two systemsis simply because both systems are nearly perfectly reliable
for this event in the short range.

Thereis an apparent contradiction concerning the resolution improvement and the increased
model diversity of *PME. In analyzing the impact of bias removal, we discussed that the
decreased spread (narrowing of the forecast PDF) improves resolution, and in the last section we
demonstrated that model diversity increases spread (widening the forecast PDF). So how can
*PME improve resolution if it has greater spread?

The resolution improvement by * PME can be diagnosed by comparing reliability diagram
results of *ACME™*" and * PME (Figure 42 and Table 7). Resolution can beimproved (i.e.,
higher res value) in two different ways:

1) Increase the weight (i.e., number of forecasts) in the FP binstoward the FP extremes.

2) Regardless of the weight in each bin, shift points on the reliability diagram toward the FP

extremes (i.e., further from the zero skill line)
By either means, an ensembleisthen better at discriminating between whether an event will

E™*" only because the * PME points are

occur or not. *PME has better resolution than *ACM
shifted toward the FP extremes. Infact, *PME actually negated some its resolution improvement
with reduced weighting of the FP extremes (i.e., in Table 7 compare # of forecasts for FP of 0%
and 100% between * ACME™*" and * PME).

These results alow us to resolve the apparent contradiction of * PME’' simproved resolution
and higher spread. Lower (higher) EF spread always improves (worsens) resolution, but
resolution can also be improved in a more subtle way, which can be imagined using Figure 37
once again. Say the event threshold is at the right end of the * ACME®*" PDF so that FP = 0%.

The*PME PDF extends out a bit further, representing more possible values where the

verification will likely occur, and so * PME may give aslightly higher FP, say 3%. For such low
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FP, the verification will rarely occur above the event threshold, but if the increased spread of
*PME does give real possibilities, then the event will eventually occur and confirm the validity of
the *PME FP. A wider forecast PDF can therefore provide improved resif it better represents
the possible occurrence of the event. Consider an EF system in which one member’s PBL
scheme is switched to something totally different from the other members, but equally valid.
This perturbed member may give a T, value completely outside of the other members, increasing
EF spread and identifying a possible value of truth not previoudy part of the ensemble. The new
ensemble of T, valuesis better at discriminating the event since it identifies more valid
possibilities. This effect isrelated to the lower VOP of the * PME since the ability to more
consistently portray truth results in better discrimination.

Another possible advantage of PME isthat its overdispersion may somewhat alleviate the
negative effects of undersampling. Recall that undersampling resultsin an overforecast of high
FP and an underforecast of low FP (seel.B.4 and 11.C.3). With an excessive ensemble spread,
the PME produces dightly reduced high FP values and slightly lower low FP values, thus
reversing the undersampling effect. While this may just sound like a statistical trick, it isan
actual benefit. A small ensemble with dightly excessive spread does a better job at representing
the PDF tails compared to an ideal ensemble with the same number of members. It may actually

be advantageous for asmall ensemble to be slightly overdispersive.

2. Mesoscalee ACME®€vs. ACME®**

Thus far, we have concluded that the perturbed-model approach of ACME™*" failsto capture
all the model uncertainty. The question that now remainsis, putting the limitations of ACME™**
aside, did inclusion of model diversity improve SREF on the mesoscale, and if so, how? This
section presents a detailed comparison of ACME™* vs. ACME™*", revealing that inclusion of

model diversity iscritical for a mesoscale SREF.
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a) Dispersion

We return to the dispersion diagrams (Figure 47) to begin comparing the two mesosca e
SREF systems. In Figure 47a& b, * ACME™*" made only a small improvement to the severe
underdispersive quality of * ACME®* for synoptic-scale parameters. However, * ACME™*®"
made more of an improvement for MSLP than for Zsq, because, as a surface parameter, MSLP is
more influenced by model error. The influence of model error is even more pronounced in Figure
47¢c & din which the dispersion of surface, mesoscale parametersis examined. The poor
dispersion of ACME™"* is more evident (especially for T,) and the improvement by ACME™" is
more significant. Also notice that the WSy, and T, MSE results are much closer to saturation (i.e.,
reaching JCZ), but still well below. For MSLP and Zgq, the MSE results at the 48-h lead time were
only about 5% of the way toward saturation, but are about 30% of the way for WS, and T,, thus
confirming the lower predictability of the mesoscale parameters.

Focusing on Figure 47d, there is a pronounced diurnal signal in the T, MSE but very little
error growth. Thelack of error growth is not because of error saturation but because T, is
primarily locally forced rather than synoptically forced. The variability in T, is determined
mostly by the diurnal heating and only secondly by the large-scale flow in which errors grow.
The bulk of the error istherefore determined by the model’ s deficiencies. Errorsincrease during
the night to a maximum right before sunrise, then reach a minimum by midday—Iikely due to the
difficulty in modeling the planetary boundary layer (PBL). The model can not accurately
describe the collapse of the PBL and formation of inversions at night so T, is often greatly in
error then. During the day, the model may not get the PBL quite right, but low level mixing is
normally present to some degree so T, errors are not as extreme. Notice that the diurnal signal of

the MSE correlates very strongly with the * ACME™*" spread but only weakly with the
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* ACME®® spread—another indication that * ACME®*" is asignificantly better system for
representing the forecast uncertainty.

Focusing on Figure 47c, thereis adight diurnal signal in the WS, MSE and significant error
growth. The WSy error growth is dramatically higher than that of T, because, even though WS,
isalocally forced mesoscale parameter, it aso is strongly influenced by the synoptic flow since
surface winds are forced by surface pressure, which is dependent upon the deep atmosphere. The
resulting error growth from the 1Cs alone alows the WS,q spread to be much closer to reaching
the target variance compared to T,. However, the large increase in spread by * ACME™*" shows
that inclusion of model diversity is still very important for a compl ete representation of
uncertainty in WS,

* ACME™*" gives some MSE improvement over * ACME™"* for WS, and notable
improvement for T,, which appears contrary to the Chapter 11 statement that the ACME™*"
members are generally inferior to the members of ACME®®. Evidently, the inferiority is mainly
in systematic error for, once the bias is removed, the EF mean of *ACME®*" is superior. So not
only did ACME™*" increase EF spread toward the target variance, it also narrowed the gap
further by lowering the target variance (i.e., reducing the MSE of the EF mean).

In Figure 47a & b thereis an estimate of the IC differences since MSLP and Zsy exist as IC
fields. For Figure47c & d, thereisnoinitialization of WS, and T, so their initial uncertainty can
not be considered. We can however state that the uncertainty in all parameters from which WS,
and T, are derived were exactly the same at initialization in ACME™* and ACME®*®" since both
systems used the same ICs. Most of the increased spread provided by *ACME®*®" islikely
reaized in the very first forward time step of the model (thefirst 36 s of the forecast period) in
which the different model options and SBPs produce much different values of derived surface

variables. During the rest of the forecast period the gap between the * ACME®* and * ACME®*®*
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spread increases only dightly as some of the differences provided by model diversity project onto
growing modes. For a parameter with a strong synoptic influence like WS,o, almost all of the
predictability error growth (revealed by the EF spread of * ACME®"®) comes from uncertainty in
the ICs, and the additiona spread from model diversity (revealed by the EF spread of

* ACME®"*") simply adds a constant correction toward statistical consistency. Early inthe
forecast period the additional spread provided by *ACME™*" isalarger fraction of the total
spread, and is thus more important to include in the SREF.

Compared to a synoptically-influenced parameter like WSy, including model diversity for a
parameter like T, is even more important since the vast majority of the forecast error is dueto the
model uncertainty and not the IC uncertainty—an unusual finding discussed further below. In
Figure 47d, the low spread of * ACME®" shows how little of the forecast error originates from
the ICs and confirms the lack of error growth. The fact that * ACME™*®" spread is till far below
what is required for statistical consistency indicates that much more model diversity isrequired.

The VRHSs of Figure 48 are ordered from the parameter in which inclusion of model diversity
makes the least difference (Zsyo) to the parameter where it makes the most difference (T).

* ACME™*" provided only minor improvement for the synoptic-scale parameters (Zsq and MSLP)
in which the forecast error is dominated by error growth from the ICs. For the more mesoscale
parameters of WSy, and T, it is evident that * ACME™"* is extremely poor at portraying truth.
With the added spread of *ACME®™*", the VRHSs are adjusted toward uniformity and the large
VOP iscut in half. However, aswe saw with the dispersion diagrams, it is also obvious that
*ACME™*" is till far from being statistically consistent. * ACME®™*" failsto represent a
considerable amount of the uncertainty that is present and truth is still not portrayed far too often.

From Figure 47 and Figure 48, we conclude that the closer to the surface and smaller in scale

a phenomenon, the more difficult it isto represent its uncertainty and the more model uncertainty
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appearsto play apart. We also conclude that inclusion of model diversity in a mesoscale SREF
is critically important for complete representation of forecast uncertainty and that the relative role
of 1C and model uncertainty depends upon the parameter as well as the weather regime.

A gquestion that remains iswhat is the reason for the low dispersion of *ACME™*"? From
the previous section on comparing the *PME and * ACME**" we concluded that the use of a
LAM limits dispersion of *ACME™*" only marginally and the major difference between the two
systemsis their relative amount of model diversity. That would suggest we need to increase
mode! diversity of * ACME™*" by expanding the perturbed-model method through more and/or
larger perturbations. However, there is another possible source of the low dispersion problem of
* ACME™*": limitations imposed by afinite model grid resolution.

Smagorinsky (1969) demonstrated that increasing model resolution increases dispersion of
the model since higher resolution can represent additional scales of motion. For an ensemble,
differences among the members can only exist at the scales represented within the model, so there
can be no difference (i.e., no dispersion) at unrepresented scales. Part of the low dispersion of
ACME®™*" islikely due to the limited capability of the 12-km membersto reved different
possihilities at small scales. Increasing model resolution should generate more useful spread
among the members by capturing more diversity in smaller scale motions. To test this hypothesis
with our research data, we can directly compare the dispersion over matching grid points on the
12-km and the 36-km domains (i.e., compare every third point in the 12-km domain to the
subsection of pointsin the 36-km domain that overlays the 12-km domain). Resultsfor WS,
from * ACME®“*®" reved that the ensemble spread on the 12-km domain is an average 27% higher
than on the 36-km domain (Figure 49b). Thereislikely an asymptotic limit to how much more
dispersion can be produced by finer model resolution, but we suspect that significantly higher

dispersion could be realized by increasing model resolution to afew km.
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b) Skill and Utility

Just as* ACME®*" did not significantly improve the severe underdispersion of *ACME*®
for MSLP, Figure 43 shows that the * ACME™*" BSSfor an MSLP event is about the same as for
*ACME™®. For T, on the other hand, Figure 44 shows that * ACME™*" is more skillful, which
means that there is value in the additional spread provide by *ACME ", Thedrastically
different BSSimprovements for MSLP and T, can be partly explained by the fact that T, error is
highly determined by the model, which makes inclusion of model diversity more important.

The successful BSSresultsfor T, appear to contradict the requirement of Murphy (1988) and
Palmer et al. (1990) that for an EF to have a chance at being effective, the portion of forecast
error due to IC uncertainty must be larger than the portion due to model uncertainty. Itisclear
from Figure 47 that model error dominates T, forecast error, and it is aso clear from Figure 44
that skillful FP was produced for a T, event. T, is however not a state variable but a derived
variable of the PBL scheme. The skill of T, FP depends on many other variables for which IC
uncertainty may be larger. The requirement that 1C uncertainty be larger than model uncertainty
appliesto the forecast as awhole (over al dimensions) and not alimited dice of phase space.

Besides that fact that MSLP is mainly a synoptically forced parameter, another factor for the
weak * ACME®*®" MSLP skill improvement is that model error plays a much greater role over
land than over water. Convection, wind flow over complex terrain, variations in radiative effects,
etc. al require more detailed parameterizations and schemes within the model and thus more
opportunity for model error. To demonstrate the increased need for model diversity over land, we
recomputed BSS using ocean-masked data (i.e., use only grid points over land). For an equitable
comparison of MSLP BSS, we raised the event threshold to keep asimilar SC (and similar unc) as
that in Figure 43 (i.e.,, MSLP climatologic PDF is shifted upward over land). In Figure 51, the

improvement in BSSby * ACME®*®" over *ACME “*® is about 2 h whereasit was not measurable



141

for the full domain. Furthermore the improvement by * PME is up from 11 h to roughly 18 h.
The increased improvements by the SREF systems with model diversity suggest that including
model diversity over land is more important.

Figure 52 shows a similar result for ocean-masked T, on theinner domain. Note that we did
not alter the event threshold here since unc of the event was only slightly higher compared to the
full domain results in Figure 44, which of course makes ocean-masked BSSrelatively lower. The
difference in ocean-masked and full-domain T, BSSimprovement by * ACME®*®" is most evident
by the plots of Figure 53a & b. The afternoon (182 —24Z and 427 — 487) dip in improvement in
both plotsis associated with arelatively low increase in res by * ACME™*" during these periods.
The contribution to BSSimprovement by rel and res are comparable except during the afternoon
when the rel improvement decreases somewhat and the res improvement becomes minimal.
(Notice however that thereis still alarge improvement by bias removal in the afternoon.) A
possible explanation for the low afternoon resimprovement is that as previoudy noted, the
variability of T, isrelatively lower compared to the nighttime T,. While including model
diversity did increase EF spread in the afternoon (i.e., Figure 47d), the gain was not as spectacular
as at night in which amuch greater widening of the forecast PDF was required.

Figure 54 shows the BSSfor ocean-masked WSy, > 18 kt (an operationally significant event)
and supports the conclusion that * ACME™*" provides the best FP and that bias correction and
inclusion of model diversity ina SREF iscritical. However, itisalso evidentin Figure53c & d
that the improvement by * ACME*"®" was much less for WS,, compared to the improvement for
T, because the increase in spread by model diversity did not make as significant an impact as with
T,, evidenced by Figure 48c & d. Another observation in Figure 54 is that the difference between
ACME™* and ACME®™*" (either before or after bias correction) is greater earlier in the forecast

cycle, suggesting that including model diversity is more important for earlier lead times. This
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supports the WS, dispersion diagrams showing that model error contributes alarger fraction of
the total forecast error in the earlier lead times.

The WSy, results demonstrate that the greater improvement over land when including model
diversity is not simply a statistical artifact. That is, one might argue that for T, the higher unc and
lower BSS of the ocean-masked data provide more of an opportunity for improvement so the
comparison is unfair. The counter to that argument isthat for WSy, there islower unc and higher
BSS (not shown) but the same result of greater improvement over land.

Figure 55 gives the relative operating characteristic skill score (ROCSS) results for the three
eventswe studied. 1n general ROCSS provides a more obvious analysis of the utility of FPand is
considered to be an upper bound of overall forecast value whereas the BSSis the lower bound
(Jolliffe and Stephenson, 2003). (l.e., comparing Figure 55 to Figure 51, Figure 52, and Figure
54, the ROCSSis consistently higher than the BSS) Figure 55 confirms the higher utility of
*ACME™® over *ACME™®, This analysis also showsthat the bias removal may not have
worked well for WS, or for MSLP in the late afternoon. However, thisis not a conclusive result
since as Marzban (2003) pointed out, the area under the ROC is not good at discriminating

between two EF systems that performed well for a certain event.

C. ACME and Analysis Uncertainty

Recall that the purpose of the ACME with its additional members was to mitigate the
problems associated with asmall ensemble by further sampling analysis uncertainty, thereby
producing more ICs and boosting ensemble size. Thiswas accomplished by mirroring each of the
core anayses about the centroid analysis. In this section we will show that ACME was
successful at generating new 1Cs (based on the core analyses) that produced valid, unique
forecasts with valuable information. However, ACME failed to significantly improve overall

skill commensurate with the increase in ensemble size.
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1. Skill and Utility

Figure 56 is a comparison of the overall deterministic performance of the ACME members.
The core members are named after the analysis that provided their IC and LBCs (listed in Table
3). Thecentroid forecast is called ‘ cent’, and, following Equation (19), a mirrored member’s
name is the name of its source analysis primed. (E.g., the cmcg’ member was run using the IC
and LBCs created by mirroring the cmcg across the centroid analysis.) Figure 56 shows that the
mirrored members are basically on a par with the core members. If the mirrored members were
not valid forecasts, their average RMSESs and rankings would stand out as higher than the core’s.

We did not include asimilar plot for T, in Figure 56 since, as discussed above, T, skill is so
heavily dependent on the model that varying the IC makes little difference (recall Figure 31). For
mesoscal e parameters with error that is primarily model dependent, expanding or improving ICs
contributes amost nothing to improving SREF performance. To improve FP of T,, one should
concentrate on representation of the model’ s stochastic error since, in general, any reasonabl e set
of ICs may beused. Thereislittle need for an approach such as ACME for these types of
parameters.

A very positive result from the ACME system is the excellent performance of cent. It hasan
average RMSE equal to or better than the best core member and has the best average ranking.
The high skill of cent iswhat convinced us to use the centroid analysis as verification. The
centroid analysisis normally the best estimate of truth since averaging of the eight analyses likely
cancels out alarge portion of the errorsthat exist in the individual analyses (Richardson, 2001a).
It may be argued that the superior performance of cent is a statistical artifact of its smoothness at
theinitialization. However, cent is not a smoothed average of other forecasts but a complete

MMS5 run containing information on all scales. Note that the centroid analysisincludes the
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obviously inferior analysis data from tcwb, which likely degraded cent. The superiority of cent
would likely stand out even further if tcwb was omitted from the centroid analysis.

The fact that tcwb stands out as an inferior member again raises the question of when does a
member add benefit to an ensemble. In section I1.B.1 (discussion of the perturbed-model
method) we explained how a member with lower average skill can still add value to the ensemble
if it can occasionally perform better, but there islogicaly alimit to that effect. If a member
rarely or never performswell, it may in fact degrade the overall performance of the ensemble. To
test if that isthe case with tcwb, we removed tcwb from both *PME and * ACME™* and
computed BSSfor P(MSLP < 1001 mb) to compare with the full ensembles’ BSSresults. Note
that there should be a dight reduction in BSS (on the order of 0.1%) due to the decrease in
ensemble size from 8 to 7 members. Figure 57 shows that the 7-member ensembles with tcwb
withheld performed better, indicating that tcwb isindeed harmful to our SREF systems. (The
effect shows up more clearly in * PME than in * ACME™"* since the * ACME“"* members are
much more similar.) It may be that tcwb can occasionally perform well but evidently it isinferior
so much of the time that its overall effect isto degrade the estimation of the forecast PDF. Asa
check on this effect, we also found BSS after removing a superior member (ukmo) and after
removing a member with average skill (ngps). Figure 57 shows that without ukmo, probabilistic
skill was significantly reduced and without ngps, was reduced 30-50% as much as the reduction
from withholding ukmo. We conclude then that the higher the deterministic skill of a member,
the more value it adds to an ensemble. Lower skilled members can add value to an ensemble but
must perform well a significant portion of the time.

A notable difference between the mirrored and the core membersis that the mirrored
members do hot have any outstandingly good members whereas the core has the avn and ukmo.

Furthermore the average performance of the core membersisitself mirrored in the mirrored
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members. (E.g., ukmo performs great but ukmo’ performs poorly; gasp performs poorly but gasp’
performswell). It iseasy to see how combining information from the good cent | C with the bad
tcwb 1C would result in the tewb' forecast being better than the tcwb forecast. However, there
were cases where the tcwb' forecast would a so outperform many ACME members including
cent. Evidently the vector between tcwb and cent can occasionally be avery good estimate of the
analysis error. Unfortunately, we found no clear way to identify such casesapriori.

If we were to accept that the ACME members are additional samples from the same forecast
PDF as ACME™" and that ACME™" exhibited statistical consistency (which of course it does
not), then we would expect ACME to improve BSS~0.03 over ACME™" due solely to the
increase in ensemble size from 8to 17 (see section I1.C.3). Figure 58 and Table 8 show that
* ACME came nowhere close to this expectation and performed about the same as* ACME™",
Varying the event thresholds produced similar results (not shown). Of the three parameters
studied, * ACME was only able to dightly improve MSLP because, due to its synoptic nature,
MSLP ismore sensitive to IC variations.

An explanation for the lack of improvement by * ACME isthat producing more samples from
adeficient forecast PDF may result in amore detailed, but still deficient, description of the
possible future states. Recall that anideal ensemble with asmall n has greater variancein its
sampling distributions of the mean and spread so that the n members are unable to consistently
represent their PDF and FP skill is degraded. Increasing n for an ideal ensemble allows the
forecast PDF to match the true PDF more consistently. ACME does result in a more consistent
representation of the PDF from which the members are drawn, but, sinceit is not an ideal
ensemble, ACME does not provide a better representation of the true PDF. In other words,

ACME suffers from the same basic problems as ACME®* but ACME does improve upon the

poor self-consistency of ACME™®. The original hope of ACME was that it could not only
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provide new valid samples but also expand the forecast PDF to sampl e regions of phase space
where ACME™* failed to portray truth. In the next section we show evidence that ACME was

able to encompass more truth but did little toward better portrayal of truth.

2. Dispersion

The dispersion diagram for MSLP (Figure 59) shows that the average spread of *ACME is
dightly lower compared to the spread of *ACME™"®. The lower spread may be due, in part, to
the MM5 preprocessing of the ICs. Recall that the mirroring perturbation factor was designed so
that ACME would have the same initial spread as ACME®*. However, the MM5 preprocessing
adjuststhe fields to obtain vertical balance, thus reducing the initial variance. Additionally,
Figure 59 shows that on average, errors grow more slowly in * ACME compared to * ACME™"* so
perhaps mirrored perturbations sometimes lie off the model attractor and must reconverge before
growing. Figure 59 shows that * ACME has roughly the same (perhaps slightly worse) lack of
statistical consistency as* ACME®*®, supporting the conclusion that the additional sampling of
ACME did not result in an improved representation of the forecast PDF.

This disgppointing conclusion is tempered by the VRH results. Thelower missing rate (MR)
and VOP of * ACME in Figure 60a— c indicate that * ACME was able to produce many
verification values that were not represented in * ACME™®, However, the missing rate error
(MRE, difference from the ideal MR of 2/ n+1) revealsthat * ACME performed about the same or
slightly worse than * ACME®" since the VRHSs have about the same degree of nonuniformity. In
an absolute sense, * ACME encompassed more truth than * ACME®"* and provided valuable
information. However, considering that the expected amount of encompassed truth depends upon
ensemble size, * ACME performed roughly the same or worse than * ACME™",

The VRH comparison for T, in Figure 60c is quite different than that for synoptically forced

Zsoo and MSLP Figure 60a& b. Asdiscussed above, when the forecast error in aparameter is
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dominated by the model, additional variationsin the ICs provide little benefit. Notice that the
*ACME T, MR decreased only slightly, the MR error greatly increased, and the VOP remained
the same showing that * ACME was not able to provide new information. WSy, in Figure 60cis
an even mix of synoptic and model-driven error so * ACME was able to add some new
information.

The additional encompassing of truth by * ACME for MSLP seems contradictory to the
dispersion diagram results (Figure 59) that show alower spread for *f ACME, but it ispossibleto
decrease the domain-averaged standard deviation and still increase spread over limited areas
where truth was previously not encompassed. Consider Figure 61 in which we compare
occurrences of the verification in the extreme ranks and V, of *ACME and *t ACME™®. *ACME
greatly reduced the MR from * ACME®", and almost did as well as*PME. However, while
* ACME helped reduce the really high V; values of * ACME™", there was actudly aslight VOP
degradation by * ACME compared to the much improved *PME VOP. The conclusionisthat
* ACME did very little toward portraying truth better. Most of the reduction of the MR by
* ACME occurred where * ACME®* had already portrayed but not encompassed truth (i.e., where
the verification occurred in an outside rank with aV; < 3s). In other words, * ACME only
encompassed more truth where it was easy to do so and the major deficiencies (i.e., where truth
redly got away) of *ACME“*® till largely remainin * ACME.

Our final conclusion isthat the ACME method is a sound way to further sample from the
PDF defined by the core analyses, but ACME can not correct the deficiencies of ACME™®, The
core anayses occasionally miss key information, such as missing a shortwave trough, and no
amount of mirroring can produce what was missed. Mirroring can, however, use the information
available in the core analyses to create new plausible ICs, resulting in forecasts that provide a

more thorough sampling of the forecast PDF of ACME®®. Particularly effectiveis the ability of
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ACME to better sample the forecast PDF tails, which reduces the MR. ACME cannot, however,
magically sample far outside of the forecast PDF of ACME**® to make up for what ACME™*

cannot represent.

D. FutureResearch

The results presented in this chapter suggest several areas of future research, the first of
which isto investigate methods to improve the deficient dispersion of a mesoscale SREF.

A possible technique to boost the synoptic-scale dispersion of our mesoscale SREF isto
periodically nudge the MM5 forecast of each ACME™*" member toward the large-scale model
from which it was forced, thus imposing the beneficial large-scale dispersion of the PME onto the
mesoscale SREF. In effect then, the PME would dictate the synoptic-scale error growth while the
role of the ACME®*" would be to show what that growth implies for mesoscale forecast
uncertainty.

Nudging the ACME®"* members would likely improve SREF of mesoscale parameters that
have alarge component of synoptic forcing, such as WS, and precipitation, but it would not
improve statistical consistency for parameters such as T, that are mostly model dependent. To
improve the model-dependent parameters (and the others as well), additional ways to perturb the
MMS5 should be explored. This could mean simply further tuning the perturbations of ACME®™*",
such as increasing the magnitude of the SBPs, or digging deeper into MM5 to find additional
model aspectsto perturb.

Another approach to investigate for increasing dispersion of model dependent, mesoscale
parametersis to increase model resolution. Such an increase would permit modeling of more
scales of motion and should produce higher, more accurate dispersion among the ACME®™**
members. Higher resolution would also have the added benefit of reduced reliance on physical

parameterizations so their errors would no longer have to be approximated. Thisis obvioudy the
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most costly of solutionsto the low dispersion problem so its benefit would have to be weighed
against the processing requirements.

Another subject for future research is continued investigation into the multimodel vs.
perturbed-model methods for representing model uncertainty. Nudging ACME®®" members to
eliminate the reduced dispersion of the LAM may allow amore fair comparison of the two
methods. However, nudging would a so have the potentialy beneficial effect of driving the
model diversity of the PME into ACME™*" so that ACME™*" would have both multimodel and
perturbed-model components. Nudging would therefore only further cloud the distinction
between the skill of PME and ACME®®". One way to truly compare multimodel and perturbed-
model isto design an 8-member perturbed global model to compare against the PME. That is,
make an ensemble using 8 perturbed-model versions of avn which use the PME |Cs and compare
skill of that ensemble to that of the PME.

Cdlibration of FP isaresearch issue that we mostly ignored except for the partial calibration
by bias correction. The success of our bias correction raises some interesting questions
concerning optimization of postprocessing. A calibration technique such as the weighted ranks
method is designed to correct for systematic error of the ensemble as awhole and not by
individual member. The advantage of arigorous caibration isthat it can correct for systematic
dispersion problems besides model bias. However, a bias correction done on each member
separately is much better at removing bias from the system since members may have much
different biases. Therefore, the way to achieve the highest quality FP from a SREF systemis
likely to postprocess by bias-correcting each member followed by application of acalibration
technique before producing FP. To test this one could compare the skill of bias-corrected only

FP, calibrated only FP, and bias-corrected/calibrated FP.
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A potentially valuable calibration technique is to take advantage of the fact that the ensemble
members are not equally likely. We found that ACME®*®" members are not equally likely
because of the varied skill levels of their ICs and choice of MMS5 physics options. For EF in
general, unequal skill among ensemble members is acceptable and even beneficial aslong as each
member can perform well some of thetime. If the relative skill among the members could be
determined a priori, it would benefit both probabilistic and deterministic forecasting. For FP, the
relative skill levels could be trandated into weights for use in calculating FP. For deterministic
forecasting, the weights could be used to create a weighted ensemble mean as the best guess
forecast.

The weights could be determined simply by the long-term average RMSE of the members.
Unfortunately, Ebert (2001) showed that for a PME, weighting by long-term performance does
not add value because the relative skill among members likely varies both spatialy and
temporally. To account for the temporal variation one could calculate the most recent forecasts
relative skills, which assumes there is a high level autocorrelation in amembers' relative skill
from one forecast cycle to the next. Simultaneously accounting for the spatial variation
component is more difficult because if we are primarily concerned about a limited area (such as
our inner 12-km domain) the relative skill may vary rapidly from one cycle to the next. A
possible solution is to determine the relative skill among the membersin the part of the
atmosphere that will affect the 12-km domain in the current forecast cycle. This could be done
using the MM5 adjoint model to define a 24-h sensitivity field for the low level flow over WA.
The sensitivity field could then be multiplied by the RMSE field of the previous ACME®*®" run
(using some representative parameter such as 700 mb GPH). Thiswould reveal the rdative
ranking of the members based on how well they have recently represented the large-scale flow

that will influence WA’ s weather in the current forecast cycle. That information is carried into
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the current forecast cycle since the current cycle’ s analysisis largely based on the first-guess
solution from the previous forecast cycle.

Lastly, the results of ACME™*" showed that while there is definitely room for improvement,
thereis utility in SREF products. This fact needs to be further demonstrated to the weather

forecast community through further studies and design of practical applications.
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(@) PME, (b) ACME™®, and (c) ACME®*". Thethick-lined VRHs were constructed from the

origina forecasts before bias correction and the shaded VRHs were constructed from the

bias-corrected forecasts.
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BSSimprovement by * ACME™*" over * ACME™"* for FP of the events: (a) T, < 0°C,

(b) Ocean-masked T, < 0°C , (c) WSy > 18kt, and (d) ocean-masked WS,o > 18 kt. The average
(over al lead times) SC and uncertainty for the events are indicated in each plot.
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Figure 54. BSSand its components for FP of WS> 18 kt using ocean-masked data.
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Figure 57. BSSfor P(MSLP < 1001 mb) for regular * PME (solid curve with triangles) and
regular * ACME™" (solid curve with circles) compared to 7-member versions of the ensembles

with tcwb withheld (dotted curves), gasp withheld (dot-dash curve), and ukmo withheld (dashed
curve).
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Figure 58. BSSfor P(MSLP < 1001 mb) showing similarity between * ACME™* and *ACME.

*PME results are included for reference.
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IV.Summary

The basic premise of ensemble forecasting (EF) isthat due to the inability to perfectly
observe and model the atmosphere, the only complete way to predict its future state is to include
the inherent uncertainty as part of the forecast process. In general, forecast uncertainty primary
results from errorsin the analysis (i.e., model initial condition, IC) that grow nonlinearly (since
the atmosphere is a chaotic system) during forecast integration. Depending upon the
phenomenon and scale of interest, model error can also be alarge source of forecast uncertainty.

EF is amethod to incorporate both analysis and model uncertainty in the forecast process by
using multiple runs of a numerical weather prediction (NWP) model where the IC and model of
each ensemble member (i.e., individual model run) is varied according to their suspected
uncertainty. The resulting set of solutions at any forecast |ead time defines a probability density
function (PDF) of future states of the atmosphere based on the uncertaintiesin the analysisand in
the model. Given alarge number of ensemble members, the forecast PDF is then a complete
description of the future that widens with forecast lead time, reflecting the increase in forecast
uncertainty. The challenge of EF isthat, since analysis and model errors are not well understood,
they are difficult to accurately represent in an ensemble system, making the ensemble’ s forecast
PDF only an approximation. With agood approximation to the forecast PDF, there are many
potentially beneficial EF products. In thisresearch, we analyzed the skill of ensemble-based
forecast probability (FP) for different events of interest (e.g., temperature less than freezing, or
10-m wind speed greater than 18 kt).

While there has been much success in approximating the forecast PDF for medium-range (2 -
10 days) ensembl e forecasting (MREF), development of effective short-range (0 — 48 h)
ensemble forecasting (SREF) has lagged behind for several possible reasons. First, the scale and

parameters of interest in the short-range are less predictable so their errors may saturate too
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guickly for an ensemble to be of use (i.e., a prediction based on climatology would have more
value). Secondly, model uncertainty may have alarger impact on SREF parametersand it is
difficult to represent such uncertainty in an ensemble sinceit is so poorly understood. Lastly,
error growth is primarily linear in the short-range, which presents challenges for defining the ICs
for SREF. For MREF, nonlinear error growth generates large, useful differences among
ensemble members from almost any reasonable set of ICs.

The goal of this research was to explore the major issues of SREF and determine the
effectiveness of real-time, mesoscale SREF using current capabilities and methods. A unique
SREF test bed was built at the University of Washington by running the Fifth-Generation
Pennsylvania State University—National Center of Atmospheric Research Mesoscale Model
(MMD5) using analyses from different operational forecast centers as ensemble ICs. Thetest bed
included the following four distinct systems that produced 0 — 48-h forecasts (in real time,
initialized daily at 00Z) over alarge dataset of 129 cool season (Nov 2002 — Mar 2003) forecast
cases over the Pacific Northwest (see Table 2, p 118).

1) PME (Poor Man's Ensemble, see Table 3, p 119): 8-member ensemble of low-resolution
global models—a multimodel, multianaysis system.

2) ACME®® (Core of the Analysis-Centroid Mirroring Ensemble): 8-member mesoscale
ensembl e running the MM5 (with 36/12-km nested domains and 32 levels) from the
PME' s analyses asinitial/boundary conditions—a single-model, multianalysis system.

3) ACME®*" (see Table 4, p 120): 8-member ensemble like ACME™" but with variations
to MM5—a perturbed-model, multianalysis system.

4) ACME: 17-member ensemble as an expanded version of ACME®* —a single-model
system with multi, centroid, and mirrored analyses.

For verification of these systems, the centroid analysis (mean of al 8 core analyses) was used on
the outer, 36-km domain and the 20-km Rapid Update Cycle model analysis (RUC20) was used

for theinner 12-km domain. A variety of statistical tools were used to analyze deterministic skill,



177

ensemble dispersion, and FP skill/value of 500-mb geopotential height (Zsy0), Mmean sealevel
pressure (MSLP), 10-m wind speed (WS,), and 2-m temperature (T>).

The first question we sought to answer was whether a group of independent analyses (i.e.,
multianalysis approach) provides a useful estimate of analysis error for SREF. Since the majority
of forecast uncertainty for a synoptic-scale parameter comes from analysis error, skillful FP is
only possible when ensemble ICs are able to represent that error well. The PME, ACME®®, and
ACME™*", which used the multianalysis approach, had positive FP skill for parameters with
strong synoptic-scale influence (c.f., Figure 43, p 154 and Figure 54, p 167), implying that
averaged over many forecast cases, analysis error was well represented by the spread of the
analyses. However, the multianalysis approach is often hampered by high correlation among the
analyses, which is discussed below.

For several reasons, the key to the success of our multianalysis approach for SREF is that the
differences among the analyses are predominantly synoptic-scale. Ensemble |Cs should include
synoptic-scale differences since synoptic-scale errors are the largest errors generated by an
analysis cycle. Secondly, it isthe synoptic-scale errors that grow the largest so they must be
included in ensemble ICs to consistently represent forecast uncertainty. Lastly, in the midlatitude
cool season and over complex terrain, much of the mesoscal e uncertainty is driven by the
synoptic-scale error growth so small-scale errors may not need to be represented in the ICs.

The second question concerning analysis error was the possibility of expanding upon the core
analyses to increase ensembl e size beyond the limits imposed by the multianalysis approach (i.e.,
number of ensemble members equals the number of available analyses, which was 8 in our case).
The purpose of the ACME system was to address this question and ameliorate the problems
associated with small ensemble size. A small ensemble often does a poor job at representing the

PDF from which the members are drawn, resulting in degraded FP.
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ACME generated additional 1Cs from the information in the eight core analyses by using the
difference between each core analysis and the centroid analysis as an estimate of the analysis
error vector. The actua analysis error vector, which points in model phase space from the
analysis to the true state, can never be known. The components of each of our eight estimates of
the analysis error vector were made up of the grid point by grid point difference between the
centroid analysis and each core analysis of all state variables at all model levels. Each estimated
analysis error vector contained structural information (e.g., variation in position of along wave
trough) on the likely analysis errors besides error magnitude. To generate another possible IC, an
analysis error vector was added back onto the centroid analysis, producing a mirror of an original
core analysis about the centroid analysis. Lateral boundary conditions (LBCs) were handled in
exactly the same manor.

The mirroring process of ACME produced an additional 9 ensemble members since the
centroid analysis and each of the 8 mirrored ICs/LBCs was used to run MM5. We found that
these additional members yielded unique solutions that were generally on a par with the forecasts
from the core analyses (c.f., Figure 56, p 169). We also found that there was considerable
variability in skill among the members, including among the core members, which is generally
considered to be a detrimental attribute for an EF system.

In strict EF theory, it isrequired that all members be independent and equally likely so that
they can be considered random draws from the forecast PDF. However, this work demonstrated
that an effective ensemble can be made up of unequally skilled members. A member with lower
average skill can add value to an ensemble aslong as it occasionally performswell. Only a
member that performs poorly the mgjority of the time can degrade the skill of an ensemble (c.f.,

Figure 57, p 170).
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Comparing ACME and ACME®"®, we found that ACME unfortunately did not demonstrate
an improvement in skill commensurate with the increase in ensemble size from 8 to 17.

However, ACME was better able to encompass (i.e., completely surround) the verification
compared to ACME®", so the additional ACME members did provide valid forecasts not
produced in ACME®®, To explore how ACME could appear to be of no additional value for FP
but at the same time be valuable for encompassing truth more often, we developed a new analysis
tool caled the standardized verification (Vz).

For highly reliable FP, the verification should appear to be drawn from the PDF represented
by the ensemble members—an objective termed ‘ statistical consistency’. V- testsfor failure to
meet statistical consistency by subtracting the ensemble mean from the verification at each grid
point and then dividing by the ensemble standard deviation (s), thus tranglating the verification
into sunits. A large V7 value (chosen as > 3 or < -3) indicates that the verification was an outlier
with respect to the ensemble PDF (i.e., truth “got away” from the ensemble and was not a random
draw from the ensemble’ s PDF). Comparing plots of V, we found that ACME and ACME®*®
shared the same areas where the verification was an outlier (c.f., Figure 61, p 173). Furthermore,
the areas where ACME®"* had failed to encompass the verification, but ACME did, were actually
areaswhere |V | < 3 for ACME®™" (i.e., verification was not an outlier). Therefore, the apparent
gain made by ACME in encompassing truth was of little value since it did not correct the
problems (i.e., where truth got away) of ACME®*®, which iswhy ACME provided no
improvement in FP skill.

Our conclusion concerning use of independent analyses as ensemble ICs is that, while the
differences among the analyses do represent analysis error well on average, there are often
occasions when the analyses share similar errors and are too highly correlated. For example, over

apoorly observed area of the Pacific Ocean al the analyses may omit a devel oping short wave,
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which leads to alarge region in the forecast fields where truth gets away from the ensemble since
none of the members would contain the ensuing cyclone. The mirroring method was successful
at producing more valid samples from the forecast PDF of ACME™"®, but ACME did not improve
FP skill becauseit only provided more samples from a deficient PDF. The additional members
of ACME could only vary the position of short waves represented in ACME®* but could not
produce short waves that were entirely missed by all the analyses. A valuable outcome from the
ACME system was that the MM5 run from the centroid analysis displayed the best overal
deterministic performance among the individual ensemble members. Thislikely means that the
centroid analysisis the best representation of synoptic-scale truth, although it does tend to smooth
out structures.

Another major question we researched was by how much and by what means do model
deficiencies (both stochastic and systematic error) impact SREF skill and value? Our results
showed conclusively that model deficiencies do play asignificant role in SREF. Stochastic errors
(i.e., random model errors) are alarge source of uncertainty and must be accounted for within a
SREF system in order to maximize utility, particularly for mesoscale, sensible weather
phenomena. Systematic errors (i.e., model biases) are clearly not part of the forecast uncertainty
but are alarge part of the forecast error and can seriously degrade ensemble performance if not
corrected.

To eliminate the bulk of the systematic error, we applied a simple grid-based, 2-week,
running-mean bias correction to each member separately. This approach was based on findings
that biases are predominantly linear and dependent on location, forecast lead time, weather
regime, and ensemble member (c.f., Figure 24 — Figure 26, p 102 — p 104). To demonstrate a
method for rea-time application, we used the previous two weeks as training data for the bias

correction of each forecast cycle. A 2-week training period was used to: 1) capture the short
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timescale variability in bias that arises from shiftsin weather regime, and 2) obtain a reasonably
sized sample of data at each point. We found that forecast bias can be influenced by both the
model and the analysis, so fixing the IC and model for the members in our ensemble systems
made bias correction more effective.

The larger and more consistent the biasin a parameter, the more improvement was redlized
from the bias correction (c.f., Figure 28 — Figure 34, p 106 — p 112). The PME members
generally had lower bias compared to the ACME system members since the large-scale models
have lower resolution and are better tuned. A mesoscale model produces more bias asit attempts
to represent smaller-scale phenomena with additional parameterizations.

Bias correction benefited SREF by greatly improving FP skill by: 1) improving reliability by
adjusting the mean of the ensemble’ s PDF to match the mean of the verification’s PDF, and 2)
improving resolution by narrowing the ensemble’ s PDF where members had opposing biases.
Figure 43 (p 154) shows how bias correction improved the performance of ACME®*® by 6 h,
which is significant for a short-range forecast. An additional benefit of bias correction was that
analyzing bias-corrected results led to firmer conclusions, such as the importance of accounting
for stochastic model error. For example, in Figure 52 (p 165), it isonly after bias correction that
ACME™*" stands out as superior to ACME™* at all lead times.

The ACME™*" system was designed to account for model uncertainty and explore how
inclusion of model diversity affects a SREF on the mesoscal e and for sensible weather.
ACME™*" (see Table 2, p 118) applied the perturbed-model strategy in which the members used
the same ICs as ACME®™*® but each was given a unique version of MM5. The goal of this
approach was to generate large and realistic dispersion that represented the model uncertainty of
MM5. Model perturbations consisted of different combinations of physics options (planetary

boundary layer, cloud microphysics, cumulus, and radiation schemes) and randomly perturbed
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surface boundary parameters (SBPs) (sea surface temperature, moisture availability, albedo, and
roughness length).

Comparing ACME™* and ACME®*", we found that inclusion of model diversity
dramatically increased ensemble spread, which improved statistical consistency but still fell well
short (c.f., Figure47c & d, p 158). (For dtatistical consistency, ensemble spread must match the
mean square error of the ensemble mean when averaged over many forecast cases.) So while
ACME™*" was able to improve FP skill (discussed below), thereis still room for improvement in
our mesoscale SREF methodology. This analysis also revealed adramatic lack of error growth
for T, (Figure 47d) but the error was not saturated in the short range. Since ensemble spread was
such asmall fraction of forecast error for ACME™" (in which all members shared the same
version of MM5), we concluded that for our dataset the error in T, is dominated by model error.
In other words, analysis error and the error growth it produces contributes very little to the
observed T, forecast errors—aresult completely different from that for a variable with strong
synoptic-scale influence, such as WSy, That finding led to agenera conclusion: the relative
influence of analysis and model uncertainty for SREF is greatly dependent upon the scale and
variable of interest.

ACME™*" did display greatly improved (in both reliability and resolution) FP skill over
ACME™", revealing that model errors are alarge part of the forecast error at the mesoscale and
can be at least partly represented by the perturbed-model approach (c.f., Figure 52, p 165 and
Figure 54, p 167). Unlike biasremoval that improves skill by narrowing the forecast PDF away
from values where the verification is unlikely to occur, including realistic model diversity
improves skill by widening the forecast PDF toward values where the verification may occur.
We aso confirmed that including model diversity is moreimportant near the surface over land

where model parameterizations have the greatest influence (c.f., Figure 53, p 166).
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Further study on the issue of representation of model uncertainty was performed by
comparing the multimode! approach of the PME to the perturbed-model approach of ACME®*®".
It was expected that the PME would exhibit greater dispersion since the model differences among
the PME members are likely much greater. We found that the PME was actually dightly
overdispersive (c.f., Figure 47a & b, p 158) and performed much better on the synoptic scale
compared to ACME™*" (cf., Figure 51, p164). Just as the differences between model optionsin
ACME™"*" appear to represent model error to some degree, the large differences among the PME
members models can skillfully represent model error. Furthermore, the greater model diversity
within PME makes it more skillful than ACME™®". The downside of the PME isthat it does not
include the desired information on the mesoscale—the reason for the implementation of
ACME®™*".

We proposed atwo-part strategy for improving the low dispersion problem of ACME®*®",
which should also improve FP skill. First, the MM5 forecast of each ACME®*®" member should
be periodicaly nudged toward the large-scale model from which it was forced, thus improving
the large-scale dispersion. Besides greater model diversity, the PME produces more dispersion
than ACME®*" because the PME grows the large-scale errors globally whereas a mesoscale
ensembl e reduces error growth by running on alimited-area domain, even with updated lateral
boundaries. The second part of the solution deals with small-scale error growth. We found that
our 12-km domain was able to produce greater ensembl e spread compared to the 36-km domain
since finer model resolution is able to capture variability on smaller scales of motion (c.f., Figure
49b). We proposed that further increasing the grid resolution should produce higher, more
accurate dispersion among the ACME®*" members and thus more highly skilled FP. Higher
resolution would also have the added benefit of reduced reliance on physical parameterizations so

their errors would no longer have to be approximated.
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A final comment on the issue of representing stochastic model error in SREF concerns how
much improvement we should expect from more thorough error representation. Whileitis clear
that thereis valuein either the multimodel or perturbed-model approaches, their chief limitation
isthe use of gross model differences (either by differences between models or model options) to
approximate model error rather than rigoroudly perturbing all parameterizationsindividually.
How much more value could be realized from SREF by perturbing the model more rigorously?
We speculate that such an effort would not be worth the cost since we may never truly understand
many aspects of model error and therefore never be able to perturb them rigorously. 1t may be
more beneficial to SREF to focus on improving the mesoscale model to reduce the uncertainty
within the model.

In analyzing our MM5 SREF results, it became clear that there are significant deficienciesin
current mesoscale modeling. For example, the error in T, is about the same in the first few hours
of the forecast asit is at the 48-h lead time, which reveals the models inability to represent
surface and boundary layer effects. Analysis of SREF may help to identify the most deficient
aspects of the model. Dispersion diagrams such as Figure 47 (p 158) revea poor model
dispersion and point out where model options may be unable to represent certain atmospheric
behaviors. Plots of standardized verification such as Figure 61 (p 173) identify structuresthat are
not represented by the forecasts and may be traced to model or analysis deficiencies.

In closing, this research was not an attempt to build an ideal SREF but rather an opportunity
to realize most of the potential SREF benefits by employing sound methods that are currently
computationally feasible. Detailed analysis revealed that while there are limitations to SREF,
there is value in mesoscale SREF even with today’ s capabilities. Intercomparison of our different
systems yielded answers to basic SREF issues that apply to the development of more optimal

SREF systems in the future.
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Appendix |: EF Statistical Toolbox

This appendix presents gtatistical techniques for evaluating the quality of an EF system,
whichis not a straightforward matter. Similar challenges as faced by deterministic forecast
verification are present for evaluation of EF, such as verification on the appropriate scales,
differences between observation-based and model analysis-based verification, interpolation of
data from observation locations to model grid points or vice versa, and errors or biasesin the
verification itself. For EF, thereisthe additional problem of verifying a stochastic-type forecast
with deterministic observations since stochastic observations are generally not available. The
tools explained here were designed to meet these challenges, but each has unique strengths and
weaknesses. When used collectively these tools represent afair and thorough means to evaluate
and compare EF systems.

There are two general types of EF statistical evaluation tools: consistency tools and utility
tools. A consistency tool evaluates whether the verification can be considered arandom sample
from the PDF defined by the ensemble members. Thisis anecessary condition for the ensemble
to properly represent the forecast uncertainty and is often termed statistical consistency. A utility
tool evaluates whether or not an ensemble can produce useful information for a particular user or
usersin general. An EF system can be statistically consistent but yet of little value. For example,
highly reliable forecast probability (FP) could be provided simply by the climatologic norm but
such forecasts would not be able to distinguish between events and nonevents (i.e., POSsesses no

resolution).

A. Dispersion diagram
A dispersion diagram is a consistency tool that displays how well the mean square error

(MSE) of the ensemble mean matches the ensemble variance. Besides statistical consistency, it
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also reveals the predictability error growth of the variable being examined. This diagram and the
Error Variance Diagram are thoroughly detailed in section 1.B.1 (page 13) so will not be covered

here.

B. Verification Rank Histogram

The verification rank histogram (VRH) is a consistency tool based on Anderson’s (1996)
binned probability ensemble technique. It isauseful tool for visualizing statistical consistency
and the dispersive character of an ensemble. Construction of aVRH for a parameter such as 850-
mb temperature (Tgso) in Figure 62 begins by pooling a verification value at one location with the
forecast values from an n-member ensemble, followed by sorting of the n+1 values from least to
greatest. The resulting rank (i.e., ordered position among the n+1 values) of the verificationis
recorded over many such trials (over space and/or time) to build a histogram of the number of
occurrences within each rank. Dividing the total verifications that occurred in each rank by the
total number of trials gives the probability that the verification occurred within each rank.

An example of ahypothetical trial, just one datum for the construction of aFigure 62, is
detailed in the “realistic forecast” in Table 9 and Figure 63. With eight forecasts, there are nine
possible ranks for the verification, so if the observed Tgso is 2.1°C then a verification rank of 6is
recorded for thistria. In the event that the verification exactly equals one or more of the EF
forecadts, the rank is randomly assigned among its possible values (Hamill and Colucci, 1997).
(E.g., if the observed Tgs, in the example was -0.18°C then verification rank is randomly assigned
torank 3 or rank 4.)

For avery large number of trials, awell calibrated EF produces auniform VRH if the
verification is arandom draw from the same PDF asthe EF’ sforecast PDF. In other words, on
average the verification should have an equa chance of occurrence in each rank equal to

1/ (n+ 1) (Anderson, 1996). This may seem counterintuitive at first given that the widths of the
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ranges of possible verification values within each rank can vary quite alot. Consider the
idealized forecast in Table 9 and corresponding plots in Figure 63a & b. From a quantile point of
view, the eight forecasts are uniformly spread, so, while each of the nine possible verification
ranks has different sized ranges of the random variable Tgsp, the probability of occurrencein each
rank is still 1/9.

However, in the redlistic example (Figure 63c and d) it is clear that, besides different sized
ranges of Tgs, thereis aso unequal probability among the nine possible verification ranks. For
thissingle trial, the verification will most likely occur in rank 3. But over many trials, the
average probability of occurrencein each rank will equal 1/9. Thisiswhy the principle of VRH
uniformity for awell-calibrated EF applies only to very large amounts of data.

When the verification’s PDF is quite different from the EF' s forecast PDF, the probability of
occurrence among ranks will not be uniform on average. Figure 62 shows a u-shaped VRH,
commonly found in EF, which indicates the verification has a greater variance compared to the
forecast PDF since the verification occurs too often in the extreme ranks. A u-shaped VRH may
also indicate wesak dispersion of the ensemble members since truth is too often not encompassed.

Note that a uniform VRH is a necessary but not sufficient condition for an EF system to be
considered well calibrated. It is possible for problems of an EF system to be camouflaged by
various aspects of the forecast and verification data (Hamill, 2001). For example, Hamill (2001)
demonstrated how an overdispersive EF system that also has a conditional bias (positive at times
and negative at other times) can produce a uniform VRH. Furthermore, a uniform VRH isnot a
measure of an ensemble’s skill since uniformity could simply be achieved by forcing spread
toward climatol ogy, which would reduce skill.

A factor often analyzed from a VRH isthe missing rate (MR), which isthe total percentage of

verifications that occurred in the outer ranks (i.e., rank 1 and rank n+1):
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MR = 100(%} (33)

where N, is the number of verifications that occurred in arank x, and M is the tota number of
trials. A MR greater (less) than the statistically consistent value of 2/(n+1) provides a quantitative
evaluation of the underdispersion (overdispersion) of an EF system and also the ability of the EF
to encompassed truth. In comparing the MR between ensembles of difference size, it is better to
compare the missing rate error (MRE) since the statistically consistent value of the MR depends

onn:

N, + N 2
MRE = 100| —X—"1 —
( M n+1} (349

C. Standardized Verification

As described above, the MR or MRE only reveals an ensemble ability to encompass truth and
can not answer the more important question of an ensembl e’ s ability to portray truth. (Recall our
definition that the verification is portrayed if it occurs within three standard deviations from the
mean of the EF s approximate forecast PDF.) A high value of MR could be associated with few
or many verification values not portrayed depending upon the shape of the PDF tailsinvolved.
Also, alow MR (generally indicating overdispersion) does not necessarily mean that the
verification is being portrayed too often.

A way to measure an ensembl e’ s ability to portray truth follows the statistical calculation of
the standard normal random variable which transforms the value of a variable into units of

standard deviation (Devore, 1995):

v, = V-¢e (35)
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where V; istermed the standardized verification, € isthe ensemble mean, V is the verification
value, and sisthe ensemble standard deviation, al at asingle grid point. This provides an
excdlent tool to determine when and if the verification is an outlier and not portrayed by the
ensemble. Furthermore, by plotting V; for asingle forecast case, it is possible to explore how
truth gets away from an ensembl e by revealing any structure to the regions where the verification
occurs beyond 3s. Note aso that V; carries asign to indicate the direction (+, high; —, low) of the
verification in relation to the ensemble mean. Note that while V7 can reveal where an ensemble
has failed its primary goal of portraying the truth, V can not show anything concerning whether
the ensembleis overspread.

As another check for statistical consistency, we could also calculate an average V; over

many points:

Z—' U~ (36)

V, =
m1 Sm

where M is the number of data points being verified, and the m subscripts reference asingle grid

point. However, while the expected value of \/_Z isaround 1.0, it aso depends upon ensemble

size and the shape of the distribution. Therefore \/_Z can not easily be used to measure the

statistical consistency of an ensemble. V7 isnot truly standardized to 1.0 for our purposes.
An overall measure that is useful will be termed the verification outlier percentage, VOP:

vop - 100 M (0: 3s, 2|V, ~ &, (37)
M 1 3s,<|V,-&|

m=1
Basically this finds the average percentage of the data pairs in which the verification is not
portrayed by the ensemble. That is, if the verification falls beyond 3s from the mean on either

side, we call it an outlier with respect to the EF. For anormal PDF, outliers beyond 3s are rare

but are till expected to occur ~0.3% of thetime. Therefore, the amount that VOP exceeds 0.3%
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isameasure of how much truth gets away from the ensemble. However, for the same reason that
Vz is not actually a standardized measure, that ruleis only arough guide.

It is more useful to compare the VOP between ensemble systems as a rel ative measure of
each system’s ability to portray truth. Thisis superior to comparing the missing rate because a
similar value of missing rate can have a variable VOP. For example, we found the missing rate
for Zsgo * ACME®™*" to be 27.50% and 27.52% for both the 36- and 48-h lead times respectively,
but VOP = 4.16% at 36 h and 3.85% at 48 h. The VOPs indicate that * ACME™*" was better able

to portray the truth at 48 h while the MR could not because of its limitations.

D. Brier Scoreand Brier Skill Score

The Brier score (BS), essentialy amean square error measure for FP (Wilks, 1995),
measures the accuracy of a set of FPsfor the same event. With alarge number of such forecasts
and corresponding verifying observations, the BSis calculated as (Equation 7.22, Wilks, 1995):

N 2
z (FR -oBS;) (39

=1
N
where N isthetotal number of forecasts/observation samples, and FP; is the forecast probability
of thei™ sample. OBS equals 1 if the event occurred for the i sample, and 0 if it did not occur.
Therefore, BS varies between O (perfectly accurate) and 1 (totally inaccurate).

The BSisvery useful for comparing the relative skill of two sets of probability forecasts (e.g.,
forecasts from the ACME®* vs. forecasts from ACME®®"). A more explicit measure for asingle
set of forecasts, called the Brier skill score (BSS), can be made by comparing the BSto BS; i,
which comes from forecasts based on the climatol ogic probability of occurrence.

BS-BS, BS
BSS = clim =1-
BS.._ -BS BS (39)

perfect clim clim
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since BSyreer = 0 (Equation 7.23, Wilks, 1995). Equation (39) gives the amount of improvement
over the climatologically based forecasts. The BSSis a utility tool where avalue of 1.0 indicates

perfect forecasts and avalue of 0.0 or less indicates aworthless forecast.

E. Reliability Diagram

A reliability diagram is agraphic display of the BS created by binning the continuous FP
valuesinto | discrete, contiguous bins of probability, then plotting the FP at the center of each bin
(FP") against the corresponding observed relative frequency (ORF'). The BS' can then be

calculated through decomposition into reliability (rel), resolution (res), and uncertainty (unc).

BS = ﬁzl: N; (FF' - ORF/)* - ﬁi N; (ORF/ - SC)* - SC(1-<C) (40)
" (re) e (unc)

where M is the total number of forecasts/observation data pairs for the event, i isthe index for the
| bins, N; is the number of forecasts within the i bin, FP; isthe forecast probability at the center
of each bin, ORF;" isthe observed relative frequency for the forecastsin bini, and SCisthe
sample climatology (Equation 7.28, Wilks, 1995). Note that Equation (40) is an approximation to
Equation (38) because of the binning of the forecast probabilities. If FP; values were rounded to
FP;" valuesfor usein Equation (38), or if | — oo in Equation (40), then the two equations would
be equivalent.

Therdiability diagram plots ORF;’ vs. FP,' so a perfectly reliable forecast follows aline of
sope=1.0 starting at the origin. (E.g., for the set of al cases in which 20% chance of occurrence
was forecast, the event should be observed to occur for 20% of those cases.) Therel termisa
measure of the distance away from the perfect forecast line weighted by the number of forecasts

at each FP;'. Better forecasts result in asmaller rel and thusa BS’ closer to zero. Notethat a

forecast based on the climatologic probability has perfect reliability (rel = 0.0).
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Figure 64 is a detailed example of areliability diagram from Eckel (1998) built from the data
in Table 10. The event forecast was 24-h cumulative precipitation > 0.25 inch at the 36-h
forecast lead time. SinceM = 11, the original forecast probabilities are, in effect, rounded to the
nearest 10%, making FP;' bins of 0.0% — 4.9%, 5.0% — 14.9%, ..., 95.0% — 100%. The
histogram in Figure 64 is a display of the relative frequency of usage of the forecast probabilities
(i.e., how many forecasts were made within each FP;" bin).

The SC isthe overall frequency of occurrence of the event. The resolution term is a measure
of distance away from the climatol ogic probability forecast (dashed line label ed zero resol ution)
weighted by the number of forecasts at each FP;'. Better forecastsresult in alarger res and thus a
BScloser to zero. Resolution isameasure of the forecast’ s ability to discriminate between
occurrence and nonoccurrence of the event. It is possible then to improve the reliability of a
forecast system by increasing its spread toward the climate PDF (Evans, 2000). But this does not
improve the system’ s quality since res would decrease. Notethat a set of forecasts based on the
climatol ogic probability of occurrence has the worst possible resolution (res = 0.0) since for such
forecasts, ORF = SC.

The uncertainty termis determined by the SC and thus independent of the forecasts (Figure
65). It can bethought of as a measure of how easy it isto forecast the event in question. The
highest possible unc of 0.25 (most difficult to forecast) is associated with an event that occurs
half of the time on average (i.e., SC = 50%). An event that rarely occurs or frequently occurs has
alower unc (easier to forecast) with a minimum of 0.0 when SC = 0.0% or 100%.

The BSS can be computed from areliability diagram by applying the fact that for a
climatologically based forecast the res and rel terms are both zero, as described above.

Substituting the BS' from Equation (40) into Equation (39) , we get (Equation 7.29, Wilks, 1995):
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BSS = 1- rel —res—unc _ 1+ res—rel _ unc
0-0+unc unc unc
Bss = [es~ré (41)
unc

Therefore, for apoint in areliability diagram to contribute positive skill, it must haverel < res.
This requirement defines a skill zone as the shaded region in Figure 64. Forecasts that exhibit an
overall negative BSS' performed worse than a simple climatol ogically based forecast.

Note that the main difference between BSSand BSS' is in the choice of what is used as the
climatologically based forecast. The BSS can be calculated with respect to the BS;i, from along-
term climatologic forecast, while the BSS' uses the short term average chance of occurrence over
just the dataset (i.e., the SC). In thisrespect, the BSS' is amore stringent score since, for a
limited dataset, the SC reflects the climatol ogy of the sample and should therefore produce a
better average FP compared to the long-term climatologic forecast. Furthermore, since the long-
term climatology for an event is often difficult to obtain, normally only BSS' is computed. (Note:
In the body of this dissertation we drop the prime notation since the only BSS employed isfrom
Equation (41).)

Interpreting areliability diagram can be tricky. A primary concern is the sample size since to
be confident in the diagram, there should many samples (perhaps minimum of about 50) within
each FP;" bin. Next, the relative sampling among the FP;' bins (the histogram in Figure 64) needs
consideration since that shows how the resand rel components are weighted. Obvioudy, itis
desirable for data pointsto fall in the skill zone, but some points with small weight may fall
outside so that an overall positive BSS' results.

Thetwo basic curves often observed in areliability diagram of an EF, the Sand thereverse S,

are aresult of the basic dispersion characteristics of the EF. Points above the perfect line are
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associated with underforecasting while points below are overforecasts. So the reverse Smeans
that the EF overforecasts the higher probabilities and underforecasts the lower probabilities. It
can be seen that this corresponds to an underdispersive EF by considering the u-shaped VRH.
When an underdispersive EF gives aFP of 10% for some event threshold, the actual chance of
the verification falling above the threshold is much higher (i.e., large probability in the outer
rank) so thisis an underforecast. Thereverse holdsfor the case of ahigh FP. The entire scenario
flips for the S-shaped reliability diagram curve so that it corresponds to an overdispersive EF.
While the point of inflection for these curves can be pushed toward one end of the diagram, it will

still beidentifiable as either the Sor thereverse S

F. Relative Operating Characteristic

The relative operating characteristic (ROC) is a verification tool that employs signal detection
theory, atechnique designed to evaluate binary-type forecasts in which forecasts are restricted to
a“no” (i.e.,, FP=0%) or a“yes’ (i.e.,, FP = 100%). Theinitia step in computing the ROC isto
reduce the full probabilistic information from an EF down to binary-type forecasts for the event.

For example, say an EF forecasts a 37% chance for the event that 24-h cumulative
precipitation will be > 0.25in. Setting a cutoff FP threshold of 50% for forecasting a“yes’, the
FP = 37% would be a“no” forecast for this event. Although thereis actually 37% chance of
occurrence, the binary-type forecast is that the event will not occur. If the event does not occur
the forecast is called acorrect rejection (CR), but if it does occur the forecast is amiss (M).
Alternatively, a“yes’ forecast where the event does occur istermed ahit (H) and for anon-
occurrence, the forecast is afalse alarm (FA).

Varying the cutoff FP threshold gives a different false alarm rate (FAR) and hit rate (HR)

which are plotted against each other to produce the ROC (Stanski et al., 1989).



195

H
HR =
H+M (42)
FAR=_ A (43)
FA+CR

which are built from a contingency table (Figure 66). These two ratios are both concerned with
the outcome from a*“yes’ forecast. The HR (hits divided by occurrences) is the fraction of the
times when the event did occur that it was forecast to occur. The FAR (false alarms divided by
nonoccurrences) is the fraction of the times when the event did not occur that it was forecast to
occur.

Table 11 uses the same forecast data as Table 10 and shows the values used in calcul ation of
the ROC points of Figure 67. Each FP threshold generates a unique contingency table and thus a
point inthe ROC. A lower FP threshold has a high number of hits and a high number of false
alarms, thus producing a high HR and ahigh FAR. ROC is another way to measure resolution
sinceit reveals the system’ s ability to discriminate between occurrences and nonoccurrences, but
the ROC does hot measure reliability (Evans et al., 2000). A set of forecasts with perfect
discrimination has HR = 1.0 with a FAR = 0.0, so a ROC curve closer to the upper left of the
graph represents better forecasts. The diagonal line on the ROC is the zero skill line where
forecasts are not able to discriminate at all (Jolliffe and Stephenson, 2003)

The area (A) under the ROC curveis an overall measure of the utility of the forecastsfrom a
signal detection point of view. The A can be used to produce a ROC skill score (ROCSS) akinto
the BSS (Jolliffe and Stephenson, 2003):

ROCSS = 2A-1 (44)
so that a ROCSS of 1.0 represents perfect forecasts and a ROCSS < 0.0 represents useless

forecadts.
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Figure 66. Contingency table of signal detection theory where H is number of hits, M is number
of misses, FA is number of false darms, and CRis the number of correct rejections.
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Table9. Two sets of hypothetical EFs of Tgsg Ordered from least to greatest, produced from the
PDF in Figure 63. The “idealized forecasts’ are evenly spaced quantiles, which only occurs for a
long-term average of many realizations. The “realistic forecast” is made up of random draws
from the PDF.

EF Idealized Forecast Realistic Forecast
Member # Quantile Forecast(°C) Quantile Forecast(°C)
1 0.889 -3.93 0.937 -5.47
2 0.778 -1.97 0.761 -1.76
3 0.667 -0.72 0.606 -0.18
4 0.556 0.23 0.490 0.72
5 0.444 1.04 0.370 1.54
6 0.333 1.78 0.161 2.93
7 0.222 2.51 0.108 3.33
8 0.111 3.30 0.072 3.64
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Table 10. Summary of 22,402 probability forecasts of 24-h cumulative precipitation > 0.25inch
at the 36-h forecast lead time. ORF;" isfound by dividing the number of occurrences (Occ.) by
the number of forecasts (Fcsts.).

# of # of
i FpP' Fcsts. Occ. ORF;'
1 0.0 15609 210 0.01
2 0.1 1483 152 0.10
3 0.2 884 121 0.14
4 0.3 273 61 0.22
5 0.4 457 102 0.22
6 0.5 395 92 0.23
7 0.6 369 130 0.35
8 0.7 209 78 0.37
9 0.8 595 267 0.45
10 0.9 716 328 0.46
11 10 1412 990 0.70
TOTALSs: 22402 2531

Table11. Calculated values for the ROC for the same source dataasin Table 10, where the
number of non-occurrences is simply the number of forecasts minus the number of occurrences.
Each probability threshold in effect produces its own unique contingency table. The arrows give
examples of which values are summed to arrive at H, FA, CR, and M.

FP # of # of

Threshold Occ. Non-occ. H FA CR M FAR HR
0.00 0 0 2321 4472 0 0 1.000  1.000
0.05 210 15399 2321 4472 15399 210 0.225 0.917
0.15 152 1331 2169 3141 16730 362 0.158  0.857
0.25 121 763 2048 2378 17493 483 0.120  0.809
0.35 61 212 1987 2166 17705 (544 0.109 0.785
0.45 102 355y 1885 1811 " 646 0.091 0745
0.55 92 303 1793 1508 18363 738 0.076  0.708
0.65 130 23041663 18602 868 0064  0.657
0.75 784 131 1138 18733 946 0.057  0.626
0.85 267 328 1318 810 19061 1213 0.041 0.521
0.95 328 388 990 422 19449 1541 0.021  0.391
1.00 990 422 0 0 19871 2531 0.000  0.000




201

Appendix I11: ACME®™*®" Reference Data

This appendix provides additional material and data on the perturbations to the surface

boundary parameters (SBPs) in ACME™*",

A. Uncertainty in Moisture Availability

The goal of this discussion isto demonstrate the difficulty of understanding and quantifying
the uncertainty in amodel parameterization, amajor challenge in designing an EF system. One
such parameterization in this research was the MM5 SBP of moisture availability (M), for which
we endeavored to design a proper perturbation of for ACME®*®". M isused in MM5 to mode! the
evaporation rate (i.e., moisture flux at the surface), E, so that is where this discussion begins.

Determining E is an essential e ement of modeling the planetary boundary layer (PBL) since
the amount of moisture there greatly determines the evolution of weather phenomena. From
Monin-Obhukov similarity theory, E is described by the bulk transfer relation (Garratt, 1992)

where moisture and wind speed are known at measurement height h; (e.g., 2m).

= W)= =% )

a

D |m

ra = YCyV,
where pisthe standard atmosphere’ s surface air density (1.23 kg m*), (W’ q')o is moisture flux at

the surface [m s], qo isthe mixing ratio at the surface[ ], op isthemixing ratioat hy [ ], raisthe
aerodynamic resistance [sm™], C, is the drag coefficient (function of V4, hy, surface roughness
length zo, thermal roughness length zr, and L) [ ], and V; isthe wind speed at h, [m s7].
Evaporation is the mass of water vapor leaving a unit surface area, per unit time, that is replacing

water vapor fluxing up toward air with alower mixing ratio (q;). Notethat if g; > gp then
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(vv’ q')o isreversed and dew or frost forms at the surface. While this equation works well over

water, it is an overestimate over land where E can be limited by unsaturated soil and vegetation.
A more thorough description of evaporation is obtained by including the Clausius Clapeyron
equation, energy balance, and stomatal resistance. This gives an equation for the evaporation

over an idedl (i.e., saturated), vegetated surface (Bretherton, 2002).

e TR -Hs) , b-T")ole; -ay) )
L rg +1,
r-_ S < :L(ﬂ] ; :p(qa—qo)
¢ 14 Co\dT ). : E

r

where Ry isthe net downward radiative flux at the surface [W m'z], Hg is the downward ground

heat flux [W m?], L isthe latent heat of evaporation (2.5 x 10° Jkg™), Cp is the specific heat at

constant pressure (1004 JK™ kg™), Tris areference temperature [K], g, isthe saturation mixing

ratio at hy (function of Ty) [],  is the saturation mixing ratio at the surface (function of To) [ ],

and qo isthe mixing ratio at the surface[ ].
For a nonvegetated surface that is not saturated, the evaporation is also afunction of available

soil moisture, described by the surface relative humidity, RHo.

£ =2 (RH, 6 ~a) 47)

Ideally then, a mesoscale model would use Equation (46) in awet, vegetated grid box, Equation
(47) over anonvegetated soil or water grid box, and some appropriate amalgamation of the two
for amixed grid box. While such a strategy is possible, it is not practica for areal-time modeling
system where parameterizations are designed to give reasonable results without being too

demanding of processing power. A big concern for areal-time mesoscale model is completing
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the simulation quickly in order to make products available to weather forecastersin atimely
manner.
The MM5 models E by using M to represent the effects of stomatal resistance, aerodynamic

resistance, and soil moisture.

E:MCHVM(OIB‘%) (48)
which most closely resembles Equation (47) except r, is now replaced by the total resistance,
I =r,+ rg. Thismeansthat MM5 considers

1
M Ch V;

r = ra+rst:Mira = rgzra[Mi—j (49)

revealing the primary fault of this parameterization scheme. The stomatal resistance should not
be modeled as a function of the aerodynamic resistance since r, and ry are independent.
Additionally, it is difficult to see how M could possibly represent soil moisture at the same time.
Further uncertainty in M is also provided by the use of the land use table, as discussed in the main
text.

While this discussion certainly provides an understanding of the uncertainty in M, it is clear
that thereis no practical way to quantify the uncertainty. The problem is the same with other
SBPs and can get even worse when considering other model aspects. Thisisthe chief challenge
in designing an EF system such as ACME™*" that attempts to account for model uncertainty with

model perturbations.

B. Land UseTable

Table 12 —Table 14 provide the values of the gamma variables applied to Equation (25) to
generate perturbed values of the surface boundary parameters (SBPs). Table 15 then showsthe
eight perturbed land use tables, which were generated using random deviates from the SBP PDFs.

Figure 68 provides a plot of the fixed SST perturbation field for each of the 8 members of
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ACME™*". These perturbations were applied to the daily OTIS SST field (used by the ACME™*®

members) to produce a unique SST for each ACME“®" member.
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Table 12. Gamma variablesfor the 48 PDFs used to generate albedo values.

Albedo
Land Summer Winter
Use #| reverse shape spread translate reverse shape spread translate
1 1 50 0.57 9.85 1 50 0.566 9.85
2 1 50 0.57 10.85 1 50 0.566 4.85
3 1 50 0.57 9.85 1 50 0.566 4.85
4 1 50 0.57 9.85 1 50 0.566 4.85
5 1 50 0.57 9.85 1 50 0.566 4.85
6 1 50 0.57 11.85 1 50 0.566 7.85
7 1 50 0.57 8.85 1 50 0.566 4.85
8 1 50 0.57 5.85 1 50 0.566 2.85
9 1 50 0.57 7.85 1 50 0.566 3.85
10 1 100 0.35 14.64 1 100 0.35 14.64
11 1 100 0.30 13.67 1 100 0.3 12,67
12 1 100 0.30 15.67 1 100 0.3 14.67
13 1 100 0.25 12.80 1 100 0.25 12.8
14 1 100 0.25 12.80 1 100 0.25 12.8
15 1 10 1.11 -3.04 1 10 1.11 -4.04
16 -1 30 0.31 -17.00 -1 30 0.31 -17
17 1 100 0.35 20.66 1 100 0.35 20.66
18 1 100 0.35 20.66 1 100 0.35 20.66
19 1 100 0.30 4.72 1 100 0.3 4.72
20 1 3 4.62 -5.83 -1 3 4.62 -69.18
21 1 3 4.04 -6.96 -1 3 4.04 -58.05
22 1 3 4.33 -6.39 -1 3 4.33 -63.62
23 1 3 4.62 -15.83 -1 3 4.62 -79.18
24 -1 10 221 -74.81 1 15 1.81 -44.74

Table 13. Gamma variables for the 48 PDFs used to generate moisture availability values.

Moisture Availability

Land Summer Winter
Use #| reverse shape spread translate reverse shape spread translate
1 1 4 3.00 -0.98 1 4 3 -0.98
2 1 3.5 5.88 -15.22 -1 5 492 -79.81
3 1 500 0.45 173.20 1 500 0.447 173.2
4 1 3.5 5.35 -11.59 -1 7 34 -70.28
5 1 3.5 3.47 -16.24 -1 7 246 -54.73
6 1 3.5 535 -21.59 -1 5 4.47  -77.98
7 1 3 3.18 -8.58 -1 10 19 -47.08
8 1 3.5 2.14 -4.66 -1 8 1.24 -28.63
9 1 3.5 251 -8.77 -1 9 1.57 -37.52
10 1 4 3.00 -5.98 1 4 3 -5.98
11 1 3.5 5.88 -15.22 -1 5 492 -79.81
12 1 3.5 5.88 -15.22 -1 5 492 -79.81
13 1 500 0.45 173.20 1 500 0.447 173.2
14 1 3.5 5.88 -15.22 -1 5 492 -79.81
15 1 3.5 5.88 -15.22 -1 5 492 -79.81
16 1 99 99.00 99.00 1 99 99 99
17 1 6 2.65 -46.78 -1 45 3.11 -85.74
18 1 3 6.35 -22.05 -1 3 6.35 -82.93
19 1 2 1.06 -0.94 -1 10 0.32 -7.85
20 1 35 5.08 -37.09 -1 2 7.78 -97.85
21 1 35 5.08 -37.09 -1 2 7.78 -97.85
22 1 35 5.08 -37.09 -1 2 7.78 -97.85
23 1 1.1 10.49 -0.95 -1 11 1049 -96.04
24 -1 3 1.27 -97.54 -1 3 1.27 -97.54
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Table 14. Gamma variables for the 48 PDFs used to generate roughness length values.

Roughness Length

Land Summer Winter
Use #| reverse shape spread translate reverse shape spread translate
1 1 2 21.21 -28.86 1 2 21.21 -28.86
2 1 100 0.35 19.66 1 3 2.02 -0.95
3 1 100 0.35 19.66 1 3 2.02 -0.95
4 1 100 0.35 19.66 1 3 2.02 -0.95
5 1 100 0.35 20.66 1 3 2.02 -0.95
6 1 100 0.50 29.50 1 100 0.5 295
7 -1 30 0.50 -26.30 -1 30 046 -23.24
8 1 100 0.25 14.78 1 100 0.25 14.78
9 1 100 0.25 13.78 1 100 0.25 14.78
10 1 100 0.25 9.78 1 100 0.25 9.78
11 1 1.5 3430 -32.52 1 1.5 343 -32.52
12 1 1.5 3430 -32.52 1 1.5 343 -32.52
13 1 15 3430 -32.52 1 15 343 -3252
14 1 1.5 3430 -32.52 1 1.5 343 -32.52
15 1 15 34.30 -32.52 1 1.5 343 -32.52
16 1 1.3 0.02 0.00 1 1.3 0.0175 -0.0047
17 1 100 0.50 29.50 1 100 0.5 29.5
18 1 3 6.35 -27.45 1 3 6.35 -27.45
19 1 100 0.25 14.78 1 100 0.25 14.78
20 1 100 0.25 14.78 1 100 0.25 14.78
21 1 3 6.35 -17.45 1 3 6.35 -17.45
22 1 10 1.26 -3.64 1 10 1.26 -3.64
23 1 10 111 -0.04 1 3 2.02 -0.95
24 -1 15 0.28 -8.97 -1 15 0.28 -8.97
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Table 15. MM5 land use tables used for ACME®®". The format shown is exactly as aland use
fileis employed inthe MM5 code. The perturbed parameters are albedo (ALBD, %), moisture
availability (SLMO, % * 100), and roughness length (SFZO, cm) . Parameters not perturbed
include emissivity (SFEM, % * 100), thermal inertia (THERIN), snow-effect factor (SCFX), and
heat capacity (SFHC).

LANDUSE. TBL. pl us01

USGS

24,2, "ALBD SLMO SFEM SFZ0 THERIN SCFX  SFHC

SUMMVER

1, 16., . 16, . 88, 49., 3., .52, 18.9e5,"' Urban and Built-Up Land'

2, 17., . 37, .92, 20., 4., .60, 25.0e5,'Dryland Cropland and Pasture’
3, 20., . 33, .92, 12., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 25., . 32, .92, 9., 4., 60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 25., . 28, .92, 12., 4., .60, 25.0e5,' Cropl and/ Grassl and Msai c'

6, 14., . 84, . 93, 29., 4., .60, 25.0e5,"' Cropl and/ Wodl and Msai c'

7, 16., 35, .92, 17., 3., .60, 20.8e5,' Gassland'

8, 20., 09, . 88, 6., 3., 62, 20.8e5,"' Shrubl and'

9, 14. , 15, . 90, 9., 3., 60, 20.8e5,' M xed Shrubl and/ Grassl and'
10, 18., 24, .92, 20., 3., 0., 25.0e5,"' Savanna'

11, 16., 43, .93, 51., 4., .56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 17., 68, 94, 94. , 4., .50, 25.0e5, "' Deci duous Needl! el eaf Forest'
13, 10., 46, 95, 145., 5., 0., 29.2e5,'Evergreen Broadl eaf Forest'’
14, 10., 60, 95, 95., 4., 50, 29.2e5,"' Evergreen Needl el eaf Forest'
15, 13., 56, 94, 123., 4., 54, 41.8e5,' M xed Forest'

16, 8., 1.0, 98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 14., 63, . 95, 23., 6., .55, 29.2e5,' Herbaceous Wetl and'

18, 19., 34, . 95, 41. 5., .58, 41.8e5,' Woded Wt and’

19, 23., 03, . 85, 15., 2., .62, 12.0e5,'Barren or Sparsely Vegetated'
20, 14., 49, .92, 14., 5., .60, 9.0e25,' Her baceous Tundra’

21, 38., 59, . 93, 37., 5., .60, 9.0e25,' Woded Tundra'

22, 24., 43, .92, 16., 5., .60, 9.0e25,'M xed Tundra'

23, 35., 08, . 85, 10., 2., .62, 12.0e5,'Bare Ground Tundra'

24, 57., 96, . 95, 6., 5., 0., 9.0e25,"' Snow or |ce'

W NTER

1, 13., 13, 88, 54., 3., .52, 18.9e5,"' Urban and Built-Up Land'

2, 25., 32, 92, 6., 4., .60, 25.0e5,'Dryland Cropland and Pasture’
3, 20., 66, 92, 4., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 15., .43, .92, 3., 4., 60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 25., .24, .92, 7., 4., 60, 25.0e5,"' Cropl and/ Grassl and Msai c¢'

6, 16., . 65, .93, 21., 4., 60, 25.0e5,"' Cropl and/ Wodl and Msai c'

7, 23., .27, .92, 9., 4., 60, 20.8e5,' Grassl and'

8, 18., .12, . 88, 12., 4., 62, 20.8e5," Shrubl and'

9, 19., .23, . 90, 8., 4., 60, 20.8e5,' M xed Shrubl and/ Grassl and'

10, 13., .19, .92, 9., 3., 0., 25.0e5,"' Savanna'

11, 20. , .15, .93, 65. , 5., 56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 16., . 60, 93, 77., 5., 50, 25.0e5, "' Deci duous Needl el eaf Forest'
13, 12., . 66, 95, 80., 5., 0., 29.2e5,'Evergreen Broadl eaf Forest'
14, 15., . 33, . 95, 44, | 5., 50, 29.2e5,"' Evergreen Needl el eaf Forest'
15, 16., . 64, . 94, 56., 6., .58, 41.8e5,'M xed Forest'

16, 8., 1.0, .98, 0.01, 6., 0., 9.0e25,' Water Bodi es'

17, 15., . 70, . 95, 26., 6., .55, 29. 2e5, ' Herbaceous Wet| and'

18, 12., .71, . 95, 49., 6., .58, 41.8e5,' Woded Wt and’

19, 24., . 03, . 85, 7., 2., .62, 12.0e5,'Barren or Sparsely Vegetated'
20, 56., . 83, .92, 9., 5., 0., 9.0e25,"' Herbaceous Tundra'

21, 51., .61, . 93, 20., 5., 0., 9.0e25,' Woded Tundra'

22, 49., . 67, .92, 16., 5., 0., 9.0e25,'M xed Tundra'

23, 59., . 85, . 95, 6., 5., 0., 12.0e5,'Bare Ground Tundra'

24, 79., . 93, . 95, 5., 5., 0., 9.0e25,"' Snow or |ce'
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Table 15 continued:

LANDUSE. TBL. pl us02

USGS

24,2, "ALBD SLMO SFEM SFZ0 THERIN SCFX SFHC '

SUMVER

1, 16., . 10, . 88, 51., 3., .52, 18.9e5,' Urban and Built-Up Land'

2, 23., .46, .92, 11., 4., .60, 25.0e5,'Dryland Cropl and and Pasture'
3, 16., .52, .92, 18., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 16., . 28, .92, 18., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 17., . 32, .92, 13., 4., .60, 25.0e5,' Cropl and/ Grassl and Msai c'

6, 18., . 54, . 93, 17., 4., .60, 25.0e5,' Cropl and/ Wodl and Msai c'

7, 19., . 13, .92, 13., 3., .60, 20.8e5,' Gassland'

8, 19., .12, . 88, 13., 3., .62, 20.8e5," Shrubl and'

9, 24., . 18, . 90, 12., 3., .60, 20.8e5,'M xed Shrubl and/ Grassl and’
10, 26., . 31, .92, 12., 3., 0., 25.0e5,"' Savanna'

11, 20., . 19, . 93, 54., 4., .56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 16., . 38, . 94, 64., 4., .50, 25.0e5, ' Deci duous Needl el eaf Forest'
13, 13., .51, .95, 111., 5., 0., 29.2e5,' Evergreen Broadl eaf Forest'
14, 15., .20, 95, 66. , 4., 50, 29.2e5,"' Evergreen Needl el eaf Forest'
15, 17., . 30, 94, 85., 4., 54, 41.8e5,' M xed Forest'

16, 8., 1.0, 98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 14., . 60, 95, 26., 6., 55, 29.2e5,' Herbaceous Wetl and'

18, 14., .53, 95, 52., 5., 58, 41.8e5,' Woded Wt and'

19, 21., .02, . 85, 12., 2., 62, 12.0e5,'Barren or Sparsely Vegetated'
20, 14. , .41, .92, 9., 5., 60, 9.0e25,"' Herbaceous Tundra'

21, 13., . 64, .93, 33., 5., 60, 9.0e25,' Woded Tundra'

22, 12., . 50, .92, 17., 5., .60, 9.0e25,'M xed Tundra'

23, 27., .07, . 85, 10., 2., .62, 12.0e5,'Bare Ground Tundra'

24, 49., . 85, . 95, 5., 5., 0., 9.0e25," Snow or |ce'

W NTER

1, 22., 14, . 88, 46. , 3., .52, 18.9e5,"' Urban and Built-Up Land'

2, 26., 16, .92, 4., 4., .60, 25.0e5,'Dryland Cropland and Pasture’
3, 18., 60, .92, 9., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 22., 56, .92, 7., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 22., 33, .92, 2., 4., 60, 25.0e5,"' Cropl and/ Grassl and Mosai c'

6, 17., 65, . 93, 31., 4., .60, 25.0e5,' Cropl and/ Wodl and Msai c'

7, 29., 30, .92, 11., 4., .60, 20.8e5,' Grassland'

8, 23., 16, . 88, 15., 4., .62, 20.8e5," Shrubl and'

9, 23., 29, . 90, 12., 4., .60, 20.8e5,'M xed Shrubl and/ Grassl and'
10, 18., .15, .92, 16., 3., 0., 25.0e5,"' Savanna'

11, 17., . 63, .93, 57., 5., 56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 17., .72, 93, 66. , 5., 50, 25.0e5, "' Deci duous Needl el eaf Forest'
13, 16., . 58, 95, 138., 5., 0., 29.2e5,'Evergreen Broadl eaf Forest'
14, 12., .67, . 95, 74. , 5., .50, 29.2e5,' Evergreen Needl el eaf Forest'
15, 11., . 64, . 94, 54., 6., .58, 41.8e5,'M xed Forest"'

16, 8., 1.0, .98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 17., .79, 95, 20., 6., 55, 29.2e5,' Herbaceous Wetl and'

18, 19., .75, . 95, 58., 6., 58, 41.8e5,' Woded Wt and'

19, 25., . 04, . 85, 9., 2., .62, 12.0e5,'Barren or Sparsely Vegetated'
20, 68. , . 93, .92, 16., 5., 0., 9.0e25,"' Herbaceous Tundra'

21, 47., . 39, 93, 48. , 5., 0., 9.0e25,"' Woded Tundra'

22, 55., . 96, .92, 22., 5., 0., 9.0e25,'M xed Tundra'

23, 71., . 94, . 95, 7., 5., 0., 12.0e5,'Bare Ground Tundra'

24, 70., . 93, . 95, 5., 5., 0., 9.0e25,"'Snow or |ce'
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Table 15 continued:

LANDUSE. TBL. pl us03

USGS

24,2, "ALBD SLMO SFEM SFZ0 THERIN SCFX SFHC '

SUMVER

1, 20., . 06, . 88, 98., 3., .52, 18.9e5,' Urban and Built-Up Land'

2, 13., . 37, .92, 14., 4., .60, 25.0e5,'Dryland Cropland and Pasture’
3, 23., . 56, .92, 18., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 20., . 25, .92, 12., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 15., . 35, .92, 17., 4., .60, 25.0e5,' Cropl and/ Grassl and Msai c'

6, 18., . 48, . 93, 32., 4., .60, 25.0e5,"' Cropl and/ Wodl and Msai c'

7, 20., . 13, .92, 9., 3., .60, 20.8e5,' Gassland'

8, 33., . 10, . 88, 10., 3., .62, 20.8e5," Shrubl and'

9, 18., . 23, . 90, 4., 3., .60, 20.8e5,'M xed Shrubl and/ Grassl and’

10, 22., . 35, .92, 13., 3., 0., 25.0e5,"' Savanna'

11, 17., 38, 93, 205., 4., .56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 11., 31, 94, 108., 4., .50, 25.0e5, ' Deci duous Needl el eaf Forest'
13, 10., .47, 95, 69., 5., 0., 29.2e5,'Evergreen Broadl eaf Forest'
14, 11., .41, 95, 44, | 4., 50, 29.2e5,"' Evergreen Needl el eaf Forest'
15, 19., . 26, 94, 129., 4., 54, 41.8e5,' M xed Forest'

16, 8., 1.0, 98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 16., . 58, 95, 19., 6., 55, 29.2e5,' Herbaceous Wetl and'

18, 13., .49, 95, 44. 5., 58, 41.8e5,' Woded Wt and'

19, 27., . 08, 85, 11., 2., 62, 12.0e5,'Barren or Sparsely Veget at ed'
20, 24., . 56, 92, 10., 5., 60, 9.0e25,' Herbaceous Tundra'

21, 22., .51, .93, 36., 5., 60, 9.0e25,' Woded Tundra'

22, 16., . 58, .92, 11., 5., 60, 9.0e25,'M xed Tundra'

23, 29., .41, . 85, 13., 2., .62, 12.0e5,'Bare Gound Tundra'

24, 56., .92, . 95, 3., 5., 0., 9.0e25,"'Snow or |ce'

W NTER

1, 20., 21, . 88, 79., 3., .52, 18.9e5,"' Urban and Built-Up Land'

2, 23., 38, .92, 5., 4., .60, 25.0e5,'Dryland Cropland and Pasture’
3, 27., 46, .92, 4., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 19., 63, .92, 9., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 24., 41, .92, 7., 4., 60, 25.0e5,"' Cropl and/ Grassl and Mosai c'

6, 24., 53, . 93, 24., 4., .60, 25.0e5,' Cropl and/ Wodl and Msai c'

7, 26., 21, .92, 7., 4., .60, 20.8e5,' Grassland'

8, 27., 17, . 88, 14., 4., .62, 20.8e5, " Shrubl and'

9, 35., .21, . 90, 10., 4., 60, 20.8e5,' M xed Shrubl and/ Grassl and'
10, 13., . 16, .92, 17., 3., 0., 25.0e5,"' Savanna'

11, 21., . 55, 93, 48. , 5., 56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 15., .31, 93, 63., 5., 50, 25.0e5, "' Deci duous Needl el eaf Forest'
13, 9., .52, 95, 47. , 5., 0., 29.2e5,'Evergreen Broadl eaf Forest'
14, 18., . 56, 95, 81., 5., .50, 29.2e5,' Evergreen Needl el eaf Forest'
15, 16., . 58, 94, 41. 6., 58, 41.8e5,' M xed Forest'

16, 8., 1.0, 98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 13., .70, 95, 19., 6., 55, 29.2e5,' Herbaceous Wetl and'

18, 22., . 66, . 95, 34., 6., .58, 41.8e5,' Woded Wt and’

19, 24. , . 06, . 85, 6., 2., .62, 12.0e5,'Barren or Sparsely Vegetated'
20, 49., .91, .92, 10., 5., 0., 9.0e25,"' Herbaceous Tundra'

21, 55., . 70, 93, 23., 5., 0., 9.0e25,' Woded Tundra'

22, 55., .61, .92, 26., 5., 0., 9.0e25,'M xed Tundra'

23, 71., . 69, . 95, 3., 5., 0., 12.0e5,'Bare Ground Tundra'

24, 85., . 95, . 95, 7., 5., 0., 9.0e25,"' Snow or |ce'
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Table 15 continued:

LANDUSE. TBL. pl us04

USGS

24,2, "ALBD SLMO SFEM SFZ0 THERIN SCFX SFHC '

SUMVER

1, 23., .21, .88, 117., 3., .52, 18.9e5,' Urban and Built-Up Land'

2, 13., .24, .92, 15., 4., .60, 25.0e5,'Dryland Cropl and and Pasture'
3, 15., . 60, .92, 13., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 25., . 28, .92, 17., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 18., . 28, .92, 8., 4., .60, 25.0e5,' Cropl and/ Grassl and Msai c'

6, 24., . 37, . 93, 26., 4., .60, 25.0e5,' Cropl and/ Wodl and Msai c'

7, 18., . 16, .92, 15., 3., .60, 20.8e5,' Gassland'

8, 23., .12, . 88, 4., 3., .62, 20.8e5," Shrubl and'

9, 20., . 19, . 90, 9., 3., .60, 20.8e5,'M xed Shrubl and/ Grassl and’
10, 18., . 09, .92, 16., 3., 0., 25.0e5,"' Savanna'

11, 14., . 57, .93, 284., 4., .56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 15., .22, . 94, 39., 4., .50, 25.0e5, ' Deci duous Needl el eaf Forest'
13, 8., . 39, . 95, 74., 5., 0., 29.2e5,' Evergreen Broadl eaf Forest'
14, 15., .31, 95, 175., 4., 50, 29.2e5,"' Evergreen Needl el eaf Forest'
15, 15., . 26, 94, 69., 4., 54, 41.8e5,' M xed Forest'

16, 8., 1.0, .98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 15., . 60, . 95, 31., 6., 55, 29.2e5,' Herbaceous Wetl and'

18, 23., .51, . 95, 34., 5., 58, 41.8e5,' Woded Wt and'

19, 29., . 03, . 85, 8., 2., 62, 12.0e5,'Barren or Sparsely Vegetated'
20, 28., .41, .92, 7., 5., 60, 9.0e25,"' Herbaceous Tundra'

21, 14., . 61, .93, 25., 5., 60, 9.0e25,' Woded Tundra'

22, 23., .43, 92, 16., 5., .60, 9.0e25,'M xed Tundra'

23, 39., . 05, . 85, 10., 2., .62, 12.0e5,'Bare Ground Tundra'

24, 53., . 93, . 95, 7., 5., 0., 9.0e25," Snow or |ce'

W NTER

1, 15., 10, .88, 110., 3., .52, 18.9e5,"' Urban and Built-Up Land'

2, 28., 66, .92, 16., 4., .60, 25.0e5,'Dryland Cropland and Pasture’
3, 21., 49, .92, 4., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 22., 46, .92, 4., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 18., 21, .92, 5., 4., 60, 25.0e5,"' Cropl and/ Grassl and Mosai c'

6, 21., 39, . 93, 26., 4., .60, 25.0e5,' Cropl and/ Wodl and Msai c'

7, 27., 30, .92, 10., 4., .60, 20.8e5,' Grassland'

8, 24, 21, . 88, 8., 4., .62, 20.8e5," Shrubl and'

9, 24., 20, . 90, 10., 4., .60, 20.8e5,'M xed Shrubl and/ Grassl and'
10, 21., . 16, .92, 23., 3., 0., 25.0e5,"' Savanna'

11, 15., . 55, .93, 60., 5., 56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 16., .53, 93, 103., 5., 50, 25.0e5, "' Deci duous Needl el eaf Forest'
13, 11., .52, 95, 280., 5., 0., 29.2e5,'Evergreen Broadl eaf Forest'
14, 10., . 58, 95, 51., 5., .50, 29.2e5,' Evergreen Needl el eaf Forest'
15, 16., . 54, 94, 45. 6., .58, 41.8e5,'M xed Forest"'

16, 8., 1.0, 98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 14., . 80, 95, 22., 6., 55, 29.2e5,' Herbaceous Wetl and'

18, 17., .59, 95, 34., 6., 58, 41.8e5,' Woded Wt and'

19, 28., . 05, . 85, 10., 2., .62, 12.0e5,'Barren or Sparsely Vegetated'
20, 36., . 88, .92, 6., 5., 0., 9.0e25,"' Herbaceous Tundra'

21, 42., .91, . 93, 45, 5., 0., 9.0e25,"' Woded Tundra'

22, 53., . 88, .92, 22., 5., 0., 9.0e25,'M xed Tundra'

23, 57., . 89, . 95, 6., 5., 0., 12.0e5,'Bare Ground Tundra'

24, 68., . 96, . 95, 4., 5., 0., 9.0e25,"'Snow or |ce'
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Table 15 continued:

LANDUSE. TBL. pl us05

USGS

24,2, "ALBD SLMO SFEM SFZ0 THERIN SCFX SFHC '

SUMVER

1, 21., . 08, . 88, 97., 3., .52, 18.9e5,' Urban and Built-Up Land'

2, 15., .31, .92, 19., 4., .60, 25.0e5,'Dryland Cropl and and Pasture'
3, 18., .71, .92, 13., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 16., . 28, .92, 24., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 16., . 26, .92, 12., 4., .60, 25.0e5,' Cropl and/ Grassl and Msai c'

6, 18., . 40, . 93, 22., 4., .60, 25.0e5,' Cropl and/ Wodl and Msai c'

7, 14., . 18, .92, 11., 3., .60, 20.8e5,' Gassland'

8, 21., .13, . 88, 14., 3., .62, 20.8e5," Shrubl and'

9, 13., . 13, . 90, 13., 3., .60, 20.8e5,'M xed Shrubl and/ Grassl and’
10, 23., . 18, .92, 15., 3., 0., 25.0e5,"' Savanna'

11, 23., . 30, . 93, 85., 4., .56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 12., 33, 94, 83., 4., .50, 25.0e5, ' Deci duous Needl el eaf Forest'
13, 14., 44, 95, 90., 5., 0., 29.2e5,' Evergreen Broadl eaf Forest'
14, 13., . 58, 95, 49, , 4., 50, 29.2e5,"' Evergreen Needl el eaf Forest'
15, 10., . 55, 94, 64., 4., 54, 41.8e5,' M xed Forest'

16, 8., 1.0, 98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 16., .71, 95, 18., 6., 55, 29.2e5,' Herbaceous Wetl and'

18, 16., . 58, 95, 39., 5., 58, 41.8e5,' Woded Wt and'

19, 22., . 05, . 85, 7., 2., 62, 12.0e5,'Barren or Sparsely Veget at ed'
20, 22., .45, .92, 11., 5., 60, 9.0e25,"' Herbaceous Tundra'

21, 25., .74, .93, 36., 5., 60, 9.0e25,' Woded Tundra'

22, 10., . 50, .92, 29., 5., .60, 9.0e25,'M xed Tundra'

23, 26., .13, . 85, , 2., .62, 12.0e5,'Bare Ground Tundra'

24, 60., . 94, . 95, 5., 5., 0., 9.0e25,"Snow or |ce'

W NTER

1, 16., . 20, . 88, 59., 3., .52, 18.9e5,"' Urban and Built-Up Land'

2, 32., . 63, .92, 8., 4., .60, 25.0e5,'Dryland Cropland and Pasture’
3, 16., . 58, .92, 7., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 23., . 49, .92, 6., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 19., . 37, .92, 3., 4., 60, 25.0e5,"' Cropl and/ Grassl and Mosai c'

6, 19., . 57, . 93, 24., 4., .60, 25.0e5,' Cropl and/ Wodl and Msai c'

7, 24., . 36, .92, 9., 4., .60, 20.8e5,' Gassland'

8, 24, .18, . 88, 8., 4., .62, 20.8e5, " Shrubl and'

9, 22., . 27, . 90, 12., 4., .60, 20.8e5,'M xed Shrubl and/ Grassl and'
10, 24., . 10, 92, 14., 3., 0., 25.0e5,"' Savanna'

11, 21., . 65, 93, 42. 5., 56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 17., .48, 93, 57., 5., 50, 25.0e5, "' Deci duous Needl el eaf Forest'
13, 15., .57, 95, 71., 5., 0., 29.2e5,'Evergreen Broadl eaf Forest'
14, 17., .47, 95, 70., 5., .50, 29.2e5,' Evergreen Needl el eaf Forest'
15, 22., .27, 94, 71., 6., .58, 41.8e5,'M xed Forest"'

16, 8., 1.0, 98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 14., .73, 95, 11., 6., 55, 29.2e5,' Herbaceous Wetl and'

18, 13., . 50, . 95, 38., 6., 58, 41.8e5,' Woded Wet |l and'

19, 26. , . 04, . 85, 8., 2., .62, 12.0e5,'Barren or Sparsely Vegetated'
20, 51., .78, .92, 10., 5., 0., 9.0e25,"' Herbaceous Tundra'

21, 49., . 95, 93, 24., 5., 0., 9.0e25,' Woded Tundra'

22, 59., . 81, .92, 15., 5., 0., 9.0e25,'M xed Tundra'

23, 61., . 93, . 95, 2., 5., 0., 12.0e5,'Bare Ground Tundra'

24, 75., . 95, . 95, 5., 5., 0., 9.0e25,"'Snow or |ce'
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Table 15 continued:

LANDUSE. TBL. pl us06

USGS

24,2, "ALBD SLMO SFEM SFZ0 THERIN SCFX SFHC '

SUMVER

1, 21., .17, . 88, 94., 3., .52, 18.9e5,' Urban and Built-Up Land'

2, 14. , .51, .92, 17., 4., .60, 25.0e5,'Dryland Cropl and and Pasture'
3, 16., . 50, .92, 11., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 15., . 37, .92, 16., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 18., . 20, .92, 11., 4., .60, 25.0e5,' Cropl and/ Grassl and Msai c'

6, 21., . 31, . 93, 26., 4., .60, 25.0e5,' Cropl and/ Wodl and Msai c'

7, 18., . 18, .92, 8., 3., .60, 20.8e5,' Gassland'

8, 23., . 16, . 88, 16., 3., .62, 20.8e5," Shrubl and'

9, 24., . 13, . 90, 12., 3., .60, 20.8e5,'M xed Shrubl and/ Grassl and’
10, 26., . 13, .92, 18., 3., 0., 25.0e5,"' Savanna'

11, 15., . 32, . 93, 43., 4., .56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 18., . 27, . 94, 68., 4., .50, 25.0e5, ' Deci duous Needl el eaf Forest'
13, 7., . 36, .95, 107., 5., 0., 29.2e5,' Evergreen Broadl eaf Forest'
14, 12., .37, . 95, 67., 4., 50, 29.2e5,"' Evergreen Needl el eaf Forest'
15, 17., .47, . 94, 73., 4., 54, 41.8e5,' M xed Forest'

16, 8., 1.0, 98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 15., . 66, 95, 12., 6., 55, 29.2e5,' Herbaceous Wetl and'

18, 19., . 35, 95, 51., 5., 58, 41.8e5,' Woded Wt and'

19, 23., .02, . 85, 12., 2., 62, 12.0e5,'Barren or Sparsely Vegetated'
20, 30., . 63, .92, 8., 5., 60, 9.0e25,"' Herbaceous Tundra'

21, 18., .52, .93, 32., 5., 60, 9.0e25,' Woded Tundra'

22, 34., .51, .92, 14., 5., .60, 9.0e25,'M xed Tundra'

23, 23., .21, . 85, 9., 2., .62, 12.0e5,'Bare Ground Tundra'

24, 54., . 96, . 95, 4., 5., 0., 9.0e25," Snow or |ce'

W NTER

1, 23., 07, . 88, 95., 3., .52, 18.9e5,"' Urban and Built-Up Land'

2, 22., 69, .92, 8., 4., .60, 25.0e5,'Dryland Cropland and Pasture’
3, 22., 52, .92, 9., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 25., 51, .92, 4., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 23., 38, .92, 5., 4., 60, 25.0e5,"' Cropl and/ Grassl and Mosai c'

6, 26., 44, . 93, 16., 4., .60, 25.0e5,' Cropl and/ Wodl and Msai c'

7, 19., 29, .92, 4., 4., .60, 20.8e5,' Grassland'

8, 21., 25, . 88, 10., 4., .62, 20.8e5," Shrubl and'

9, 25., 28, . 90, 13., 4., .60, 20.8e5,'M xed Shrubl and/ Grassl and'
10, 19., .13, .92, 14., 3., 0., 25.0e5,"' Savanna'

11, 16., . 65, .93, 92., 5., 56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 17., . 56, 93, 39., 5., 50, 25.0e5, "' Deci duous Needl el eaf Forest'
13, 13., .57, 95, 50., 5., 0., 29.2e5,'Evergreen Broadl eaf Forest'
14, 17., .61, 95, 58., 5., .50, 29.2e5,' Evergreen Needl el eaf Forest'
15, 11., . 50, 94, 147., 6., .58, 41.8e5,'M xed Forest"'

16, 8., 1.0, 98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 15., . 68, 95, 12., 6., 55, 29.2e5,' Herbaceous Wetl and'

18, 13., .70, . 95, 32., 6., 58, 41.8e5,' Woded Wt and'

19, 26. , . 04, . 85, 6., 2., .62, 12.0e5,'Barren or Sparsely Vegetated'
20, 55., . 87, .92, 9., 5., 0., 9.0e25,"' Herbaceous Tundra'

21, 45., .91, . 93, 47. 5., 0., 9.0e25,"' Woded Tundra'

22, 35., .44, .92, 17., 5., 0., 9.0e25,'M xed Tundra'

23, 72., .51, . 95, 17., 5., 0., 12.0e5,'Bare Ground Tundra'

24, 69., .91, . 95, 7., 5., 0., 9.0e25,"'Snow or |ce'
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Table 15 continued:

LANDUSE. TBL. pl us07

USGS

24,2, "ALBD SLMO SFEM SFZ0 THERIN SCFX SFHC '

SUMVER

1, 26., .12, . 88, 53., 3., .52, 18.9e5,' Urban and Built-Up Land'

2, 18., .20, .92, 23., 4., .60, 25.0e5,'Dryland Cropl and and Pasture'
3, 16., .41, .92, 15., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 17., . 20, .92, 12., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 17., .41, .92, 12., 4., .60, 25.0e5,' Cropl and/ Grassl and Msai c'

6, 25., . 33, . 93, 27., 4., .60, 25.0e5,' Cropl and/ Wodl and Msai c'

7, 19., .14, .92, 12., 3., .60, 20.8e5,' Gassland'

8, 23., .14, . 88, 6., 3., .62, 20.8e5," Shrubl and'

9, 21., . 24, . 90, 12., 3., .60, 20.8e5,'M xed Shrubl and/ Grassl and’
10, 16., .12, .92, 18., 3., 0., 25.0e5,"' Savanna'

11, 16., . 34, . 93, 52., 4., .56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 15., . 32, . 94, 41. , 4., .50, 25.0e5, ' Deci duous Needl el eaf Forest'
13, 15., . 55, . 95, 47. 5., 0., 29.2e5,' Evergreen Broadl eaf Forest'
14, 15., . 35, 95, 131., 4., 50, 29.2e5,"' Evergreen Needl el eaf Forest'
15, 14., . 26, 94, 38., 4., 54, 41.8e5,' M xed Forest'

16, 8., 1.0, 98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 14., . 56, 95, 29., 6., 55, 29.2e5,' Herbaceous Wetl and'

18, 16., .49, 95, 61., 5., 58, 41.8e5,' Woded Wt and'

19, 22., .02, . 85, 10., 2., 62, 12.0e5,'Barren or Sparsely Veget at ed'
20, 28., .44, .92, 10., 5., 60, 9.0e25,"' Herbaceous Tundra'

21, 20., .70, .93, 32., 5., 60, 9.0e25,' Woded Tundra'

22, 28., .59, 92, 15., 5., .60, 9.0e25,'M xed Tundra'

23, 27., .01, . 85, 16., 2., .62, 12.0e5,'Bare Ground Tundra'

24, 46. , . 95, . 95, 4., 5., 0., 9.0e25,"Snow or |ce'

W NTER

1, 21., 09, . 88, 70., 3., .52, 18.9e5,"' Urban and Built-Up Land'

2, 18., 43, .92, 17., 4., .60, 25.0e5,'Dryland Cropland and Pasture’
3, 25., 59, .92, 7., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 22., 42, .92, 10., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 19., 38, 92, 12., 4., 60, 25.0e5,"' Cropl and/ Grassl and Mosai c'

6, 18., 51, 93, 16., 4., .60, 25.0e5,' Cropl and/ Wodl and Msai c'

7, 21., 31, 92, 13., 4., .60, 20.8e5,' Gassland'

8, 28., 18, . 88, 15., 4., .62, 20.8e5, " Shrubl and'

9, 28., 22, . 90, 10., 4., .60, 20.8e5,'M xed Shrubl and/ Grassl and'
10, 25., . 20, 92, 14., 3., 0., 25.0e5,"' Savanna'

11, 20., .57, 93, 59., 5., 56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 15., . 66, 93, 87., 5., 50, 25.0e5, "' Deci duous Needl el eaf Forest'
13, 11., .42, 95, 97., 5., 0., 29.2e5,'Evergreen Broadl eaf Forest'
14, 11., .42, 95, 127., 5., .50, 29.2e5,'Evergreen Needl el eaf Forest'
15, 16., .59, 94, 133., 6., .58, 41.8e5,'M xed Forest"'

16, 8., 1.0, 98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 17., .73, 95, 19., 6., 55, 29.2e5,' Herbaceous Wetl and'

18, 16., . 76, 95, 55., 6., 58, 41.8e5,' Woded Wet |l and'

19, 26. , . 06, 85, 12., 2., .62, 12.0e5,'Barren or Sparsely Vegetated'
20, 54. , .91, 92, 15., 5., 0., 9.0e25,"' Herbaceous Tundra'

21, 32., . 80, 93, 20., 5., 0., 9.0e25,' Woded Tundra'

22, 31., . 87, .92, 25., 5., 0., 9.0e25,'M xed Tundra'

23, 67., .91, . 95, 5., 5., 0., 12.0e5,'Bare Ground Tundra'

24, 80., . 95, . 95, 5., 5., 0., 9.0e25,"'Snow or |ce'
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Table 15 continued:

LANDUSE. TBL. pl us08

USGS

24,2, "ALBD SLMO SFEM SFZ0 THERIN SCFX SFHC '

SUMVER

1, 20., . 10, . 88, 47. 3., .52, 18.9e5,' Urban and Built-Up Land'

2, 22., .18, .92, 12., 4., .60, 25.0e5,'Dryland Cropl and and Pasture'
3, 28., . 40, .92, 13., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 13., . 34, .92, 13., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 16., . 24, .92, 12., 4., .60, 25.0e5,' Cropl and/ Grassl and Msai c'

6, 17., . 31, . 93, 15., 4., .60, 25.0e5,' Cropl and/ Wodl and Msai c'

7, 13., . 30, .92, 11., 3., .60, 20.8e5,' Gassland'

8, 27., . 08, . 88, 10., 3., .62, 20.8e5," Shrubl and'

9, 19., . 30, . 90, 12., 3., .60, 20.8e5,'M xed Shrubl and/ Grassl and’
10, 20., .22, .92, 14., 3., 0., 25.0e5,"' Savanna'

11, 15., . 32, .93, 108., 4., .56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 17., . 33, .94, 116., 4., .50, 25.0e5, ' Deci duous Needl el eaf Forest'
13, 13., . 59, . 95, 86. , 5., 0., 29.2e5,' Evergreen Broadl eaf Forest'
14, 12., .57, 95, 33., 4., 50, 29.2e5,"' Evergreen Needl el eaf Forest'
15, 16., .28, 94, 68., 4., 54, 41.8e5,' M xed Forest'

16, 8., 1.0, 98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 10., . 58, 95, 19., 6., 55, 29.2e5,' Herbaceous Wetl and'

18, 12., .31, 95, 48. 5., 58, 41.8e5,' Woded Wt and'

19, 28., .01, . 85, 8., 2., 62, 12.0e5,'Barren or Sparsely Vegetated'
20, 19., . 63, .92, 11., 5., 60, 9.0e25,"' Herbaceous Tundra'

21, 20., .49, .93, 35., 5., 60, 9.0e25,' Woded Tundra'

22, 25., .59, 92, 20., 5., .60, 9.0e25,'M xed Tundra'

23, 31., .17, . 85, 13., 2., .62, 12.0e5,'Bare Ground Tundra'

24, 52., . 88, . 95, 3., 5., 0., 9.0e25," Snow or |ce'

W NTER

1, 15., 09, . 88, 36., 3., .52, 18.9e5,"' Urban and Built-Up Land'

2, 22., 55, .92, 4., 4., .60, 25.0e5,'Dryland Cropland and Pasture’
3, 22., 44, .92, 10., 4., .60, 25.0e5,'Irrigated Cropland and Pasture'
4, 22., 42, .92, 3., 4., .60, 25.0e5,'M xed Dryland/Irrigated Cropland and Pasture’
5, 26., 26, .92, 5., 4., 60, 25.0e5,"' Cropl and/ Grassl and Mosai c'

6, 18., 57, . 93, 18., 4., .60, 25.0e5,' Cropl and/ Wodl and Msai c'

7, 24., 24, .92, 11., 4., .60, 20.8e5,' Grassland'

8, 22., 21, . 88, 13., 4., .62, 20.8e5," Shrubl and'

9, 28., 23, . 90, 12., 4., .60, 20.8e5,'M xed Shrubl and/ Grassl and'
10, 21., .18, .92, 14., 3., 0., 25.0e5,"' Savanna'

11, 13., . 36, .93, 51., 5., 56, 25.0e5, "' Deci duous Broadl eaf Forest'
12, 17., . 60, 93, 66. , 5., 50, 25.0e5, "' Deci duous Needl el eaf Forest'
13, 11., .40, 95, 58., 5., 0., 29.2e5,'Evergreen Broadl eaf Forest'
14, 10., .47, 95, 84. , 5., .50, 29.2e5,' Evergreen Needl el eaf Forest'
15, 13., . 50, 94, 95., 6., .58, 41.8e5,'M xed Forest"'

16, 8., 1.0, 98, 0.01, 6., 0., 9.0e25,' Water Bodies'

17, 16., . 67, 95, 16., 6., 55, 29.2e5,' Herbaceous Wetl and'

18, 13., . 67, 95, 30., 6., 58, 41.8e5,' Woded Wt and'

19, 25., . 03, . 85, 10., 2., .62, 12.0e5,'Barren or Sparsely Vegetated'
20, 63., .54, .92, 8., 5., 0., 9.0e25,"' Herbaceous Tundra'

21, 51., . 78, . 93, 26., 5., 0., 9.0e25,"' Woded Tundra'

22, 31., . 90, .92, 14., 5., 0., 9.0e25,'M xed Tundra'

23, 73., . 82, . 95, 7., 5., 0., 12.0e5,'Bare Ground Tundra'

24, 73., . 89, . 95, 5., 5., 0., 9.0e25,"'Snow or |ce'
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