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Abstract 

Effective Mesoscale, Short-Range Ensemble Forecasting 

Frederick Anthony Eckel 

Chair of Supervisory Committee: 
Professor Clifford F. Mass 

Department of Atmospheric Sciences 
 

 This study developed and evaluated a short-range ensemble forecasting (SREF) system with 

the goal of producing useful forecast probability (FP).  Real-time, 0 to 48-h forecasts from four 

different SREF systems were compared for 129 forecast cases over the Pacific Northwest.  Eight 

analyses from different operational forecast centers were used as initial conditions (ICs) for 

running the Fifth-Generation Pennsylvania State University−National Center of Atmospheric 

Research Mesoscale Model (MM5).  Additional ICs were generated through linear combinations 

of the original 8 analyses, but this did not result in an increase in FP skill commensurate with the 

increase in ensemble size.  It was also found that an ensemble made up of unequally likely 

members can be skillful as long as all members at least occasionally perform well. 

 Model error is a large source of forecast uncertainty and must be accounted for to maximize 

SREF utility, particularly for mesoscale, sensible weather phenomena.  Inclusion of model 

perturbations in a SREF increased dispersion toward statistical consistency, but low dispersion 

remained problematic.  Additionally, model perturbations notably improved FP skill (both 

reliability and resolution), revealing the significant influence of model uncertainty.  Systematic 

model errors (i.e., biases) should always be removed from a SREF since they are a large part of 

forecast error but do not contribute to forecast uncertainty.  A grid-based, 2-week, running-mean 

bias correction was shown to improve FP skill through:  1) better reliability by adjusting the 

ensemble mean toward the verification’s mean, and 2) better resolution by reducing unrealistic 

ensemble variance. 

 Comparing the multimodel (each member uses a unique model) and the perturbed-model 

(each member uses a unique version of MM5) approaches for accounting for model uncertainty, it 

was found that a multimodel SREF exhibited greater dispersion (from more complete 

representation of model uncertainty) and superior performance.  It was also found that smaller 

grid spacing leads to greater ensemble spread as smaller scales of motion are modeled.  This 

study indicates substantial utility in current SREF systems and suggests several avenues for 

further improvement. 
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Glossary 

 
Analysis-Centroid Mirroring Ensemble (ACME) – The primary EF of this research whose ICs 
are made up of various independent analyses and their mirrors in model phase space using the 
mean analysis, or centroid, as the reflection point.  
 
Analysis – A complete description of the state of the atmosphere normally derived from some 
combination of a first guess (from an NWP model) and observations.  It defines values for all 
state variables at all model grid points.  See also initial condition.  
 
Analysis PDF – A probability density function of possible atmospheric states from which an 
analysis (or IC) is a random sample.  It is defined by a set of ICs. 
 
Attractor – The union in phase space of all naturally occurring states of a dynamical system. 
 
Centroid – The MM5 forecast that used the centroid analysis as its IC. 
 
Centroid Analysis – The mean of many different analyses produced by operational forecast 
centers. 
 
Climate PDF – A probability density function of all possible atmospheric states for a given time 
of year.   
 
Dispersion – This term is normally used interchangeably with predictability error growth but we 
are using a modified definition.  Dispersion is the increase in ensemble spread from the spread in 
the ICs.  
 
Ensemble Forecast (EF) – A collection of many different, equally likely NWP model solutions 
derived from various ICs and/or models.  Its purpose is to build a forecast PDF from which 
forecast uncertainty and probabilistic forecasts can be derived. 
 
Ensemble Spread – The unbiased (divided by n – 1 instead of n) variance of the ensemble 
members. 
 
Encompass Truth – When the verification value is bound by ensemble members (i.e., lowest 
forecast in the ensemble < verification value < highest forecast in the ensemble).   
 
Ensemble Mean – The average of all ensemble members at a certain forecast lead time. 
 
Ensemble Member – One of the many individual forecast model runs that make up the entire 
ensemble. 
 
Event – The occurrence above or below a threshold value (i.e., event threshold) of some 
parameter, either instantaneously or over a period of time (e.g., surface temperature less than 
freezing at 12Z;  or 12-h cumulative precipitation greater than 0.5 in;  or wind speed above 20 kt). 
 



 

x 

Event Threshold – The critical value of a parameter for an event.  
 
Forecast Event – see event 
 
Forecast Lead Time – The amount of time (usually in hours) from the initialization time of a 
forecast cycle to an instant being forecast. 
 
Forecast PDF – A probability density function of possible future atmospheric states, defined by 
the entire collection of ensemble members. 
 
FP, Forecast Probability – The predicted chance of occurrence of a parameter exceeding some 
threshold.  (EX:  35% chance of cumulative precipitation greater than 10 mm in three hours) 
 
Initial Condition (IC) – A starting point in a NWP model’s phase space required to run the 
model.  Note that an analysis is always considered an IC but an IC may not be an analysis since it 
may be generated as a perturbation to an analysis. 
 
Ideal Ensemble – An ensemble that completely represents all uncertainty so that the true state is 
always a random draw from the EF’s estimated forecast PDF. 
 
Lateral Boundary Condition (LBC) – The state variables periodically updated (normally by 
model data on a larger domain) on the domain edges of a limited area model. 
 
Member – see ensemble member 
 
Monte Carlo – The method of generating ICs by adding scaled, random noise to the best guess 
analysis. 
 
Multimodel Multianalysis Ensemble (MMMA) – An EF approach designed to include 
representation of both analysis uncertainty and model uncertainty, accomplished by applying a set 
of ICs to different NWP models.     
 
Numerical Weather Prediction (NWP) – The mimicking of the evolution of the atmosphere by 
modeling the time rate of change of the state variables with approximations of the governing laws 
of fluid dynamics, momentum, gas, and entropy over a discrete domain. 
 
Observed Relative Frequency (ORF) – For a bin of FP (i.e., a set of forecasts with similar FP 
values), ORF is the number of occurrences observed above the event threshold divided by the 
number of forecasts in the bin. 
 
Probability Density Function (PDF) – (Devore, 1995) A function f(x) such that for any two 
numbers a and b with ba ≤ , the probability P that a continuous random variable X takes on a 
value between a and b is: 

 ∫=≤≤
b

a
dxxfbXaP )()(  

 



 

xi 

Phase Space – A multi-dimensional plotting region where all time dependent variables of a 
dynamical system are represented by a unique dimension.  The instantaneous state of the system 
is then completely described by a single point, and the system’s evolution is a line or trajectory. 
  
Physics Parameterization – An atmospheric quantity, factor, or process which is not completely 
known and/or of too small a scale to be properly represented at a given resolution in a NWP 
model. 
 
Perturbed-Model Multianalysis Ensemble (PMMA) – An EF approach designed to include 
representation of both analysis uncertainty and model uncertainty, accomplished by applying a set 
of ICs to different (perturbed) versions of the same basic NWP model. 
 
Poor Man’s Ensemble (PME) – The EF comprised of the model runs from different operational 
centers.  The “poor man” refers to the fact that the only cost involved is downloading and 
organizing the data.  
 
Portray Truth – When the verification occurs within three standard deviations from the mean of 
the forecast PDF of an EF.  A verification value that is not portrayed is therefore an outlier with 
respect to that PDF.  Note that truth may be portrayed by not necessarily encompassed. 
 
Predictability Error Growth – The magnitude of the difference between a forecast solution and 
the verification as the forecast diverges from truth with increasing forecast lead time.   The rate at 
which errors grow determines the point at which the errors become saturated (i.e., equal to the 
average error of the climatic mean) and predictability is lost. 
 
Reliability – The ability of FP to match the ORF. 
 
Resolution – The ability of an ensemble system to distinguish between events and non-events.  
The sharpness of an ensemble’s forecast PDFs. 
 
Spread – see ensemble spread 
 
Short-Range Ensemble Forecast (SREF) – An EF designed to build a forecast PDF for short 
range (normally 0-48 h but can be up to 60 h), mesoscale weather phenomena.  
 
System Simulation Experiment (SSE) – A method to isolate and diagnose error sources in an 
NWP model by running parallel model integrations with slightly different versions of the model 
in each run. 
 
State Variables – The basic set of meteorological parameters required to describe the atmosphere 
at a single point.  E.g., horizontal and vertical wind components (u, v, w), temperature (T ), 
moisture (q), and pressure (p) or geopotential height (Φ). 
 
Statistical Consistency – The ability of the mean square error of the ensemble mean to match the 
average ensemble variance over a large sample of data.  The requirement that the verification be a 
random sample from the PDF of the EF. 
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Surface Boundary Parameter (SBP) – A spatially dependent variable that affects the 
atmosphere’s evolution and is estimated in an NWP model (Example: sea surface temperature) 
 
Target Variance – The total amount of uncertainty (i.e., variance) that should be produced by a 
well-tuned EF system in order to achieve statistical consistency.  The mean-square error in the 
spatially and temporally averaged EF mean. 
 
Verification – The observed value of an atmospheric parameter at a specific forecast lead time 
used to verify a forecast of that parameter. 
 
Verification Rank Histogram (VRH) – A tool for evaluating an EF made from repeatedly 
tallying the rank of the verification when pooled with the ordered forecast values from an EF. 
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Introduction 

 This dissertation describes a research study in the field of ensemble forecasting (EF), 

accomplished at the University of Washington’s Atmospheric Sciences Department under the 

supervision of Dr. Clifford Mass.  As opposed to the more common, deterministic-style 

numerical weather prediction (NWP) where only a single model run is considered, EF is 

stochastic in nature, using multiple runs of an NWP model with slightly different initial 

conditions (ICs) and/or model variations.  The resulting set of solutions defines a probabilistic 

distribution of future states of the atmosphere based on the inherent uncertainties in the analysis 

and/or in the model. 

 When Vilhelm Bjerknes laid the groundwork for NWP in the early 20th century, he noted that 

errors in the prognosis would arise from both an inaccurate IC and a deficient model (Bjerknes et 

al., 1911).  We can only speculate whether Bjerknes realized that there is a major difference 

between the character of these two error sources, or whether he believed that both problems could 

eventually be reduced to insignificance.  Analysis error is the predominant contributor to the 

nonlinear error growth that limits predictability (Lorenz, 1969; Leith, 1974).  It may be possible 

to create a nearly perfect model but even with a nearly perfect analysis, IC errors will grow far 

beyond the model error. 

 Long before the advent of NWP, Jules Henri Poincare, a contemporary to Bjerknes, explained 

the differences between the error sources with profound clarity (Poincare, 1914): 

“If we knew exactly the laws of nature and the situation of the universe at the initial moment, 
we could predict exactly the situation of that same universe at a succeeding moment.  But 
even if it were the case that the natural laws had no longer any secret for us, we could still 
only know the initial situation approximately.  If that enabled us to predict the succeeding 
situation with the same approximation, that is all we require, and we should say that the 
phenomenon had been predicted, that it is governed by laws.  But it is not always so; it may 
happen that small differences in the initial conditions produce very great ones in the final 
phenomena.  A small error in the former will produce an enormous error in the latter. 
Prediction becomes impossible, and we have the fortuitous phenomenon.” 
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The “fortuitous phenomenon” is one that appears to behave by chance but is actually governed by 

deterministic laws, and “about which the calculation of probabilities will give us provisional 

information.”  Poincare did not present this as a purely philosophical idea, but gave concrete 

examples of its application, including meteorology: 

“The meteorologist sees very well that the equilibrium is unstable, that a cyclone will be 
formed somewhere, but exactly where they are not in a position to say; a tenth of a degree 
more or less at any given point, and the cyclone will burst here and not there, and extend its 
ravages over districts it would otherwise have spared.  If they had been aware of this tenth of 
a degree, they could have known it beforehand, but the observations were neither sufficiently 
comprehensive nor sufficiently precise, and that is the reason why it all seems due to the 
intervention of chance.” 
 

The potential for small IC error to produce large forecast errors and the value of a probabilistic 

forecast are exactly what EF is all about.  The only complete way to make a prediction of the 

future state of the atmosphere is to include the inherent uncertainty as part of the forecast process. 

 Unfortunately, the science of meteorology was too primitive at this point to apply Poincare’s 

premise.  The significance was lost until after the development of deterministic NWP through the 

efforts of Lewis Richardson (the first to solve the atmospheric primitive equations with numerical 

methods), Carl-Gustaf Rossby (developed simplified dynamics capable of producing an adequate 

analysis), John von Neumann (applied NWP to computers), and Jule Charney (developed the 

filtered equations for the first successful NWP forecast) (Lorenz, 1993).  Without the 

contributions of these scientists, NWP (and therefore EF) would not be at the highly developed 

state that it is at today. 

 Edward Lorenz (1963) rediscovered the ideas of Poincare and brought to light their impact on 

NWP.  He demonstrated that the atmosphere is a chaotic dynamical system and that even if you 

could create a perfect model, predictability is limited by sensitivity to the imprecise ICs.  This 

explained the primary reason for the limitations of deterministic NWP, which by this time was 

meeting with some success. 
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 Epstein (1969) realized that this sensitivity to ICs made deterministic NWP an inadequate 

method for atmospheric prediction.  In response, he formulated a stochastic dynamic forecast 

model designed to directly forecast the mean and variance of state variables (rather than simply a 

single deterministic value with unknown error) by incorporating uncertainty into the prognostic 

equations.  This is a more comprehensive way to consider the future state of the atmosphere, but 

it requires overwhelming computational power.  Leith (1974) proposed the method of EF as an 

approximation to stochastic dynamic forecasting, focusing primarily on IC error or what he 

termed “internal error.”  Unfortunately, this method for probabilistic forecasting was impractical 

at that time since there was only enough computer power to run an NWP model once and not the 

multiple runs proposed by Leith. 

 By the 1990s, increasing computer power allowed application of Leith’s ensemble method for 

dealing with the forecast problem raised by Poincare.  Successful medium-range (2 − 10 days) 

ensemble forecasting (MREF) began at the National Centers for Environmental Prediction 

(NCEP) and the European Centre for Medium-Range Weather Forecasts (ECMWF) (Toth and 

Kalnay, 1993; Tracton and Kalnay, 1993; Molteni et al., 1996).  Operational use of short-range (0 

− 48 h) ensemble forecasting (SREF) has lagged behind because compared to MREF, it has 

proven to be more difficult to design a SREF that can consistently capture all or at least most of 

the short-range forecast uncertainty.  The potential benefits of SREF have not yet been fully 

realized and the value of SREF remains an open question (Hamill et al., 2000a).  Some of the 

reasons for the difficulty of SREF compared to MREF, which will be addressed throughout this 

dissertation, may be: 

1.  The smaller-scale, surface parameters of interest in the short-range are less predictable so 

their errors may saturate too quickly for an ensemble to be of use. 
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2.  Model uncertainty likely has a more significant impact on small-scale, surface parameters 

and is difficult to include in an ensemble since model errors are poorly understood. 

3.  The best method for defining the ICs for SREF is unclear since error growth is primarily 

linear in the short-range.  For MREF, a wide variety of methods for defining ICs have 

proven useful since nonlinear error growth in the medium range allows any IC differences 

to grow to represent a large spread of solutions.  

 The goal of this research is to evaluate and find ways to improve the value of SREF by 

applying ensemble methods to short-range, mesoscale, atmospheric modeling for forecasting of 

sensible weather at the surface (e.g., surface temperature and surface wind).  For this research a 

SREF system was built that ran the Fifth-Generation Pennsylvania State University−National 

Center of Atmospheric Research Mesoscale Model (MM5) using analyses from different 

operational forecast centers as ensemble ICs.  This was not an attempt to build an ideal SREF but 

rather an opportunity to realize most of the potential SREF benefits by employing sub-optimal 

but sound methods that are currently computationally feasible.  With such a system, we were able 

to address basic SREF issues that will apply to the development of more optimal SREF systems 

of the future.  

 Chapter I covers background material of EF and SREF.  Chapter II discuses the methodology 

of the techniques, ideas, and procedures involved in this research.  Chapter III details the results 

and findings.  Chapter IV provides a summary of the entire research project.  The appendices 

provide important reference material and technical information.  Additionally, a glossary, list of  

acronyms, and a list of symbols are included for quick reference.
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I. Background 

A. EF Goal 

 The fundamental goal of EF is to produce a forecast probability density function (PDF) of 

possible future states of the atmosphere from which the true state is consistently a random sample 

(Talagrand et al., 1999).  Upon reaching this goal, there are three general applications of EF 

(Epstein 1969; Leith 1974): 

1) Use the EF mean to improve deterministic forecast skill and maximize predictability. 

2) Predict forecast skill using the EF spread. 

3) Predict the probability of future weather events. 

Of these three applications, this research will focus primarily on the third since it is the key for 

making dramatic improvements in the value of weather forecasting.  (In fact, we will purposely 

avoid the second application, the relationship between spread and skill, since fellow graduate 

student Eric Grimit is investigating that using the same data.)  Essential to understanding the EF 

goal and these applications is a clear distinction between four different theoretical notions:  the 

true state of the atmosphere, the analysis PDF, the forecast PDF, and the climate PDF. 

   The true state is a vector ( T
r

) of state variables having infinite dimension and infinite 

precision that completely describes the atmosphere at some instant.  In other words, it is the exact 

value of temperature, pressure, humidity, etc. throughout the atmosphere.  In terms of chaos 

theory, T
r

is a phase space vector lying somewhere on the atmosphere’s attractor.  (Following 

Lorenz (1993), the term attractor will herein be used as the union in phase space of all naturally 

occurring states of a dynamical system.) 

   The analysis PDF is a frequency distribution of possible concurrent states from which an 

analysis is a random sample.  This PDF exists only as an abstraction, arising from our limited 
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capability to observe and analyze the atmosphere at any point in time.  It is a cloud of states 

(Leith, 1974) within phase space that encompasses a small region about the atmosphere’s 

attractor and is dense in the middle, slowly thinning outward.  The size and shape of the cloud 

represents our uncertainty in the true state as well as in the atmosphere’s attractor since much of 

the cloud may lie off the attractor.  We may consider the true state to be a random sample from 

the analysis PDF, but that is just our illusion.  The true state is a deterministic result of the laws of 

nature (Lorenz, 1993) and not a sample from our vague view of reality.  In fact, the analysis PDF 

is totally defined by our analysis capability, or lack thereof.  The better and more complete our 

objective analysis process, the narrower (i.e., less uncertain) the analysis PDF. 

   The forecast PDF is similar to the analysis PDF except that a random sample from it is a 

possible future state, rather than a possible current state.  The forecast PDF is a frequency 

distribution that represents our uncertainty in the prediction of the true state.  It is also a cloud in 

phase space floating about a small region of the atmosphere’s attractor, but it is naturally larger 

and more diffuse than the analysis’ cloud since the atmosphere is a chaotic system.  A NWP 

forecast evolves from an analysis so the forecast PDF is defined by both our analysis and forecast 

capability, or lack thereof.  The better our analysis and NWP model, the narrower the forecast 

PDF will be at any forecast lead time. 

 Lastly, the climate PDF is a frequency distribution of all possible states of the atmosphere, or 

the possible states for one season.  It can be thought of as a forecast PDF from an ideal ensemble 

with a very long lead time.  The term “ideal ensemble” will be used to mean an ensemble that 

completely represents all uncertainty so that the true state is always a random draw from the EF’s 

estimated forecast PDF.  An extended run (on the order of weeks) with many members from such 

an ensemble will produce the season’s climate PDF since the ensemble members will spread out 

to cover the full spectrum of climatologically possible states.  Unlike the analysis and forecast 
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PDFs that change form based on the skill of atmospheric observation and modeling, the climate 

PDF is more concrete and defined by the variability of nature. 

 While it is impossible to visualize these PDFs completely because of their extremely large 

number of degrees of freedom, we can view limited slices (single variable over limited region) to 

demonstrate the characteristics described above.  Figure 1a is a histogram of mean sea level 

pressure (MSLP) observations from the Aviation Model analysis over our research 36-km domain 

(see Figure 11) for one winter season.  The distribution is obviously not Gaussian, and a good fit 

may be a Weibull PDF (Devore, 1995).  The important point is that this distribution describes all 

possible values of truth, limited by the fact that it was derived by a model analysis.  When we 

then create an analysis PDF (Figure 1b) to try to represent a value of MSLP at one point and one 

time, we cover a narrow region of the climate PDF.  The forecast PDF does the same thing but 

must cover a wider region since it is more uncertain. 

 EF is often described as the process of sampling from the forecast PDF (Hamill, 2000), which 

is equivalent to imagining EF as the attempt to construct a good estimate of the forecast PDF.  

The actual forecast PDF can never be known since it would require an ideal ensemble of infinite 

size to produce it.  In fact, the forecast PDF is often not well represented by EF due to limited 

sampling and inadequate representation of analysis and model uncertainty.  Herein lies the 

genuine and often overlooked difficulty of EF.  Not only do we have to deal with the fact that we 

see the future state as a PDF, but we also have significant uncertainty in that PDF.   This 

uncertainty in our prediction of uncertainty is the real challenge to EF and has implications for EF 

verification as well.  Just as we can never know the actual analysis error, we also can never know 

the actual error in an EF’s estimate of the forecast PDF.  This makes it extremely difficult to 

evaluate an EF because, when the true state is not encompassed, it is difficult to determine if that 

was a result of a bad forecast PDF or simply undersampling of a good PDF. 
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 Figure 2 is a simplified demonstration of EF where the complex distribution of possible 

atmospheric states is represented by a two-dimensional, normal PDF.  Alternatively, one can 

think of the displayed PDFs as a distribution of possible values for a single parameter (such as 

temperature) at a single location.  In Figure 2a, an ideal ensemble correctly estimates both the 

analysis and forecast PDF, simulated by histogramming 500 random samples from the actual 

PDFs (gray solid curves).   Figure 2b shows a typical ensemble with incorrect location (mean, µ) 

and spread (standard deviation of the ensemble, σ ) in its estimation of the analysis PDF, which 

then worsens in the forecast PDFs.  An ensemble that errs in one or both of these quantities fails 

to realistically represent the actual uncertainty of where truth lies (Hamill, 2000).  In other words, 

the true state can not be considered a random sample from the ensemble’s estimate of the analysis 

or forecast PDFs.  Possible causes of this failure will be discussed in the next section. 

 The long-term ability of an EF to correctly estimate the mean and spread of the forecast PDF 

can be revealed by verifying the ensemble mean (i.e., verification − EF mean) over a large sample 

of forecasts.  A poor estimate of the mean of the forecast PDF is revealed by a significant bias in 

the EF mean’s error.  A problem in ensemble spread is found by comparing the magnitude of the 

EF mean’s error with the ensemble spread, which should be comparable (Buizza, 1995; 

Talagrand, 1999; Hamill et al., 2000a).  For most EF systems, it has been found that the error in 

the ensemble mean exceeds the ensemble spread, revealing a spread that is insufficient to 

consistently encompass truth. 

 The term “encompass truth” will be used to mean that the verification value is completely 

bound by the EF members.  It should be clear that for an ideal ensemble with an infinite number 

of members, truth must be encompassed by the EF’s forecast PDF.  This behavior gets a bit vague 

when dealing with a finite number of members.  Occasional failure to encompass truth is 

expected since truth can occur in the tail of the forecast PDF, beyond the most extreme ensemble 
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member.  If truth were to fall outside the ensemble too often (above what is expected because of 

undersampling), the ensemble is obviously underdispersive.  The problem is that simply 

considering how often truth is encompassed does not reveal when truth is an outlier with respect 

to the EF’s approximate forecast PDF (i.e., when truth is not sampled from the same PDF as the 

EF members).  We will therefore use the term “portray truth” to mean that the verification occurs 

within three standard deviations from the ensemble mean.   

 Figure 2 also displays how an ensemble PDF can be used to produce a forecast probability 

(FP) for some forecast event.  We define a “forecast event” as the occurrence above or below a 

threshold value (called the event threshold) of some parameter, either instantaneously or over a 

period of time (e.g., temperature less than freezing, or 12-h precipitation greater than 0.5 in).  For 

illustrative purposes, let’s say the PDF random variable in Figure 2 is wind speed at some 

location and we want to know the chance of exceeding 20 kt.  The ensemble-based FP is given by 

the area under the PDF to the right of the event threshold, known as the 1−p value in statistics 

(shaded area in Figure 2). 

 An EF that consistently and accurately estimates the forecast PDF will display a high degree 

of reliability (i.e., the FP will match up with the observed relative frequency (ORF), given a large 

number of forecast/observation data pairs).  For example, consider 100 instances in which         

FP = 35% chance of wind speed ≥ 20 kt.  We should expect the wind speed to be faster than 20 kt 

in exactly any 35 of those instances, for an ORF = 35%.  It is clear for the deficient EF of Figure 

2b that FP ≠ ORF.  However, this does not mean such an EF is useless since FP may still have 

valuable predictive skill without perfect reliability (see Appendix I).     

 The other component of FP skill is resolution, the ability to distinguish between events and 

non-events.  Binary-type forecasts (i.e., yes, no or 100%, 0%) have the highest possible resolution 

(regardless of their reliability) since they maximize the distinction between when an event may or 
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may not happen.  For fully probabilistic forecasts of any given event threshold, more certain 

forecast events (i.e., greater agreement among EF members) tend to have extreme FP (i.e., near 

0% or 100%) and thus a higher resolution while less certain forecast events have midrange FP 

and lower resolution. 

 The utility (i.e., value to a user) of forecasts depends upon both their reliability and their 

resolution.  Ensemble-based FP normally has lower resolution but greater utility compared to 

binary forecasts that suffer from poor reliability.   The strength of ensemble-based FP comes from 

the fact that it combines all the information of EF into a single product that encapsulates the 

uncertainty in the forecast process.  Indeed, FP is the icing on the cake for EF because for 

practical application,  the overwhelming amount of data from multiple forecast solutions must be 

condensed. 

 A common misconception is that EF can extend the atmosphere’s limit of predictability.  

However, the predictability limit is established primarily by the analysis error (Lorenz, 1969; 

Leith, 1974; Rabier et al., 1996; Errico et al., 2002).  EF does not correct for this error but uses it 

as a basis to estimate the error growth during the forecast period.  Therefore, EF can not extend 

predictability, but it can reveal the predictability limit.  When comparing long-term error statistics 

of an ensemble mean vs. a deterministic forecast, it may appear that EF extends predictability 

simply because a deterministic forecast often, but not necessarily, has much greater error.  (This 

concept will explained further below.) 

B. The Requirements of EF 

 In this section we will discuss theoretical aspects of how an EF must be designed to account  

for the uncertainty of weather forecasting.  This section will also describe how the challenge of 

EF has been met to date. 
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 There are three basic requirements to meet in attempting to run a skillful EF system (Palmer 

et al., 1990): 

1) Representation of Analysis Uncertainty:  Ensemble ICs must be formulated such that 

differences between ICs represent analysis error and the true analysis is a random sample 

from the EF’s analysis PDF. 

2) Representation of Model Uncertainty:  If model error is significant, the resulting 

uncertainty must be accounted for in the EF.  

3) Sufficient Ensemble Size:  There must be enough members in the ensemble to produce a 

thorough statistical sampling of the forecast PDF. 

The level to which the three requirements for EF must be met generally depends upon the specific 

application.  An important caveat with the first two requirements is that for an EF to have a 

chance at being effective, the portion of forecast error due to IC uncertainty must be larger than 

the portion due to model error (Murphy 1988; Palmer et al., 1990).  If model uncertainty 

dominates then the EF’s approximate forecast PDF may be of little value because its sample 

states would be so much different compared to the true atmosphere.  Such a PDF would have to 

be very wide to portray the true state and thus would have extremely low resolution.  This may be 

a reason for the difficulty of SREF since a mesoscale model is often deficient in representing the 

small-scale phenomena of interest.  Research so far (Houtekamer et al., 1996; Buizza et al., 1999; 

Stensrud et al., 2000; Mylne et al., 2002) has shown that forecast errors due to the model are 

significant for EF, but the model’s contribution to forecast error relative to the contribution from 

IC error has not been clearly demonstrated. 

 The two sources of uncertainty (analysis and model) present very different challenges for EF.  

Their dissimilarity may seem obvious but clarification from the point of view of chaos theory is 
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enlightening.  It is a question of starting the ensemble in the correct spot in phase space versus 

evolving the solution on the correct attractor. 

 If a perfect model is assumed, the only concern is the analysis uncertainty.  In this context, 

forecast errors of a single deterministic model run arise solely because of IC sensitivity in a 

dynamical system.  To deal with this, a best guess analysis (generated by some objective analysis 

cycle) can be randomly perturbed (scaled by the magnitude of the typical analysis error) n − 1 

times, to produce a total of n ICs.  This Gaussian cloud of ICs then represents the uncertainty in 

the true state at the initialization and defines the analysis PDF.  Upon running the n ensemble 

members in the perfect model, the true state will be well portrayed, given a large n. 

 This scenario is the ideal EF system depicted in Figure 2a.  Figure 2b shows what can happen 

when there are problems in producing the ICs.  Deficiencies in the analysis cycle can shift the 

location of the EF’s estimated analysis PDF and poorly scaled or formulated perturbations can 

affect the spread.  So even with a perfect model, the EF produces poor estimated forecast PDFs.   

 Now assume the reverse condition of a perfect analysis but an erred model.  In this context, 

forecast errors arise because our modeled solution evolves on an attractor that differs from the 

atmospheric attractor.  To deal with this it is necessary to perturb about the uncertainty within the 

model, an even more complex issue than perturbing about analysis uncertainty.  What is needed is 

n different, valid models representing the uncertainty in the atmospheric attractor.  Each ensemble 

member then evolves on a unique but erred estimate of the true attractor, and truth would again be 

well portrayed for a large n. 

 Figure 2 can also be used to imagine the erred-model scenario, except the analysis PDF must 

be imagined as an infinite spike at one value (i.e., no analysis uncertainty).  The forecast PDF still 

spreads out with increasing lead time as the members’ solutions evolve on different attractors.  

Figure 2b shows what happens when the model uncertainty is not well accounted for.  Model bias 
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can shift the location of the EF’s estimated forecast PDF and insufficient (excessive) 

representation of the model error causes spread to be too low (high).  So even with a perfect 

analysis, the EF again produces poor estimated forecast PDFs.   

 The third requirement of EF, the need for a large ensemble size, adds a further twist to Figure 

2.  When it comes to implementing an EF system, computational resources constrain the system 

to a finite and often very limited number of ensemble members.  This has severe implications for 

the EF’s ability to consistently construct a reasonable forecast PDF.  This effect is often 

overlooked when analyzing an EF system, with more attention being paid to the first two 

requirements.  Consider once again the ideal EF of Figure 2a where n is large; then imagine 

taking a subset of that same EF with only n = 8.  While it is still possible to produce the same 

PDFs, error is more likely in both the PDF location and spread—yet another independent way to 

produce Figure 2b. 

 A complete way to interpret an EF’s lack of success, such as depicted in Figure 2b, is that it 

resulted from failure to meet all three EF requirements, thus making diagnosis of the source of an 

ensemble’s problems very challenging.  An ensemble’s inability to produce an accurate estimate 

of the forecast PDF comes simultaneously from deficient accounting for analysis uncertainty, 

deficient accounting for model uncertainty, and incomplete sampling.  Failure to adequately meet 

any of the three requirements leads to inaccurate depiction of predictability error growth by the 

ensemble.  This is a fundamental concept in EF so we will explain it in detail first, before 

elaborating further on each of the three requirements separately. 

1. Predictability Error Growth 

 One way to describe and understand predictability error growth is with an error variance 

diagram (Figure 3).  This diagram, designed by David Baumhefner (2000) and based on the work 

of Leith (1974), is a visual display of the basic limitations and potential benefits of EF.  
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Predictability error growth is a measure of how forecast errors grow on average and when (at 

what lead time) predictability is lost.  In Figure 3, predictability error growth is plotted using the 

spatially averaged variance of the forecast error over increasing lead time for a particular 

meteorological parameter from a single model run, called the control run, computed by:   
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where M is the number of forecast points, fm,t is a single forecast at point m and lead time t, om,t is 

the verifying observation, and *tf  is the average control forecast error for all M points at lead 

time t.  (The asterisk is used to denote the error in a variable.)  To simplify the explanations in 

this section, we are restricting the analysis to a single EF case (i.e., one forecast cycle) over a grid 

of M points, but the error variance diagram is normally applied to many EF cases.  (I.e., the 

curves of Figure 3 are actually averages over many cases.) 

 When the error variance of the control reaches the climatic variance (σc
2, the long-term, 

spatially and temporally averaged variance of the parameter being forecast), the average error of 

the deterministic forecast is the same as the average error of the climatic mean (µc).  This is the 

limit of predictability for the control forecast.  For lead times beyond that point, the climatic 

mean is a better forecast.  For a well-calibrated model (i.e., dispersive characteristics equivalent 

to nature) the curve asymptotes to twice the climatic variance (2σc
2), a feature discussed in detail 

below. 

 The curve that is closely related to the control’s error variance is the variance of the 

differences between ensemble members (IC perturbations only): 
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where n is the number of ensemble members and ei is an ensemble member forecast at a 

particular point and lead time t.  (Notice that the difference between forecasts is signed.)  The 

brackets, 〈〉, denote an average of all forecast points.  D is the number of differences among the 

members: 
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The differences curve reveals how the ensemble members diverge with increasing lead time and 

depends upon the intrinsic variance of the model and the spread of the ICs.  Since differences 

between ensemble members are indicative of forecast errors, this is a reflection of how quickly 

errors grow on average.  This curve can be thought of as the predictability error growth for a 

perfect model, given a large n and properly sampled ICs.  The curve does not depend on model 

error (i.e., model – truth) since it is built from differences between model solutions.   

 One obvious distinction between Equations (1) and (2) is that the control error variance, 

Equation (1), is a standard variance calculation over all points, but Equation (2) is an average 

over all points of the EF variance at each point.  This is not however the reason for the gap 

between the control error and differences curves.  The reason is model error.  Recall that the ICs 

are a distribution of possible truths that should contain the true initial state, thus defining many 

possible initial errors.  The differences curve then shows how the variance among these errors 

increases over the forecast period.  The deterministic control forecast begins with one of the 

initial errors contained in the ensemble, so if a perfect model were used, the control’s forecast  

error (i.e., truth – forecast) would match up exactly with one of the differences within the EF 

(3) 

(4) 
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solutions where both the control member and true evolution of the atmosphere are present.  Over 

a large number of cases, the control’s average error variance would naturally match up to the 

average variance of the ensemble differences.  In practice, the control’s error variance is larger 

because model error increases the control’s forecast errors.  Thus the farther apart the control 

error and differences curves are, the greater the model error.  

 The last curve is the variance in the error of the ensemble mean. 
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e*  is the average error of the ensemble mean over all M points at lead time t.  The 

ensemble mean ( e ) for a particular point m at lead time t is: 
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The ensemble mean’s error variance initially matches the control’s, then separates and 

asymptotes to σc
2 (Leith, 1974).  This is the key to the value of EF.  Averaging the ensemble 

members acts as a very selective filter, smoothing out the nonlinear errors that arose from the 

erred ICs.  The period between the ensemble mean’s break from the control forecast to near the 

σc
2 asymptote is the period when EF adds value to forecasting of the parameter in question. 

 The asymptoting behavior of these curves results from the statistics of EF sampling, which 

can be easily demonstrated.  First of all, recall that the forecast PDF evolves to the climate PDF 

for a very long forecast lead time.  The ensemble mean would then exactly equal the climatic 

mean, and the error variance of the ensemble mean must match σc
2.  The deterministic control 

forecast, being a random sample from the forecast PDF, may have an error up to twice as large as 

the ensemble mean.  This of course doubles its variability, making the control’s error variance 

asymptote to 2σc
2. 

(5) 

(6) 
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 To demonstrate these relationships, we simulated 105 forecasts of MSLP by a well-calibrated 

ensemble of eight members (an EF size of significance to this research) at an extended lead time 

so that the forecast PDF has spread out to the climate PDF.  All samples were drawn from a 

normal (µc = 1011.37 mb, σc = 10.33 mb) PDF to simulate the MSLP climate PDF in Figure 1.  

The verification value of MSLP used to calculate error for each EF case was a separate random 

draw from the same PDF.  Using Equation (1), we found an error variance of the control to be 

212.82 mb2 (compared to 2σc
2 = 213.52 mb2).  Using Equation (2), the average variance of the 

differences was 213.84 mb2, confirming the 2σc
2 asymptote.  Using Equation (5), the error 

variance of the EF mean was 119.77 mb2, notably higher than the expected σc
2 = 106.76 mb2. 

However, this result must be corrected by a factor of n / (n + 1)  (explained below) to adjust for 

the small sample size, thus yielding a matched value of 106.16 mb2.  This simulation 

demonstrates that the asymptotic values of the curves in an error variance diagram are a statistical 

property of sampling from a PDF—the basic process of EF. 

 The major influence on error growth, which determines the EF value period, is the 

meteorological scale of the parameter under investigation.  For the 500 mb height field (mainly 

synoptic to planetary variability), Figure 3b shows that EF is useful for medium range forecasting 

from about day 4 out to at least day 12.  It is reasonable to expect that the EF value period for 

smaller scale, more rapidly varying phenomena of interest to SREF (such as precipitation) should 

be in the short range.  However, this has not yet been clearly demonstrated. 

 This research involves forecasts to a lead time of only 48 hours, typically well below the 

limits of predictability.  Therefore, we did not make use of the full error variance diagram.  

Instead, we chose to analyze two other measures of an EF that are by-products of the above 

quantities.  The first metric is the average variance of the EF members about the EF mean as 

opposed to the average variance of the differences between EF members in Equation (2): 
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This quantity (or its square root, the standard deviation) is referred to in the literature as the 

ensemble spread, and is commonly how the predictability error growth is examined.  The second 

EF metric is the mean square error (MSE) of the ensemble mean, 
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Note that in an ideal ensemble with large n applied to a large M, this quantity matches up 

perfectly with the error variance of the EF mean (Equation (5) ) since the average error of the 

ensemble mean,
t

e* , goes to zero. 

 The importance of these two metrics is that eMSE  should match up with 2
es  for a 

verification that is a random sample from the forecast PDF.  This concept, often referred to as 

statistical consistency of an ensemble, was formalized by Talagrand et al. (1999).  To put it in 

plain language, the average difference between the ensemble mean and the verification should be 

the same as the average difference between the ensemble mean and the ensemble members, so the 

verification appears to be just like one of the members.  Ziehman (2000) pointed out that it is 

necessary to account for small sample sizes in order for statistical consistency to hold when n is 

small.  Equation (7) does this by dividing by n − 1 in the variance calculation and the standard 

MSE in Equation (8) corrected by a factor of n / (n + 1).  This correction for ensemble size also 

agrees with Leith (1974). 

 Comparing eMSE  and ensemble spread provides an excellent tool to test for realization of 

the fundamental goal of EF—production of a forecast PDF from which truth is a random sample.  

For demonstration purposes, Figure 4 illustrates what we will call a dispersion diagram, showing 

(7) 

(8) 



19 

 

the common problem in EF of insufficient predictability error growth (i.e., ensemble spread falls 

short of eMSE  and the EF is said to be under dispersive).  We will use the term dispersion to 

denote ensemble spread above and beyond the initial spread in the ICs, so it is a measure of how 

much the members spread out. 

 An underdispersive ensemble fails to portray the truth and displays overconfidence in its 

probability forecasts.  That is, it over forecasts high probability events and under forecasts low 

probability events—a clockwise rotated curve on a reliability diagram (see Appendix I).  A 

logical reaction is to increase the IC spread thus producing greater ensemble spread and increased 

likelihood of portraying truth.  However, that is counterproductive for improving the EF if it is 

done outside the bounds of known uncertainty since that would typically degrade the ensemble’s 

resolution.  While we discuss the three basic requirements of EF over the next few sections of this 

chapter, we will explore factors that lead to low dispersion and possible ways to alleviate the 

problem and improve skill at the same time. 

2. Representation of Analysis Uncertainty 

 The key to successful representation of analysis uncertainty in EF is estimating the true 

analysis error vector, 0E
r

. 

  ATE0

rrr
−=  

where T
r

 is again the true state of the atmosphere and A
r

 is an analysis.  It is the fact that we can 

never know 0E
r

 which makes EF necessary.  A set of ICs that portrays the true state can be 

generated by making perturbations about a best guess analysis based on an estimate,      . 

 An estimate of the magnitude of the analysis error may be obtained by comparing many 

analyses and re-analyses (made at a later time with additional observations).  Perturbations about 

(9) 

0E
r̂
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the best guess analysis may then be made in random directions (Figure 5a) scaled by that 

magnitude, creating a cloud of ICs symmetric in all dimensions.  This so-called Monte Carlo 

(Leith, 1974) approach is theoretically effective for a very large number of ICs but is extremely 

inefficient since the majority of the members yield repeated information.  Since most of the 

perturbed ICs lie off the attractor, during the forecast evolution their trajectories converge toward 

the members’ trajectories that started on the attractor.  While this method should generate realistic 

predictability error growth allowing the forecast PDF to portray the true state, it is not practical 

for operational EF because of the large processing cost.  

 Having an estimate, or estimates, of the analysis error vector allows for an efficient EF 

(Figure 5b).  Such an estimate is actually a two-way vector with the best guess analysis at the 

center, again scaled by the time average analysis error in each direction.  Since the true state 

should lie close to this vector, ICs are placed along it.  All these ICs are on or very close to the 

attractor so their trajectories diverge and yield very different solutions which should portray the 

future true state.  One risk of this method is that putting too much confidence in the       can throw 

the system off if the estimate is poor.  Another risk is the possibility of oversampling part the 

PDF if the ICs are placed too close together.   

 Most of the EF research effort over the past decade concentrated on producing a good       for 

MREF (Stensrud et al., 2000).  This has resulted in successful medium-range EF systems such as 

the NCEP MREF (Toth and Kalnay 1993; Tracton and Kalnay, 1993) and the ECMWF Ensemble 

Prediction System (Molteni et al., 1996).  At NCEP the estimates are made by the method of 

breeding of growing modes while ECMWF uses singular vectors.  Both of these methods are 

designed to generate maximum dispersion among the ensemble members several days into the 

forecast period.  This may be a good idea for representing the tails of the forecast PDF but may 

not produce the complete PDF.  

0E
r̂

0E
r̂
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 The focus on applying well-formulated ICs in the early MREF systems was likely the result 

of two factors.  First, Lorenz (1963, 1969) clearly showed that a dynamical system is sensitivity 

to ICs.  Secondly, Downton and Bell (1988) explained that for MREF in the midlatitudes the 

perfect model assumption is reasonable.  So it was logical and productive for an EF such as the 

NCEP MREF to ignore the complications of model uncertainty. 

a) Methods for Analysis Uncertainty Representation 

 In this section we will briefly review the six primary methods (three of which are used 

operationally) for estimating the analysis error vector and generating a set of ICs for an EF 

system.  There is an extensive body of literature comparing and contrasting the merits of the 

various methods for MREF, for which these methods were primarily designed.  There has been 

no published research on which method may work best for SREF, whether any are appropriate at 

all, or whether some new method is required.  We will simply present the basic methods to justify 

and put our choice (multianalysis) in perspective.  

 As discussed above, the pure Monte Carlo method of generating many random perturbations 

is impractical because it requires an extreme amount of computer power to get good results 

(Lorenz, 1993; Wilks, 1995).  A modified Monte Carlo method was developed by Errico and 

Baumhefner (1987).  Rather than having many members with totally random perturbations (equal 

noise at all scales), they thought it would be more efficient and effective to have scale-selective 

perturbations.  Perturbations can still be random, but the amount of noise added to the control 

analysis at each wavelength is based upon the suspected uncertainty at that scale.  The scale-

selective perturbations are created by manipulation of the spectral decomposition of random 

perturbations.  

 One important finding of Errico and Baumhefner (1987) with consequences for our research 

is that “…the forcing of small scales by large scales is substantial.”  They found that, when only 
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the small scales were perturbed, the ensemble solutions were very similar at all scales, but when 

they perturbed only the large scales, the ensemble solutions varied at all scales.  A second 

important finding for our research is that, when using a limited-area model (LAM), it is important 

to perturb the lateral boundaries as well as the ICs.  Ignoring that fact leads to limited 

predictability error growth. 

 The method of Errico and Baumhefner (1987) has only been used as a research tool, as in a 

SREF study by Du et al. (1997) in which a 25-member ensemble was run for a single forecast 

case of explosive cyclogensis using MM4 at 80-km resolution and ICs as described above.  The 

focus was on producing a quantitative precipitation forecast (QPF).  They found that short-range 

QPF was very sensitive to analysis uncertainty for explosive cyclogensis, indicating rapid error 

growth.  They also reported that 90% of the root-mean-square error (RMSE) improvement by the 

EF mean was found with 8-10 members, thus confirming the correction factor of Equation (8).  

Finally, they made the tentative conclusion that “SREF can now provide useful QPF guidance 

and increase the accuracy of QPF when used with current analysis-forecast systems.”  This was 

encouraging for SREF but hardly convincing considering the limitations of the study. 

 A second method for IC generation, also with a Monte Carlo element, is commonly called 

Perturbed Observations (PO) and was developed by Houtekamer and Derome (1995) for 

operational use in the Canadian Meteorological Centre's (CMC) EF system.   This method 

assumes that most of the error in an analysis comes from the errors and incomplete coverage of 

the observations.  To generate another likely analysis, random errors (consistent with known error 

characteristics) are added to the observations followed by another separate analysis cycle.  This 

can be repeated n times to produce n analyses. Currently, the CMC’s ensemble consists of 8 

members run with a global spectral model and 8 members run with their Global Environmental 

Multiscale (GEM) model. 
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 A significant limitation to the PO approach is that the differences between the analyses are 

limited by the fact that they all use the same processing methods in their analysis cycle.  Errors 

introduced by using the same model for the first guess as well as the same optimal interpolation 

scheme make all the ICs share similar deficiencies.  A more complete PO method would account 

for the uncertainty in both model and optimal interpolation scheme within the analysis cycle.  

Nevertheless, Hamill et al. (2000b) showed that the PO method is superior to the other two 

operational methods discussed next.  

 A third method, called Singular Vectors (SV), generates ensemble ICs mathematically 

(Molteni et al., 1996).  It uses the idea of Lorenz (1965) who proposed that “optimal 

perturbations” that grow the fastest in the short-range are revealed by the largest eigenvalues of 

the eigenvectors (i.e., singular vectors) of a symmetric error covariance matrix (i.e., a description 

of the forecast error PDF).  The justification for using these modes as perturbations to the best 

guess analysis is that since only a limited ensemble can be run, choosing the fastest growing 

modes should ensure that the true evolution of the atmosphere is consistently portrayed.  The SV 

method went operational in the ECMWF Ensemble Prediction System (EPS) in 1992, and is 

presently run with 51 members at T255L40.  To find the symmetric covariance matrix, an adjoint 

(i.e., linear tangent) version of the global model is used to find the maximum growth at 2 days.    

 There are several notable problems with the SV method.  One is that it is computationally 

expensive to find the optimal perturbations.  Secondly, since it can only examine linear error 

growth, it is limited to maximizing the 2-day growth.  It is unreasonable to expect the optimal 

perturbations at 2 days to continue to be the fastest growing modes into the medium range.  

Lastly, SV by design tends to sample the extremes of the analysis PDF instead of providing a 

purely random sampling.  The sampling is also limited by the fact that not all the errors present in 

the analysis project onto growing modes. 
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 A fourth method called Breeding of Growing Modes (BGM), described by Toth and Kalnay 

(1993), was developed for the NCEP global ensemble and is actually a clever, efficient 

approximation to SV.  The basis of this method is that while an analysis cycle is designed to 

produce acceptably small errors, the largest differences between the analysis and truth are 

believed to project onto growing modes because of the use of the model first guess in objective 

analysis.  The BGM method produces alternative ICs by mimicking an analysis cycle.  To make 

2n ICs, BGM begins by making n unique, random perturbations (taken as + and −) to the best 

guess analysis.  A short forecast from each perturbation is compared to the next best guess 

analysis to provide an estimate of a growing mode, which is then scaled to provide a perturbation 

for the ensemble.  The NCEP global ensemble currently consists of 24 members run with the 

Global Forecast System (GFS) model at T126L28 (T62 after 84 h).  The BGM method suffers 

from the same basic problem as SV in that it tends to reflect the extremes of the analysis PDF.  

Additionally, Baumhefner (2000) demonstrated that the members are highly correlated and that 

their differences do not resemble the typical analysis error structures. 

 The fifth, and perhaps most promising IC method for SREF, is the Ensemble Kalman Filter 

(EnKF).  It has yet to be applied operationally, but is described by Hamill and Snyder (2000c) 

primarily as a means to improve the analysis.  One of the weakest parts of any analysis scheme is 

poor knowledge of the error in the first guess field (represented by an error covariance matrix) 

that is to be combined with observations.  A true Kalman filter would find the error covariance 

matrix directly through linear dynamics, and is, for practical purposes, computationally 

impossible for the degrees of freedom in NWP.  The EnKF method assumes that an 

approximation to the matrix can be provided by an ensemble of short-range forecasts, run parallel 

to the analysis cycle, that applies the PO method.  This process produces a greatly improved 

analysis by minimizing the error based on the sensitivity to the variance in the observations.  
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More importantly, it also produces a set of ICs specifically conditioned for SREF since a large 

component of short-range forecast errors come directly from the error in the first guess field, 

which EnKF captures.  One limitation to EnKF is that a large ensemble is required to properly 

represent the error covariance matrix (Hamill and Snyder, 2000c).  It is also unclear how model 

error may impact the EnKF process. 

 The sixth IC method, which is applied in our research, is termed multianalysis and was 

developed by Grimit and Mass (2002) as a research tool.  It can be considered semi-operational 

since it has been run in real time since its inception in January 2000.  The multianalysis method 

uses several independent, large-scale analyses/forecasts produced from different forecast centers 

to initialize and provide lateral boundary conditions for a mesoscale model.  In essence then, the 

goal of this process is to take the original synoptically diverse solutions and project them down to 

the mesoscale, thus producing a SREF with differences that should estimate likely mesoscale 

errors. 

 One key assumption then is that the differences among the analyses are representative of 

analysis error.  The other assumption, supported by Errico and Baumhefner (1987), is that the 

largest component of the mesoscale forecast error actually originates from synoptic-scale errors in 

the analysis.  The validity of these assumptions, as well as all the limitations for the multianalysis 

method, will be discussed in Chapter II.   The vital fact is that Grimit and Mass (2002) showed 

that running a multianalysis ensemble with only five MM5 members provides excellent 

prediction of forecast error on the mesoscale.  It was this result that led us to use this method to 

define the ICs for our research.  All of the other methods for representing analysis error have 

questionable applicability to SREF or are beyond our computational capabilities. 
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3. Representation of Model Uncertainty 

 There is evidence that even in the medium range, discounting model uncertainties leads to 

inferior EF performance (Buizza et al., 1999; Harrison et al., 1999).  This likely applies even 

more for SREF where the impact of model error can be amplified (Brooks and Doswell, 1993).  

In short-range, high-resolution forecasting of sensible weather phenomena, the model is highly 

sensitive to its parameterizations (Stensrud et al., 2000).  Therefore, regardless of IC quality or 

ensemble size, a SREF system that ignores model uncertainty can not generate the proper 

predictability error growth.  While there is still much research to be done on accounting for model 

uncertainty (Hamill et al., 2000), its inclusion appears necessary for construction of an effective 

SREF. 

 Use of parameterizations within an NWP model play a large role in limiting ensemble 

dispersion when their errors are not accounted for.  These parameterizations are best estimates of 

quantities, factors, or processes that are either not completely known or of too small a scale to be 

resolved by the model.  In nature, the phenomenon (estimated with a constant in the model) is 

often highly variable over space, time, and different weather regimes.  A parameterization may 

reasonably represent some natural process at times and poorly represent it at other times.  When 

the members of an ensemble all use the same limiting parameterizations, they all evolve with the 

same model errors thus failing to account for model error.  The members’ similarities result in an 

underdispersive system. 

 Limited ensemble dispersion, commonly seen in ensemble systems (Buizza, 1997; Hamill 

and Colucci, 1997; Tallagrand, 1999), may be due to either ICs which insufficiently project onto 

growing modes or to poor representation of model uncertainty (Buizza, 1995; Houtekamer, 

1996).  We should imagine then that the total ensemble dispersion can be defined as the increase 

in ensemble spread from its initial value and that both IC error and model error are 
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simultaneously contributing to the dispersion (Figure 4).  Our hypothesis is that in the short 

range, the percent contribution to ensemble dispersion from model uncertainty may be as big, or 

bigger than from IC uncertainty, depending upon the parameter and scale.  This does not 

contradict the fact that dispersion in the medium range results mainly from analysis error, which 

is another way of saying that predictability limits are primarily determined by analysis error 

(Lorenz, 1963; Ziehmann, 2000). 

 The set of ICs is critically important for defining the initial envelope of solutions, but the 

differences between the members take time to grow.  Generally, their growth is relatively weak 

and linear in the first 24 h and is followed by increasing nonlinear growth once they become well 

organized (Gilmour, 2000).  Model errors typically have high spatial variability so have very little 

large-scale structure to project onto growing modes.  Also, model errors do not have to organize 

before growing, so they reach their peak influence on the solution shortly into the forecast cycle.  

Inclusion of model uncertainty in a SREF should therefore significantly improve ensemble 

dispersion, creating a much better estimate of predictability error growth in the short range.  

Furthermore, model parameterizations have the greatest impact on the solution at or near the 

surface (Mullen and Baumhefner, 1988), so the best way to improve SREF is to introduce model 

perturbations (i.e., variations to model parameterizations) that focus on increased variance in 

surface and sensible weather variables (Stensrud et al., 2000). 

 Another hypothesis of this research, supported by Mylne (2002), is that the addition of model 

perturbations to a SREF can increase dispersion and simultaneously improve the resolution 

component of FP skill.  Addition of model perturbations does not simply add arbitrary spread to 

an underdispersive ensemble, but rather it introduces actual uncertainty to the ensemble that was 

previously omitted.  The correct but difficult solution to the low dispersion problem of EF is to 

thoroughly represent both IC and model uncertainty. 
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 It has been proposed that model deficiencies can be separated into two distinct classes, 

namely systematic and stochastic (Hamill et al., 2000a).  Systematic error refers to model bias 

and is normally blamed on poorly tuned parameterizations.  However, Buizza (1999) describes 

how parameterized physical processes can lead to random (i.e., stochastic) error without any bias.  

This is possible because over many model time steps a parameter may accurately represent the 

average value of some sub-grid scale physical process (e.g., precipitation droplet growth) but be 

in error by a random value at any one time step.  With that in mind, we will use the term 

systematic error to simply mean model bias (i.e., any forecast error that regularly reoccurs) and 

not tie it to any particular source.  Stochastic error is then the remainder of the forecast error 

(which is random) and is also what we refer to with the term model uncertainty. 

 The sources of model error can be broken up into three basic categories (Table 1), where each 

category requires different basic methodology for inclusion in a SREF.  Each source among the 

categories may contribute differently to both systematic and stochastic error.  The term physics 

parameterization will be used in reference to a model’s estimation of a poorly known and/or 

unresolved quantity or physical process.  The error in a physics parameterization could be 

represented by perturbing about its estimated uncertainty during model integration.   A surface 

boundary parameter (SBP) is like a physics parameterization in that for a single model run, it is 

an estimate of the average value of some poorly resolved quantity.  The difference is that it is also 

spatially dependent so should therefore be perturbed about its estimated uncertainty over the 

entire model domain.  Lastly, the numerical processing model error category contains the errors 

associated with the mathematics of NWP and its application to computers.  Perturbing about these 

errors is not straightforward since it would be very difficult to represent such error and maintain 

equality among ensemble members. 
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 Our research compares and contrasts two different strategies for representing model 

uncertainty in a SREF.  Both use the multianalysis method of defining the set of ICs.  One 

strategy, commonly termed the multimodel approach, is to use more than one NWP model for the 

ensemble members.  Each member then has a unique IC and may have a unique model or share a 

model with some other members (depending on the number of models applied).  Our application 

of this approach is called a multimodel multianalysis (MMMA) ensemble.  The other strategy, 

called the perturbed-model approach, is to apply a set of ICs to just a single model framework but 

use many different versions of, or perturbations to, that model.   Each ensemble member then has 

a unique IC and a unique, but related, model.  Our application of this approach is termed a 

perturbed-model multianalysis (PMMA) ensemble. 

 A hypothesis of this research is that while the PMMA approach may be more theoretically 

proper since it attempts to more rigorously account for model error, the MMMA approach is more 

practical to employ and produces as good or even better results.  When using an imperfect model 

in an EF, it is imperative for the members to have various model attractors that bound the true 

attractor; otherwise, the members will not be drawn from the forecast PDF (Hansen, 2002).  In 

the MMMA approach, each member has a model with a drastically different model attractor that 

provides unique skillful information to the ensemble (Evans, 2000).  The spread among the 

various model attractors may be a reasonable representation of model uncertainty.  In PMMA, 

each member has a unique model but many of the same model aspects are shared.   The resulting 

set of model attractors may be too constrained to fully represent the uncertainty about the true 

atmospheric attractor. 

a) Perturbed-Model Theory 

 Since one of the main efforts in this research was the construction and implementation of a 

PMMA, we need to discuss the theory of model perturbations in more detail.  The challenge of 
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the PMMA strategy of representing model uncertainty is that the sources of error within the 

model are numerous, mostly unknown, and vary greatly in character.  Attempting to completely 

and accurately represent all these errors individually in a SREF would be a daunting task. 

 In the ideal PMMA all aspects of model uncertainty are rigorously represented.  This could 

be done by defining the uncertainties with PDFs for all the parameterizations and numerical 

imprecision.  An ensemble of distinct and equally likely models could then be made with various 

combinations of random samples from all those PDFs.  (Note that we can think of deterministic-

style forecasting as using only the expected value of those PDFs.) 

 Defining parameterization PDFs would certainly be a challenge, but the real difficulty comes 

when trying to capture all the model uncertainty.  To thoroughly span the space of models, it 

would be necessary to run all possible combinations of the various parameter values from the 

PDFs.  Even if only a few samples are taken from each PDF, the limits of today’s computer 

systems are quickly exceeded.  We can compute the number of required model runs (M ) by 

  ∏
=

=
A

i
ipNM

1

 

   M = N p 
A               …for constant p 

where N is the number of ICs, A is the number of distinct aspects of the model being perturbed, 

and pi is the number of unique perturbations per model aspect (like samples from a distribution). 

 Figure 6 gives a simple example where we start with only 4 ICs and take just 2 random 

samples each of 3 different physics parameterizations.  To capture all the possible combinations, 

which may all be equally likely, we need to process 32 ensemble members.   This is similar to a 

decision tree in statistics: each branch of the tree is an ensemble member with a different and 

equally likely version of the model.  However, the various members are only all equally likely if 

the model perturbations are independent and uncorrelated.    

(10) 
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 The tree diagram for a more thorough system would be gigantic.  Say we use a set of 10 ICs 

and we identify 20 distinct aspects of the model that may be in error.  We also choose to generate 

30 perturbed values (i.e., samples) for each of those model aspects—the standard minimum 

number of samples to represent a PDF.  Equation (10) gives a total of about 3.5×1030 required 

model runs!  The only practical option is to use a very limited subset of those runs, as in the work 

by Houtekamer et al. (1996) discussed in the next section.  The point of the PMMA strategy is 

not to thoroughly represent model uncertainty since that may be impossible, but rather to run each 

member with a perturbed model in order to realistically increase ensemble dispersion.  

Furthermore, for practical constraints only one tree branch is used for each IC but the branches 

are as different as possible.  For example, a four-member PMMA ensemble from Figure 6 might 

be A111, B122, C212, and D221.  While this is an extreme approximation to the ideal PMMA, its 

efficiency may actually make sense.  Running the complete set of model variations would likely 

waste processing time since similar perturbation combinations would yield very similar solutions.  

(E.g., model runs A111 and A112 would likely be nearly identical).  Selecting only one model 

variation per IC should efficiently provide additional dispersion and allow the SREF to represent 

a significant portion of model uncertainty.  

b) Research into EF and Model Uncertainty 

 Epstein’s (1969) formulation of a stochastic dynamic forecast model was designed to 

incorporate model uncertainty into the prognostic equations but is impractical for NWP since the 

equations are unmanageable by numerical methods.  Leith (1974) proposed the idea of ensemble 

forecasting as an approximation to stochastic dynamic forecasting, focusing primarily on IC error 

or what he termed “internal error.”  However, he did point out that  

“…there is an additional external error generated by the discrepancy between the dynamics of 
the model and that of the real atmosphere arising in part from the limited dimensionality of 
the model phase space.” 
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We can only surmise that Leith (1974) chose to assume a perfect model for his study because he 

believed analysis uncertainty dominates error growth, or perhaps the idea of including model 

uncertainty was too overwhelming. 

 The pioneering effort for representing model uncertainty in an EF was Houtekamer et al. 

(1996), who employed a limited perturbed-model approach.  Using a spectral model (T63/L23), 

the perturbed observation approach was used to create a set of ICs for a low-resolution, medium-

range ensemble system with forecasts out to 15 days.  A so-called system simulation experiment 

(SSE) method was then applied to represent model uncertainty using many different versions of 

the same model.  (Note that this EF is different from our PMMA in that the set of ICs was 

generated “in house” using one analysis system.  The PMMA employs various analyses from 

different forecast centers’ analysis systems.) 

 Houtekamer et al. (1996) ran two different ensembles of eight members each.  One ensemble 

used a unique IC but the same model version for each member, while the other used a unique 

model version for each member as well as a unique IC.  The setup for each of the eight model 

versions was chosen from four model options (horizontal diffusion, convection/radiation, gravity 

wave drag, and orography) with two choices each and three SBP options (sea surface 

temperature, roughness length, and albedo), each with eight different choices.  Applying Equation 

(10), the eight members then represent only eight possible perturbed model combinations out of 

8(42)(38) = 839,808.  But even with this limited sampling of the model uncertainty, there was 

notably increased dispersion. 

 The goal was to correctly boost the predictability error growth of an underdispersive medium 

range EF that previously had no model perturbations.  Figure 7 (using data from Houtekamer et 

al., 1996) shows that, while the dispersion was increased, the effect was quite limited in the 

medium range.  Houtekamer concluded that while including model perturbations does improve an 
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EF, “more dramatic perturbations to the model” would be required to produce better error growth.  

(The similarity of Figure 7 and Figure 3 is not coincidental.  Recall that EF spread behaves just 

like the MSE of the EF mean in an error variance diagram, a point that we exploit in our analysis.) 

 It is difficult to determine the implications for SREF from these results since the model and 

resolution were geared toward the medium range.  In addition, the study only used a single 

forecast case so the generality of the results is unclear.  One curious fact that was revealed (and 

not discussed since they were primarily concerned with the medium range) is an indication in 

Figure 7 that model uncertainty may play a much bigger role in the short range by contributing a 

large part of the dispersion.  (Recall that our definition of dispersion is EF spread above the initial 

spread).  Beyond the short range, nonlinear error growth from synoptic-scale differences in the 

ICs dominates the dispersion, and model errors only add slightly more spread.  In the short range, 

model perturbations quickly make significant differences in the solutions. 

 Stensrud et al. (2000) performed a study using the perturbed-model approach that did discuss 

the relationship between forecast lead time and error growth by model error.  They compared the 

behavior of two very different, 19-member SREF systems using the MM5.  The “IC ensemble” 

had perturbed ICs defined with the Mullen and Baumhefner (1988) approach, all using the same 

model.  The “physics ensemble” used one IC but 19 different versions of MM5 defined by 5 

convective scheme options, 2 boundary layer options, and 3 levels of moisture availability.  This 

was an interesting way to isolate the error growth due to model error, but it is not appropriate to 

do a skill comparison of these two ensembles since the physics ensemble is unfairly degraded by 

a lack of representation of analysis error.  Another serious limitation is that this study only 

examined one complete forecast case. 

 Nevertheless, this work of Stensrud et al. (2000) does provide some evidence for the key idea 

that use of perturbed models gives the ensemble members different systematic errors, thus 
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providing a more appropriately diffuse forecast PDF.  They showed that the spread in the physics 

ensemble grew two to six times faster in the first 12 h compared to the IC ensemble.  They also 

concluded that the influence of model uncertainty on forecast error is largest in the short-range 

for meteorological variables at the surface.  Stensrud et al. (2000) summarized the benefit of the 

perturbed model technique: 

“By using different models, in conjunction with different initial conditions, it may be possible 
to increase the accuracy and usefulness of an ensemble by creating greater divergence in the 
ensemble trajectories than would be created by using only different initial conditions.” 

 
The studies of both Houtekamer et al. (1996) and Stensrud et al. (2000) were a major influence on 

the choice and design of the PMMA technique applied in our research.   

 An alternative to either the multimodel or perturbed-model approach, called stochastic 

physics, was applied by Buizza et al. (1999).  The basic assumption with Buizza’s method is that 

random errors coming from the various parameterizations have a high degree of spatial and 

temporal coherence and that the errors are proportional to the tendency (i.e., rate of change).  

Instead of trying to handle all the errors separately, stochastic physics attempts to capture their 

influence by randomly perturbing the tendency of state variables with some appropriate degree of 

spatio-temporal autocorrelation. 

 Buizza et al. (1999) did find that this method increased ensemble spread and improved 

performance, but others have found that stochastic physics fails to represent the full spectrum of 

model uncertainty (Evans et al., 2000; Ziehmann, 2000; Richardson, 2001a).  Forecasters have 

found that subjectively, the differences among the ECMWF EPS members (that use stochastic 

physics) fall well short of the synoptic differences found from a multimodel ensemble (Mylne et 

al., 2002).  The limits of stochastic physics may be due to the fact that all the members use the 

same model attractor.  The random perturbations give occasional kicks off the attractor to the 



35 

 

trajectories, which then quickly reconverge.  The effect then is that the solutions are still very 

similar.  For all these reasons, we chose not to apply stochastic physics in our SREF research. 

 A SREF study that explored several questions of relevance to our research was accomplished 

by Wandishin et al. (2001).  They compared error growth and skill over a relatively large sample 

of 43 total cases (27 cool season and 16 warm) of several subset ensembles of the NCEP SREF—

a 15-member MMMA ensemble (Du and Tracton, 2001).  A weakness of this study is that the 

NCEP SREF uses ICs that likely do not adequately represent analysis errors.  The 15 members 

consist of five Eta model runs that use multianalysis ICs (all produced at NCEP and thus highly 

correlated), five more Eta runs that use bred-mode ICs, and five Regional Spectral Model (RSM) 

runs using the same bred-mode ICs.  Use of two models does provide an element of multimodel 

representation of model error, but the system is seriously encumbered by the poor ICs.   

 Wandishin et al. (2001) conceded that their study was rather limited and that “future work is 

needed to quantify the roles of model formulation and initial condition uncertainty.”   They did 

conclude however that SREF can give useful guidance on probabilistic QPF whereas information 

from a deterministic forecast is quite limited and much less useful.  Additionally, relevant to our 

research,  they found that error growth for mesoscale parameters is very weak compared to the 

growth found in a synoptic-scale parameter such as 500 mb GPH.  They did not address whether 

the weak error growth was due to error saturation, verification method, or some other effect. 

 A study by Evans et al. (2000) provides some insights into the value of the multimodel 

technique for representing model uncertainty.  Focusing on MREF with 9 cases, they compared 

the skill of three, 34-member ensembles: 1) a random subset from ECMWF’s 51-member EPS 

that used stochastic physics, 2) an ensemble that used the same ICs as the ECMWF EPS but used 

the United Kingdom Meteorological Office (UKMO) global model, and 3) a combination of 1 & 

2, using 17 members from each. 
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 They came to the dramatic conclusion that the multimodel ensemble outperformed the 

ECMWF EPS in both deterministic skill of the EF mean and in the skill of probability forecasts.  

This improvement was not simply due to adding more members or forcing spread toward the 

climate PDF, since they found improvement in both reliability and resolution.  It was likely “due 

to the sampling of different, skillful populations provided by the individual systems.”  They also 

concluded that for the medium range, model errors do contribute significantly to the total forecast 

error so must be accounted for in an ensemble system. 

 The benefits of a multimodel ensemble in the medium-range were further demonstrated by 

Ziehmann (2000).  Over a large sample of forecasts (90 cool season and 90 warm season), she 

compared a random subset of four ECMWF EPS (with stochastic physics) members to a 4-

member poor man’s ensemble (PME).  The conclusion was that not only does the PME beat the 

ECMWF EPS subset but that it even beat the full 51-member ECMWF EPS in several key 

aspects of EF performance. 

 Ebert (2001) explored the PME to see how a seemingly nonrigorous EF method can be so 

effective.  Using a 7-member ensemble comprised of global models from various operational 

centers to examine the skill of QPF, she also found ensemble superior to the 51-member ECMWF 

EPS.  Ebert noted that: 

“Because it [PME] samples uncertainties in both the initial conditions and model formulation 
through the variation of input data, analysis, and forecast methodologies of its component 
members, it is less prone to systematic biases and errors that cause underdispersive behavior 
in single-model ensemble prediction systems.” 
 

She also concluded that for probabilistic forecasts, there was no need for a calibration such as 

applied by Eckel and Walters (1998).  However, the dispersion of the PME was not investigated 

(i.e., improper dispersion indicates a need for calibration) so her conclusion is really a hypothesis, 

which was explored in our research (see Chapter III).   
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 An expanded version of the study by Evans et al. (2000) was conducted by Richardson 

(2001a) to examine the possibility of improving upon the ECMWF EPS through inclusion of 

multianalysis and/or multimodel techniques.  This study included 60 forecast cases (mostly cool 

season) and compared five different ensembles: 1) the 51-member ECMWF EPS, 2) the 27-

member UKMO ensemble that used the same ICs as the ECMWF EPS, 3) a 54-member 

combination of 1 & 2, using 27 members from each, 4) a 55-member multianalysis ensemble 

made by applying 11 ECMWF EPS perturbations each to analyses from 5 different centers, and 

5) a 51-member ensemble made by applying the ECMWF EPS perturbations to a “consensus 

analysis” (This is what we will call the centroid analysis). 

 Richardson also found that the multimodel ensemble beat the ECMWF EPS but added that a 

comparable improvement was realized by the multianalysis ensemble.  What helped him reach 

this conclusion was the removal of bias from the model output.  Model bias can be a significant 

part of the forecast error and should be removed before considering the ensemble of forecasts, but 

curiously it is regularly ignored in most EF studies and applications.  Richardson showed that 

bias removal improved the skill of the EF mean and the probability scores of his EFs and also 

allowed for a more equitable comparison of ensemble systems that employ different models.  

This key idea was adopted and explored in our research. 

 The most extensive study to date concerning the benefits of a MMMA in the medium range 

was accomplished by Mylne et al. (2002).  Using 75 cool season and 85 warm season cases, they 

followed the basic method of Evans et al. (2000), but their MMMA consisted of 54 members (27 

members from the ECMWF EPS and 27 UKMO model runs), which could be directly compared 

to the full ECMWF EPS.  Their conclusion was that the MMMA improved upon the skill of the 

ECMWF EPS by about 10%.  (This is yet another example of the deficient representation of 

model error by stochastic physics in the ECMWF EPS.)  
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 Mylne reasoned that “…the benefits of whichever is the better system at a particular time and 

place may be obtained all the time through better probabilities.”  In other words, one model may 

be superior overall but the relative skill among the models shifts over time and space.  Only a 

member that is consistently inferior can add no value to the ensemble system.  The notion of 

using unequally skilled members appears to go against the conventional wisdom of EF that 

members have to be equally likely to be considered random samples from the forecast PDF.  In 

our research, we sought to resolve this matter.   

 To conclude, this literature review presented the source of many of the ideas and methods 

that we applied in our research.  One important issue not addressed in the EF literature to date is 

the theoretical differences and relative merit of the perturbed-model vs. the multimodel approach 

for representing model uncertainty.  This is another major question we addressed in our research. 

4. Sufficient Ensemble Size 

 The requirement of sufficient ensemble size is much more straightforward compared to 

accounting for analysis and model error, but it is no less critical.  Since more members makes for 

a better EF, one would like to run an EF system with many, many members.  Unfortunately, 

current computer capabilities limit the size of an operational EF to well below what is required 

for thorough sampling.  In our research, the number of members was also constrained by 

choosing to use independent analyses as ensemble ICs, of which there is a limited supply. 

 It is very important to understand the impact that ensemble size has on EF performance for 

two reasons:  1) the ensemble size must be considered in designing a system to be of value to 

specific applications, and 2) to properly analyze the skill of a particular EF methodology, the 

deficiencies caused by low sampling should not cloud the analysis.   

 Generally, EF performance decreases as ensemble size decreases (Buizza and Palmer, 1998; 

Richardson, 2001b), but the impact of this effect depends upon what aspect of an ensemble is 



39 

 

considered.  The skill of the EF mean is only minimally affected, a fact highlighted by Du et al. 

(1997), who confirmed that 90% of the benefit of the EF mean can be achieved by an 8-10 

member ensemble.  This is a good example of separating out the deficiencies caused by low 

sampling.  Recall that in the discussion on predictability error growth we had to make a 

correction to the MSE of the EF mean by a factor of n/(n+1) in order to arrive at the theoretical 

MSE value for n = ∞.  The smaller the sample, the lower the skill of the EF mean.  The reason for 

this is explained further below. 

 FP is severely affected by low sample size.  In fact, Richardson (2001b) went so far as to say 

“An ensemble of ten or so members should not be expected to provide reliable probability 

forecasts.”  We strongly disagree with this statement on the basis that studies using ensembles 

with 10 or fewer members have demonstrated skilled FP (Ziehmann, 2000; Ebert 2001).  

Additionally, Richardson (2001b) made an error in his research (discussed in Chapter II when we 

cover how to calculate FP from an EF).  Nevertheless, we do agree with Richardson’s conclusion 

that a large ensemble is required for highly skilled FP and that the result of low sampling is an 

overconfident EF.  (I.e., the PDF tails are less likely to be represented, so high FP values are 

normally overforecast and low FP values are normally underforecast.) 

 The basic problem with a small ensemble is that it can not produce a consistent PDF, often 

misrepresenting the distribution from which it was drawn.  Say we have an ideal ensemble that 

could produce a perfect analysis and forecast PDF when sampled infinitely so that the true state is 

always a random sample of the ensemble’s PDFs.  Using only a finite number of members from 

this same ensemble, we get an approximation to those perfect PDFs, thus harming our EF.  The 

approximate PDFs can still turn out to be excellent, but the smaller the ensemble the more 

infrequent this becomes and the more unreasonable the approximation can get.  This is a basic 

property of statistics which can not be avoided in ensemble forecasting. 
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 Since this problem arises from statistics, the theoretical implications can best be explored by 

examining the how the sampling distributions of a PDF’s moments (sample mean x and sample 

variance s2) change with increasing sample size.  A sampling distribution is produced by 

generating M ensemble realizations with a fixed ensemble size n, then plotting the M values of 

x and s2.  Apart from using a finite n, we assume an ideal ensemble so all EF members are drawn 

from the correct forecast PDF. 

 There are two relevant questions.  How much error in the moments can we expect from any 

one ensemble realization?  On a long-term average basis (i.e., after many forecast cases so there 

is a large sample) do x and s2 produce good estimates of their theoretical values?  For each 

simulated ensemble of n members we repeatedly generated n random samples from a forecast 

PDF (defined below) and compared the sample statistics (which will naturally have some error) to 

the population mean µ and population standard deviation σ  of the forecast PDF.  This sampling 

experiment mimicked an ideal ensemble’s effort at representing the forecast PDF.  While such an 

examination may seem oversimplified, it is actually very applicable to our complex problem of 

sampling the high degrees of freedom of the atmospheric PDF.  We can think of a forecast PDF 

as a multidimensional collection of many single-variable PDFs, one for each state variable at 

every grid point.  So the basic arguments presented here for a single-variable PDF should extend 

to the entire forecast PDF.   

 The sampling distribution of x follows a normal distribution, regardless of the governing 

PDF.  In the long-term, the expected value of x converges to µ according to the Central Limit 

Theorem (Devore, 1995).  

  µ=)(xE  

This is a very good thing for ensemble forecasting since it means that, over many forecast cases, 

the EF mean matches the PDF mean no matter what n is.  The amount of possible error in any one 

(11) 
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ensemble realization is determined by the variance of x , which is equal to the forecast PDF’s 

variance divided by the ensemble size.  

 
n

xV
2

)(
σ=   

or, equivalently, the standard error is nσ .  So as stated previously, the error in the EF mean 

decreases with increasing n. 

 The sampling distribution of s2 follows a χ2 distribution.  In the long-term average, the 

expected value of the sample variance converges to the true variance. 

  E(s 
2) = σ 

2  

This is another very desirable fact for EF since it means that, regardless of n, the EF spread 

matches the forecast PDF’s variance in the big picture.  The variance of s2 is not as 

straightforward, involving many higher order moments.  For our purposes here, we simply 

calculated the variance of s2 empirically for our assumed PDF, thus determining the amount of 

possible error in s2 for any one ensemble realization. 

 The governing forecast PDF was defined as the standard normal, N(0,1), to make the results 

generic and normalized about σ = σ 2 = 1.  The top graph in Figure 8 shows sampling 

distributions of x for n = 8 and successive doublings (n = 8, 16, …1024).  The distributions are 

all centered about the population mean (µ = 0) as in Equation (11), but we are more interested in 

the possible error for any one case.  Larger errors are of course more likely for distributions with 

greater variance, corresponding to the smaller sample sizes as described by Equation (12).  

Dividing the standard error by σ  gives the normalized standard error ( NSEx ) of n1 , plotted as 

the solid curve in Figure 9.  The typical value of the erred mean ( typicalx ) for any PDF is then 

found by: 

(12) 

(13) 
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  SEtruetypical xx ±= µ   

where ( ) trueNSESE xx σ=  is the magnitude of the standard error in the mean and σ 
true

 is the forecast 

PDF’s standard deviation. 

 The bottom graph in Figure 8 shows sampling distributions of s2.  The distributions are all 

centered about the true variance (σ2
 = 1) as in Equation (13).  Notice that for large values of n, the 

χ2 distribution approaches a Gaussian distribution but for low n there is a wide, heavily skewed 

distribution.  Points on the dashed curve in Figure 9 were found empirically using 5000 sample 

draws from N(0,1) with a fixed n to produce a χ2 distribution from which variance of s2 was then 

calculated.  The results are automatically normalized to σ2
 = 1 so the typical value of the erred 

variance ( 2
typicals ) for any normal PDF is found by:  

  222 σ SEtruetypical ss ±=   

where ( ) 222 σ trueNSESE ss =  is the magnitude of the standard error in the variance, 2
NSEs is the 

normalized standard error in the variance and 2σ true
 is the forecast PDF’s variance. 

 The implications of undersampling to ensemble forecast are now clear.  For small n, the 

typical error in the mean is a significant portion of the forecast PDF’s standard deviation, causing 

a notable shift in the estimated PDF.  The typical error in the variance for small n is an even 

larger portion of the correct variance, causing a prominent squeezing or stretching in the 

estimated PDF.  A larger ensemble has narrower sampling distributions and an improved ability 

to consistently reproduce the PDF from which the members are drawn, thus improving ensemble 

skill.  It appears that the most significant improvements should be expected as the number of 

members is increased into the 50 to 100 range since the standard errors decay exponentially.  

Beyond that, improvement becomes minimal as more members are added. 

 (14) 

 (15) 
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 So even with a well designed EF system, undersampling alone can result in a poor estimation 

of predictability error growth.  It is therefore quite encouraging that the rather small, experimental 

SREF systems to date displayed some value and skill (Du et al., 1997; Stensrud et al., 1999; 

Wandishin et al., 2001; Grimit and Mass, 2002).  By expanding upon these prototype SREF 

systems with improvements in ICs, model error representation, and larger ensemble size, we 

believe that a valuable SREF system is possible.  In the next chapter, we will discuss our design 

and implementation of such a system.  We will also revisit this simplified sampling experiment in 

more depth to examine the likely impact of ensemble size to our SREF systems.  
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Figure 1.  Example analysis, forecast, and climate PDFs for MSLP.  (a) Histogram of the long-
term observations.  (b) Hypothetical analysis and forecast PDFs.  The analysis PDF has an 
arbitrary µ = 1004 mb and observed average σ  = 1.0 mb.  The forecast PDF has an arbitrary         
µ = 999 mb an observed average σ  = 2.5 mb for a 48-h forecast.  The climate PDF is taken from 
(a) and has µ = 1011.37 mb and σ  = 10.33 mb.  
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Figure 2.  Simplified depiction of EF.  The histograms represent a large (n = 500) ensemble’s 
estimation of the analysis PDF (solid curve at initial state) and forecast PDFs (solid curve at 
forecast states).  The PDFs show possible states of the atmosphere, or simply the possible values 
of some parameter at a single point, such as surface temperature.  (a) A well-calibrated ensemble 
which correctly estimates the PDF. (b) An inferior ensemble that incorrectly estimates the PDFs 
with a distribution (dashed curve) having a mean shifted to the right and too low a spread.  The 
arrow is the event threshold, so the shaded region is the probability of exceeding that threshold.



45 

 

V
ar

ia
nc

e

V
ar

ia
nc

e 
(5

00
m

b 
he

ig
ht

, g
pm

2 
×1

03 )

Forecast Lead Time

(a)

Forecast Lead Time (days)

(b)

Climatic Variance

CONTROL Erro
r

DIFFERENCES

ENSEMBLE MEAN Error

DIFFERENCES

ENSEMBLE MEAN Error

EF Value Period

EF Value Period

CONTROL Erro
r

Limit of deterministic 
predictability

Limit of stochastic   
predictability

c

c

σσσσc
2

2σσσσc
2

V
ar

ia
nc

e

V
ar

ia
nc

e 
(5

00
m

b 
he

ig
ht

, g
pm

2 
×1

03 )

Forecast Lead Time

(a)

Forecast Lead Time (days)

(b)

Climatic Variance

CONTROL Erro
r

DIFFERENCES

ENSEMBLE MEAN Error

DIFFERENCES

ENSEMBLE MEAN Error

EF Value Period

EF Value Period

CONTROL Erro
r

Limit of deterministic 
predictability

Limit of stochastic   
predictability

c

c

σσσσc
2

2σσσσc
2

 
Figure 3.  Error variance diagram examples (Baumhefner, 2000).  (a) Illustration of the 
theoretical variances for a large sample of control forecast errors, ensemble mean forecast errors, 
and the ensemble differences as a function of forecast lead time. (b) Results for 45 ensemble 
forecasts of the 500 mb geopotential height field by the NCAR CCM3-T63 model, where 
forecasts were verified at one-day intervals over the region 130−70°W, 25−70°N.
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Figure 4.  Dispersion diagram for a hypothetical 48-h forecasts of some variable.  The dashed line 
shows the initial ensemble spread defined by spread among the set of ICs.  The thick solid line 
shows the spread of an ensemble using those ICs and no model variations.  The thin solid line is 
the ensemble spread for an ensemble using the same ICs and a unique model for each member.  
The dotted line is the MSE of the EF mean. 
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Figure 6.  Tree diagram for an ensemble with 4 initial conditions (A, B, C, and D) and 3 model 
perturbations (I, II, and III) having 2 choices each.  Provided that the model perturbations are 
uncorrelated and equally skillful, each of the 32 ensemble members yields an equally likely 
forecast. 
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Figure 7.  Impact of including model perturbations in a MREF.  These plots were made from the 
data in Table 4 of Houtekamer (1996), which gives domain averaged ensemble standard deviation 
of 500 mb geopotential height (GPH) for a single EF case study.  The upper plot is an empirical 
realization of Figure 4 but without the MSE of the EF mean and over much longer lead times.  
The lower plot shows how much model uncertainty may contribute to the dispersion. 
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Figure 8.  Sampling distributions of the sample mean and sample variance of an N(0,1) PDF.  
Each curve is for a different sample size n, labeled at or adjacent to its peak.  
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Figure 9.  Standard errors of the sampling distributions for increasing sample size.  The solid 
curve is the standard error of the sample mean as a fraction of the true σ.  The dashed curve is the 
standard error of the sample variance as a fraction of the true σ2.  The standard errors from the 
curves for specific n values in Figure 8 are plotted as dots for the sample mean, and squares for 
the sample variance.  The inset diagram is a zoom in of the region where increasing ensemble size 
yields the most benefit. 
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Table 1.  Abridged list of three categorical sources of model error. 

Model Error Category Sources 

Physics Parameterizations - radiative transfer 
   - horizontal diffusion 
   - precipitation (droplet nucleation, growth, fallout, etc.) 
   - boundary layer behavior 
 

Surface Boundary Parameters - albedo 
   - roughness length 
   - ground temperature 
   - moisture availability 
   - sea surface temperature 
   - terrain height 
 

Numerical Processing - finite difference scheme truncation error 
   - precision of all variables and parameters 
   - internal precision of computer processor 
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II.   Methodology 

 In this chapter, we discuss the methodology applied in this SREF research.  To test our 

hypotheses and assess the value of SREF, we designed a SREF test bed consisting of four distinct 

but related SREF systems (Table 2).  The largest SREF system, Analysis-Centroid Mirroring 

Ensemble (ACME), was designed to improve SREF by using additional ICs.  Our Poor Man’s 

Ensemble (PME) is a collection of large-scale models run at different operational forecast centers.  

ACMEcore is our benchmark mesoscale SREF system that uses the PME’s initial conditions (ICs) 

and lateral boundary conditions (LBCs), and a single version of MM5 for each member.  

ACMEcore+ uses the same ICs/LBCs as ACMEcore, but each member uses a different (perturbed) 

version of MM5.  These four systems have different strengths and weaknesses, and their 

intercomparison yields answers to the questions raised in Chapter I.  The methods we employed 

in these systems for representing analysis and model uncertainty may be suboptimal but are 

functional enough to achieve our goals.  Recall that the goal is to research fundamental aspects of 

SREF for the benefit of future systems and to design an effective SREF system with today’s 

capabilities. 

 We are most interested in the cool season (Oct – Apr), when the Northern Hemisphere 

midlatitudes are prone to more rapidly changing synoptic conditions and thus when a SREF is 

likely to be of greater value.  Additionally, SREF research to date has primarily focused on warm 

season data in which model uncertainty may play a greater role since weak synoptic forcing 

inhibits predictability error growth from analysis errors.  In studying cool season data, we may 

gain more understanding of impacts to SREF from both analysis and model uncertainty.  The 

2001–2002 cool season was a test and development period for the ACME systems and is too 

incomplete for useful analysis.  The probabilistic nature of EF requires a large number of cases to 

achieve statistical significance of results and reliable conclusions.  During the 2002–2003 cool 
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season from 31Oct 2002 to 28 Mar 2003, we archived 129 forecast cases with complete data in all 

four SREF systems (Figure 10).  This was a substantial accomplishment considering the 

complexity of the processing and extreme amount of data. 

 The common grid for the four SREF systems is a 36-km resolution domain depicted in Figure 

11a.  Imported model data of the PME was fit to the 36-km grid using bilinear interpolation 

programmed in the MM5 preprocessing code.  ACME, ACMEcore, and ACMEcore+ ran on the 36-

km outer and 12-km inner MM5 domains (Figure 11b) using 32 sigma levels (31 layers).  

Forecasts from all configurations were initialized daily at 00Z and run through 48 h.  The PME 

data was downloaded twice daily at 00Z and 12Z and archived at 6-h forecast intervals over the 

48-h valid period (i.e., data at forecast hour 0, 6, 12,…, 48).  All ACME model runs were 

archived at 3-h intervals.  Archived variables include winds at 10 m, maximum 3-h 10-m wind 

speed, moisture at 2 m, temperature at 2 m, maximum and minimum 3-h temperature, 3-h 

cumulative precipitation, and winds, temperature, moisture at the 850-, 700-, 500-, and 300-mb 

levels. 

A. Analysis Uncertainty 

 The mirroring approach used in ACME came out of a meeting with Dave Baumhefner in 

August of 2001.  Basically, ACME expands upon the SREF research of Grimit and Mass (2002) 

which showed that analyses from different operational centers provide practical ICs for a SREF.  

Their small, 5-member MM5 ensemble used multianalysis ICs (i.e., a set of five independent 

analyses) and successfully predicted forecast skill.   

 The reason why the multianalysis IC methodology works so well for a SREF over the Pacific 

NW is somewhat counterintuitive.  It is logical to think that the IC perturbations for a short-range, 

mesoscale ensemble should include an estimate of errors on all scales with perhaps special 

attention to the mesoscale.  Using global analyses as ICs provides little to no information 
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concerning mesoscale analysis errors since the differences among the analyses are predominantly 

on the synoptic scale.  So how can these ICs be useful for a SREF? 

 Errico and Baumhefner (1987) showed that in general there is no need for ensemble ICs to 

include small-scale perturbations since predictability error growth is dominated by the synoptic 

scale.  An ensemble containing ICs with only small-scale perturbations has extremely low 

dispersion while one with only large scale perturbations generates large dispersion on all scales.  

Using different analyses as ensemble ICs is therefore an excellent technique for SREF.  One 

possible drawback, which will be discussed further below, is that the analyses may be too highly 

correlated to be considered random samples (Ebert, 2001). 

 Another reason for the success of using various analyses as the ICs is that, in the cool season, 

many mesoscale weather phenomena are driven by the synoptic-scale flow, particularly in areas 

of complex terrain such as the Pacific Northwest (Mass, 2002).  For example, the position and 

intensity of the Puget Sound convergence zone is largely determined by the characteristics of the 

large-scale, low-level flow impinging on the Olympic Range.  As a result, errors in the synoptic-

scale flow cause the largest part of the forecast error within the Puget Sound.  This example 

further supports the conclusion that the ensemble ICs should represent the likely errors on the 

synoptic scale, not small-scale errors.  

 By expanding the Grimit and Mass (2002) SREF, ACME’s objective is to provide an 

improved sampling of analysis uncertainty while maintaining the basic approach of using 

different analyses for ICs.  From the original five analyses of Grimit and Mass (2002), we first 

dropped the NCEP MRF model analysis since it is too highly correlated with the aviation (avn) 

model analysis.  Next, we added four more analyses from different centers, bringing the total up 

to eight—collectively referred to as the core of the ACME ICs (Table 3).  Eight random samples 

are likely still too few to thoroughly represent the analysis uncertainty, leading to an ensemble 
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forecast that may frequently poorly portray truth.  We therefore attempted to use the ensemble 

core to generate more ICs, each with slightly different synoptic structures that are both realistic 

and within the bounds of uncertainty. 

 We began with the basic assumption that the core is a sufficiently diverse sampling to 

represent the general spread of the analysis PDF.  Consider the core to be a rather sparse cloud of 

ICs that contains valuable information on analysis error.  It seemed possible then to use the core 

to produce an estimate of the elusive analysis error vector,  Equation (9), which would provide 

information on both error structure (i.e., direction in phase space) and error magnitude.  

Additional independent ICs could be created by varying the magnitude (i.e., changing the length 

of the error vector) within some predetermined bounds while maintaining direction (synoptic-

scale structural information).  Such a process would fill in the IC cloud and perhaps expand it, 

sampling likely ICs not represented in the core.   

 Our method to find 0Ê
r

(the estimate of analysis error) begins with calculation of a centroid 

analysis, C
r

:  

  ∑
=

=
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which is the mean of the eight A
r

(core analysis) found by averaging all state variables, at all 

levels, over the entire model domain.  This is considered our best estimate of T
r

 (the true state) 

because it likely filters out the small-scale differences of the various A
r

’s that are likely to be in 

error (Richardson, 2001a).  The centroid is run as yet another ensemble member and should on 

average be the most skillful deterministic run over a large domain, although it may occasionally 

be beat by another ensemble member because of the undersample problem discussed below.  

(16) 
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Richardson (2001a) found that the centroid run from five independent analyses was slightly more 

skillful than the ECMWF out to seven days. 

 Since C
r

 is our best estimate of T
r

, we substituted C
r

 for T
r

 in  Equation (9) to get 

 ACÊ0

rrr
−=   

providing an estimate of 0E
r

.  This 0Ê
r

 may be considered to be a perturbation to C
r

 that 

produced A
r

.  Such a perturbation could vary in magnitude or even reverse direction with respect 

to C
r

 but still maintain structural error information, which is dominated by synoptic-scale errors. 

 Each of the eight analyses produces a different but somewhat correlated 0Ê
r

.  A new, valid IC 

( A
r
′ ) could conceivably be placed anywhere along the two-way vector ( CAor    AC

rrrr
−− ) by 

simply adding 0Ê
r

 times some perturbation factor ( ρ ) back onto the centroid: 

 0ECA
rrr

ρ+=′   

In theory then, there are an infinite number of new possible ICs for each of the eight analyses of 

the core. 

 However, testing revealed that most of the possible ρ values are not beneficial to our SREF.  

Finding the best ρ values to use turned out to be a trade-off between skill and dispersion.  When 

we used a small ρ  such as −1.0 < ρ < 1.0, we produced an A
r
′  that was too similar to either C

r
 

and/or the parent A
r

.  Thus no new information was gained running the forecast from A
r
′  and the 

ensemble had weak dispersion.  On the other hand, a larger ρ  lowered the skill (in a RMSE sense) 

in the resulting forecast and created unrealistically large dispersion. 

 A logical choice then was to use only ρ = 1.0 to produce forecasts with new, useful 

information and skill on a par with the forecasts from the core analyses.  A new IC is then the 

 (17) 

(18) 
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mirror of its parent analysis across the centroid.  From each analysis we generate one more IC, 

giving us a total ensemble of 17 members.  Combining Equations (17) and (18), the mirror ICs 

are generated by 

  ( )ACCA
rrrr

−+=′ ρ  

However, using ρ = 1.0 creates a problem in that the variance of the full ACME ICs is reduced 

compared to the core analyses, a statistical result of the small ensemble size.  The sample 

variance of the core is 
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where n is the ensemble size, xi is the value of member i, and x  is the sample mean, which is 

equivalent to the centroid.  The variance of the ACME ICs is 
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where the sum goes to 2n and not 2n+1 since the centroid contributes nothing to the sum.  Note 

that the sample mean (i.e., the centroid) is the same for both.  For large n, Equations (20) and (21) 

produce the same result, but for an n as small as eight the ACME ICs have a lower spread than 

the core analyses.  We corrected for this by using a ρ designed to adjust the ACME IC’s variance 

to match that of the core.  (Note:  Eric Grimit is to be credited for the following proof.) 

 To find the desired ρ, we begin by expanding Equation (21) as 

  ( ) ( )[ ]∑
=

+ −+−=
n

i
iniACME xxxx

n
s

1

222

2

1
 

where xn+i represents the mirrored values.  We can then apply Equation (19) to the xn+i term to get 

(19) 

(20) 

(21) 
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Equating this result to Equation (20) we can solve for the desired ρ : 
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For n = 8, ρ = 1.13, which is the perturbation factor we used for ACME. 

 One difficulty in analysis-centroid mirroring is in handling the state variable for moisture 

(relative humidity, RH ).  This problem exists because moisture varies over the interval bound by 

absolute dryness (RH = 0.0%) and saturation (RH = 100.0%).  Mirroring of a large RH difference 

toward either boundary can produce an unphysical RH value.  Other state variables such as 

pressure and temperature also have bounds, but the variable’s range within the troposphere is 

rather limited, nowhere close to their bounds.  (For example, MSLP has a physical boundary of 

0.0 mb but it typically varies between 970 mb and 1030 mb.  A mirrored value may end up being 

extreme but is always physical.) 

 The easiest way to deal with this problem would be to truncate the mirrored RH value at 0.0% 

and 100.0%.  This however produces a mirrored IC with unrealistic moisture patterns, having 

large areas of dryness or saturation, and large moisture gradients.  The alternative we employed is 

related to the Zeno’s Paradox—the idea that you can never reach a wall since you keep going ½ 

of the distance toward it.   

(22) 
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 For example, refer to Figure 12a to see how we arrive at a perturbation value at some 

hypothetical grid point where the centroid moisture (RHC) is 80%.  Given a moisture analysis 

value (RHA) of 60% (solid dot), the thick arrow shows the perturbation of RHA to RHC, which for 

this example is exactly half way toward complete saturation.  The mirrored moisture value is then 

half way again toward saturation, yielding an RHM of 90% (hollow dot).  Figure 12 shows how 

we extend this technique so that the fraction 

  
boundaryRH

RHRH

−
−

A

CA  

is then the fraction of the remaining distance from RHC to the boundary for arriving at RHM.  This 

makes the RHM asymptote toward the boundaries as the perturbation increases and asymptote 

toward RHM  =  RHC + (RHC − RHA) as (RHC − RHA) → 0, just like Equation (19).  Notice that we 

use 10% as the lower boundary instead of 0% as this is an MM5 preprocessing requirement. 

 While this technique may appear at first glance as somewhat arbitrary, it actually makes 

physical sense.  In fact, one could argue that the general mirroring technique does Zeno-type 

mirroring for all the state variables.  It is simply not apparent since the perturbations in the other 

variables are so small compared to the distance to their boundaries that the mirroring has 

effectively asymptoted to Equation (19). 

1. IC Strengths 

 There are many aspects of multianalysis and ACME ICs that should be most beneficial to our 

SREF systems.  The primary strength is that they likely produce a reasonable sampling of 

analysis uncertainty from day to day for several reasons. 

 To begin with, the eight analyses are produced with different models at different resolutions, 

as well as variations in observation data and data processing.  (Note that an interesting twist in 

this method is that there is actually an ingredient of model uncertainty used in defining the 
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analysis uncertainty.)  The processing diversity results in a significant spread among the eight 

analyses, which subjectively appear to be different enough to be considered random samples of 

the theoretical analysis PDF.  It is not clear whether the mirrored ICs may also be considered 

random samples, but they do contain unique, meaningful synoptic-scale differences because use 

of the centroid likely yields good estimates of 0E
r

. 

 The key quality of multianalysis ICs is that the differences among analyses are predominantly 

on the synoptic scale—precisely what is desired for a set of ICs since the biggest error in an 

analysis is in phase and/or amplitude of synoptic weather systems.  Furthermore, it is these large-

scale errors that experience the most growth during the forecast integration as extratropical 

cyclones develop and propagate (Errico et al., 2002).  A set of ensemble ICs should contain a 

spread of similar synoptic waves with slightly different phases and amplitudes, but within the 

bounds of analysis uncertainty.  Whether or not the ICs also include small-scale perturbations 

may be irrelevant since those errors grow insignificantly or decay. 

 Figure 13 is a simplified demonstration of how ACME further samples the spread of synoptic 

waves.  The solid lines, representing the core analyses of MSLP along a latitude line, give the 

general spread of synoptic waves which we then build on.   The centroid, our best guess analysis, 

is in the middle of the eight analyses, as should be expected.  Notice that the centroid does not get 

significantly biased in phase, amplitude, or frequency when compared to the averaged values of 

the individual analyses.  Simplified experiments showed that the frequency of the centroid is 

slightly lower (~1%) compared to the average frequency of the core analyses and that the 

amplitude of the centroid can be lower by up to a few percent. 

 A mirrored IC was simulated in Figure 13 by taking the difference between the centroid and 

one of the core analyses then projecting the reverse of that difference onto the centroid, as in 

Equation (17).  The new IC therefore contains synoptic-scale error information from      , resulting 0Ê
r
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in a different possible large-scale wave.  Notice that the new wave is unique but subjectively 

looks like it could be just another one of the core analyses.   

 Another strength of using multianalysis ICs is the low computational requirement in the 

preprocessing phase, which includes downloading data, fitting data to the MM5 grid, and 

establishing the LBCs of the limited area domain (Figure 11).  Each of the eight analyses can be 

downloaded and run through the MM5 preprocessing within a matter of minutes.  Their LBCs are 

set by the forecast grids from the original model run.  (E.g., the MM5 run using the avn analysis 

IC uses the avn’s original forecast grids to define the MM5 LBCs.)    

 The additional preprocessing for the mirrored ICs of ACME is fairly straightforward and also 

computationally affordable. The mirrored LBCs follow exactly the same perturbation method as 

the mirrored IC fields.  (E.g., for the MM5 run using the avn mirrored IC, the LBCs at the 6-h 

forecast point are the mirror of the 6-h avn LBCs across the 6-h centroid LBCs.)  Additionally, 

the mirrored ICs are dynamically balanced on the large scale so no special processing is required.  

At small scales there are likely significant imbalances in the mirrored ICs since the core analyses 

themselves are not balanced with respect to the scales represented within MM5.  MM5 handles 

this problem with strong diffusion, quickly damping out gravity waves.   

2. IC Deficiencies 

 There are several possible deficiencies in the basic design of multianalysis and ACME’s ICs.  

One problem is the low sample size.  Considering the extremely high number of dimensions of 

the atmosphere, the 17 ICs of ACME or the 8 ICs of ACMEcore or PME are likely too few to 

consistently produce a reasonable representation of the analysis PDF, regardless of how ideal 

these ensemble systems may or may not be.  A second problem is that the analyses may be too 

highly correlated and not independent, random samples of the analysis PDF (Ebert, 2001).  This 

second problem would result in limited spread among the analyses (i.e., an analysis PDF with low 
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variance).  Thirdly, the analyses (and resulting forecasts) are not equally likely, thus violating one 

of the basic tenets of EF.  The combination of these deficiencies could seriously undermine our 

quest for an effective SREF. 

 To explore how the undersampling problem impacts our n = 8 ensembles (PME, ACMEcore, 

and ACMEcore+), we temporarily ignored the second potential problem by assuming that the 

analyses are totally uncorrelated, random samples, and that differences between ICs truly 

represent analysis errors.  An infinite number of these analyses would provide a perfect and 

complete analysis PDF, from which truth would always be a random sample. 

 Back in section I.B.4, it was shown that sampling with only a few random draws makes it 

difficult to recreate the PDF from which samples are drawn.  Even when ensemble members are 

drawn from the same PDF as truth, as they should be, the EF estimate of the forecast PDF will 

often be in error and sometimes severely so.  Continuing the sampling experiment introduced in 

section I.B.4., eight samples of a random variable x with a set PDF were taken repeatedly.  For a 

more realistic simulation of EF, the random variable was chosen as 48-h 500 mb height at some  

grid point, drawn from a normally distributed forecast PDF with µ = 5400 gpm and σ  = 15 gpm, 

a typical forecast error.  Over many trials then, an ensemble of eight members attempted to 

represent that forecast PDF.  We then observed the behavior of the sample mean x and the sample 

variance s2 to understand how their errors may affect the skill of our ensembles.     

 In Figure 14 (data values provided in Table 5) three example attempts to represent the 

forecast PDF are shown to demonstrate that with only eight members, it is easy to misrepresent 

the forecast PDF.  Too high a spread (as depicted in Figure 14c) is not as significant a concern 

because, while it may be misleading for uncertainty, it still may reveal the different forecast 

possibilities and portray the true future state.  Of more concern is too low a spread (as depicted in 

Figure 14a) where uncertainty is underrepresented and potentially important parts of the PDF go 
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unsampled.  Equation (19) was applied to the data and displayed in the right hand side panels in 

Figure 14 to demonstrate how the generation of the mirrored ICs can ameliorate the 

undersampling problem by filling in the distribution and sampling a slightly wider region.  The 

mirrored ICs should provide realistic, independent samples for a more complete representation of 

the analysis PDF. 

  After repeating 5000 realizations such as those in Figure 14, we plotted Figure 15 and Figure 

16, which are repeats of the n = 8 curves from Figure 8, but include the experimental, 

histogrammed sampling distributions from this simulation.  It is evident that the high variance of 

x and s2, due to the small sample size, causes these sample statistics to frequently have 

significant error, producing a poor estimate of the forecast PDF.  For example, the spread in 

Figure 14a, which is noticeably too low, is not an extreme value of the sampling distribution of s2. 

 One question that arises is: which error causes more problems for the EF, incorrect location 

(ensemble mean) or incorrect spread (ensemble variance)?  We can address this from the point of 

view of the FP derived from an estimated forecast PDF.  Using the results of Figure 9 and 

Equations (14) and (15), the magnitude of the standard error in x is 5.3 gpm, and 120.1 gpm2 for 

s2.  Using these values, the erred distributions along with the correct PDF are plotted in Figure 

17a, and the PDF of their combined effect is plotted in Figure 17b. (Note that we chose the 

positive x deviation, giving x = 5405.3 gpm, and a negative s2 deviation for s2 = 104.9 gpm2.)  

For any given event threshold value of 500 mb height, each PDF yields a different value of FP 

(area under the curve to right or left of the threshold).  The exception is when the event threshold 

falls beyond about 3σ  when each PDF yields an FP of 0.0 or 1.0.  Figure 17c and d show FP for 

the full range of event thresholds where the probability of exceeding the event threshold is 

forecast.  Plotting the FP error (correct − erred) in Figure 17e reveals that the standard error in the 
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mean actually causes larger error in FP than that of the standard error in the variance, thus 

highlighting the importance of bias correction. 

 The summary plot in Figure 17f  shows how the combined effect of typical mean and spread 

errors impact an n = 8 ensemble’s FP.  Low sampling causes significant errors in the midrange FP 

when the event threshold falls within about 1.0 σ  of the governing PDF.  Note that this effect can 

not be calibrated out of the system because it is totally random.  It is something we must live with 

and consider when analyzing our results. 

 Let us now consider the second potential problem of correlation among the analyses.  In any 

ensemble system, the set of ICs will naturally be somewhat correlated since they are all 

attempting to describe the same instantaneous state of the atmosphere.  It may be that, for 

multianalysis ICs, the level of correlation is too high because the analyses are built using 

comparable observational data, making them share similar errors.   

 If we assume some high level of correlation among the eight samples in the above simulation, 

the ability to reasonably represent the PDF worsens.  A strong a correlation between the analyses 

would reduce the sample variance, limiting the ensemble’s ability to portray the true state.  Also, 

if the analyses share similar biases, the error in µ  would increase.  Ebert (2001) showed that the 

correlation of precipitation forecasts among the members of a PME is acceptably low.  This is 

encouraging but it is unclear if it holds true for the state variables of the analyses.  

 The third potential deficiency—lack of equal skill among the analyses—is like supposing that 

the analyses are drawn from separate PDFs in which a less skilled analysis is associated with a 

wider PDF.  In that case, the ensemble’s PDF may be meaningless.  However, since each of the 

different analyses’ PDFs may be a fair estimate of the true PDF, the ensemble’s PDF may contain 

a good representation of analysis uncertainty.  We will explore this issue further below when it is 

additionally complicated by the use of different models.  For now, we simply note that one source 
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of the inequality in the solutions of our SREF systems is the different levels of skill in the 

analyses. 

 As a final note in this section, there are some significant technical challenges for a 

multianalysis ensemble.  Besides the problems of undersampling, such a system is at the mercy of 

the analyses in other ways too.  There is a delay in downloading all the analyses, reducing the 

utility in running the SREF in real time.  The system is also apt to occasionally miss analysis data 

since so many data sources are relied upon.  Lastly, frequent updates in the techniques employed 

at the operational centers to produce the analyses affects our ability to design a calibration based 

on identifying and correcting for systematic errors (Eckel and Walters, 1998).  Alterations to the 

source model or objective analysis scheme invalidate a calibration based on the former analysis. 

B. Model Uncertainty 

 This section discusses the methodology of two techniques—perturbed-model and multi-

model—for representing model uncertainty that we employed in this research.  Since a single 

model EF system is generally found to be underdispersive, the goal of including model diversity 

in an EF is to increase dispersion.  This should produce a more accurate estimation of the forecast 

PDF and thus more highly skilled forecast probability (FP).  

 One issue common to both techniques is the lack of equal skill among the members.  We 

noted above that since there is inequality among the core analyses, we can expect single-model 

SREF systems to have solutions that are not equally likely.  As we attempt to account for model 

uncertainty by varying the model, we are likely to make the relative skill among the members 

even more disparate.  

 Mylne (2002) indicated that having unequal members is not problematic and may in fact be 

advantageous.  Expanding an EF by including inferior models can be beneficial to a SREF system 

because of the added diversity.  Evans (2000) points out that the key to the benefit of a MMMA 
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system is for the models to sample different, plausible regions in phase space, where the true state 

may lie.  Models having different strengths and weaknesses can be combined to make a system 

that outperforms an EF that uses only one model.  A model may be inferior overall but still add 

some skillful information to the ensemble if it occasionally performs better at some locations or 

with some phenomena. 

 Use of unequally skilled members is an apparent failure to meet one of the fundamental 

objectives of EF.  Members that are not equally likely can not be considered independent, random 

draws from the same forecast PDF.  In fact, when different models are involved, each member is 

really drawn from a different PDF since each model has its own attractor.  In a model with higher 

skill, error growth is slower, so its solution at some lead time (before error saturation) is drawn 

from a relatively narrow PDF.  Likewise, a lesser skilled model solution comes from a wider 

PDF.  The ensemble forecast PDF is actually an amalgamation of samples from many different 

PDFs.  It is precisely this mixing of information that results in accounting of model uncertainty 

by either the perturbed- or multi-model approach. 

1. Perturbed-Model Application 

 ACMEcore+ (see Table 2) applies the perturbed-model strategy by using the same ICs as 

ACMEcore and a uniquely perturbed version of MM5 for each of the eight members.  As 

previously discussed, representing model uncertainty with the perturbed-model strategy is 

potentially rewarding but difficult to apply.  The variety and number of model error sources make 

it nearly impossible to completely and accurately represent all model errors in a SREF.  The 

methodology employed in ACMEcore+ is meant to capture a significant portion of the model error 

in order to explore the benefits and potentially to realize an effective SREF.  

 The focus of ACMEcore+ was not to improve deterministic MM5 forecasts but rather to 

represent the uncertainty present in MM5.  We perturbed as much diversity as possible in order to 
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generate large and realistic dispersion, thus losing the ability to ascertain an optimally perturbed 

deterministic model configuration.  (I.e., we were not running as system simulation experiment, 

SSE.)  Furthermore, all perturbations were made in keeping with the original MM5 design.  That 

is, we did not use experimental perturbations designed to improve the model, but rather made 

perturbations that preserved the original design of the MM5 routines.   

 ACMEcore+ does have some similarities to a SSE since each model version is a fixed 

combination of model options and perturbed surface boundary parameters (SBPs).  Referring 

back to Figure 6, ACMEcore+ consists of a fixed set of branches where each branch begins at a 

different IC.  The difference from a true SSE is that each branch is designed to be as unique as 

possible.  A SSE tries to determine an optimal model set up by limiting model option 

combinations. 

 The major factors that were considered in designing the MM5 model variations (i.e., building 

the branches) were: 

1)  Sensitivity.  Since generating increased, useful dispersion was the main objective, the 

primary consideration in choosing model aspects to perturb was their sensitivity.  We 

sought to alter anything that made a large difference in the solution when perturbed within 

its suspected uncertainty. 

2) Uncertainty.  Another critical consideration was to perturb model aspects that contain 

large uncertainty.  A parameterization that shows large sensitivity but is well known or 

well represented may not be worthwhile to perturb.  This is likewise for a parameterization 

that has large uncertainty but little sensitivity. 

3) Feasibility.  The final consideration was that the model aspect should be fairly easy to 

alter within the MM5 model.  For example, the forecast is certainly sensitive to the 
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numerical methods within MM5, but altering them would involve a major rewrite of the 

MM5 code.  Such a perturbation is beyond the scope of this research. 

 Table 4 lists the eight branches chosen for ACMEcore+.  By Equation (10) there are actually 

1,228,800 possible branches to choose from.  We only used eight of these since our objective is 

not to span the space of model uncertainty but simply to represent model uncertainty in a SREF.  

One thing to note is that the focus of these model perturbations is on the solution at or near the 

surface.  This was not originally intended as part of the design but came about naturally as 

perturbations were selected because model parameterizations cause the greatest error at the 

surface and lower atmosphere (Stensrud et al., 2000). 

 Table 4 also shows the MM5 version shared by all members of ACME and ACMEcore, the   

single-model SREF systems.  Over the course of many previous studies at the University of 

Washington, these are the model options determined to perform the best over the Pacific 

Northwest and are therefore used in the high-resolution deterministic forecast system.  It is 

therefore expected that the MM5 versions of ACMEcore+ should exhibit less skill compared to the 

parallel component forecasts of ACMEcore.  But as discussed above, a member may add valuable 

information to an ensemble if it can occasionally perform better.  Figure 18 shows an example 

forecast verification comparison between the eta member of ACMEcore, and the plus03 member of 

ACMEcore+.  Plus03 was able to outperform the eta over significant regions, showing that it is a 

valuable EF member.  

 One last thing to note from Table 4 is that not only are the model variations held constant, but 

they also remain tied to a particular IC.  One could argue that this severely constrains the SREF 

system since applying more randomness among the variations from day to day would capture 

much more of the possible model error over many case days.  We opted to fix the system because 

of that fact that the members have unequal skill.  With a fixed system, we have a chance to 
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remove bias and possibly produce calibrated probabilities.  (A bonus is that it is also much easier 

to program.)  Each member of ACMEcore+ likely has unique biases, coming from both the IC and 

model version.  To produce more skillful probability forecasts, this bias should be removed.  By 

keeping the IC and model version for each ACMEcore+ member fixed, we can determine bias from 

a record of previous forecasts and observations. 

a) Model Options 

 An important question for the perturbed-model method concerns whether the differences 

between model options really represent model uncertainty.  For example, consider two values for 

cumulative precipitation produced by the Goddard and the Shultz precipitation schemes.  Does 

the difference in the two values reflect either scheme’s (or the model’s) inability to accurately 

represent the precipitation process?  Or are the two schemes both so oversimplified and 

parameterized that the difference between them is meaningless?  Unfortunately, these questions 

can not easily be answered.  For this research we made the large and potentially harmful 

assumption that differences between model options are reasonable approximations of model 

uncertainty.  The solution from different schemes can often be dramatic because they may not 

simply be using different values of some parameter but also a completely different methodology 

of modeling a physical phenomenon. 

 We were able to generate considerable diversity among MM5 solutions by choosing various 

combinations of model options for each ensemble member, which given our assumptions means 

that this diversity represented much of the likely model uncertainty.  In order to get the most 

variety, the MM5 versions shown in Table 4 were set up to be as different as possible, but some 

limitations were imposed by the design of the MM5 code.  For example, the land surface model 

(LSM) code is only compatible with the MRF and Eta PBL schemes. 
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 The Reisner II, Skip 4 cloud microphysics scheme is a modified version of the standard 

Reisner II scheme.  To speed up this extremely costly code, production terms are held constant 

for four time steps.  Garvert (2002) found that this does not change the solution appreciably but 

decreases total run time by about 1/3. 

b) Perturbations to Surface Boundary Parameters 

 Accounting for the uncertainty in a SBP is accomplished in a more idealized sense by 

designing random perturbations to mimic the suspected errors.  This is much different than 

applying different model options where we hope that differences represent model uncertainty.  

When perturbing a parameter directly, we have much more flexibility.  The reason all model 

aspects were not similarly handled is that these errors are often poorly understood and/or 

extremely difficult to directly perturb.  We generally have some idea of the errors in SBPs, and 

they are also fairly straightforward to perturb.  In this section we will describe how our 

perturbation methodology for sea surface temperature (SST), moisture availability, albedo, and 

roughness length is designed to provide a reasonable representation of model errors from these 

sources.  Note that even though we have more flexibility in designing SBP perturbations, we 

chose to keep them fixed once constructed since varying the SBP perturbations randomly from 

day to day would likely have reduced the effectiveness of the bias correction.   

 The four SBPs we chose to perturb were selected because they strongly satisfied the design 

considerations of sensitivity, uncertainty, and feasibility.  The model solution is quite sensitive to 

small changes in these SBPs, they have a significant amount of uncertainty in their value, and 

they are fairly easy to alter.  Their most significant direct impact is to the surface energy equation: 
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where Cg is the slab thermal capacity [J m-2 K-1], Tg is ground temperature  [K], Rn is the net 

radiation at the surface [W m-2], G is the heat flux into the substrate [W m-2], H is the sensible 

heat flux into the atmosphere [W m-2], Lv is the latent heat of evaporation (2.5 x 106  J kg-1), and E 

is the evaporation rate at the surface [kg m-2 s-1].  This equation is used to estimate the tendency 

in Tg, a major component in the behavior of the planetary boundary layer (PBL).  Indirectly then, 

our perturbations significantly affect phenomena such as lower atmosphere air temperature, 

stability, surface winds, cloud height, and precipitation.  Indeed, these are exactly the phenomena 

for which we wish our SREF to represent the full range of possible values.  Note that our model 

option variations are also directly or indirectly affecting Equation (23).  For example, Rn is altered 

in our variation of the radiation scheme. 

 The four SBPs affect Equation (23) and other model aspects in various, complex ways.  To 

make accurate perturbations for these SBPs, and any model aspect for that matter, it is desirable 

to thoroughly define their uncertainty.  To demonstrate how difficult such an investigation is, 

Appendix II includes a lengthy review of how MM5 models evaporation rate with the moisture 

availability SBP.  Even after that investigation, one is left with only a vague idea of the 

uncertainty involved with moisture availability.  Therefore, in this dissertation we avoid a lengthy 

discussion of exactly how the SBPs are modeled, their various direct and indirect effects, and 

implications of their uncertainties since such discussion is not productive to our goals. 

 The difficulty in quantifying model uncertainty for constructing model perturbations is a big 

problem we faced in designing ACMEcore+ and a general problem that EF will likely always have.   

The best we can do is to use completely different modeling approaches by selecting different 

model options, and make reasonable approximations for the uncertainties in SBPs.  In the end, if 

the ensemble with the increased dispersion from model diversity performs better, then we can 

conclude that the methodology was at least sound.   
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 Disregarding SST, one aspect of the uncertainty in the SBPs that we could quantify somewhat 

came from the manner in which the SBP values are employed.  A single value for each SBP for a 

certain model grid box is taken from a look-up table (Table 6) by having each model grid box 

assigned one of 24 land use values.   The SBP values in the MM5 land use table were designed to 

produce long-term average results that agree with climatology, which means the SBP values can 

be significantly in error on any particular forecast cycle (Bretherton, 2002).  The use of fixed 

values in a grid box further increases the uncertainty since the land use identification is simply 

determined by the dominant type of surface present.  For example, Figure 19 shows that the 36-

km grid boxes over the Puget Sound are all considered to be evergreen needleleaf forest, although 

most contain a significant amount of open water.  Therefore the model will likely underestimate 

the evaporation rate in these grid boxes by applying too low a value of moisture availability. 

 To account for the uncertainty in moisture availability, albedo, and roughness length, we 

designed a unique PDF for each SBP at each land use to represent the possible values of the 

SBPs.  This process involved a combination of empirical evidence, logic, conjecture, and a good 

deal of imagination.  All PDFs were based on the gamma PDF, Equation (24), because of its 

ability to take on a wide variety of shapes. 
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where x is the random variable (albedo, moisture availability, or roughness length), α is the shape 

variable, and β is the spread variable.  For additional flexibility, we added two more variables: 
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where ρ is a reversing variable and ζ  is a translation variable.  Thus we needed to define four 

adjustable variables (ρ, α, β, and ζ ) to define each unique PDF using Equation (25). 

 The only concrete evidence we had concerning the possible range of values for the SBPs was 

the two seasonal (summer vs. winter) values in the standard land use table and empirical data 

from tables 7-2 and 11-4 in Pielke (2002).  This gave us a general idea of how much uncertainty 

(i.e., variance) to build into each PDF.  Additional variance was included to account for the 

limitations in the gridded land use process.  The values of the 576 required gamma variables (4 

variables for 3 different SBPs with 24 land uses and 2 seasons each) of the PDFs are listed in 

Appendix II.  A few example PDFs are shown in Figure 20.  

 Once all the PDFs were defined, we produced eight new land use tables (listed in Appendix 

II), one for each member of ACMEcore+.  The process involved generation of a random deviate 

from each PDF as perturbed values of the SBPs.  Assuming our PDFs represent the uncertainty of 

the parameters, each resulting land use table is as valid as the original standard.  One limitation of 

this method is that in using a unique but fixed land use table for each ensemble member, we 

restricted the diversity of the perturbations to being uniform in space as well as in time.  That is, 

the same perturbed value for a particular parameter and land use is applied throughout the 

domain, rather than a different perturbation at every grid box with that land use.  This was done to 

satisfy our strategy of preserving the basic MM5 modeling structure where every grid box with 

the same land use uses the same parameter values.   

 SST is modeled much differently in MM5 compared to the other three SBPs, so our 

perturbation technique is different.  During the preprocessing phase, MM5 ingests a SST analysis 

field (for example see Figure 21) produced at 12Z daily by the Fleet Numerical Meteorology and 

Oceanography Center (FNMOC) with the Optimum Thermal Interpolation System (OTIS, 

described by Clancy and Sadler, 1992).  The 0.2º×0.2º data is fit to the MM5 grids with bilinear 
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interpolation and then held constant during MM5 forecast integration where it is used to 

determine the heat and moisture fluxes over water. 

 Given the significant influence that the eastern Pacific has on our forecast region, small SST 

errors over large areas may result in notable forecast errors.  Suppose SST was analyzed 1.0°C 

too low over a large region where an extratropical cyclone is developing before moving on shore.  

The model’s surface evaporation rate would be slightly too low, which, given time, would result 

in reduced moisture well up into the atmosphere.  This would lead to a cascade of further effects 

but, most notably, reduced precipitation when the storm makes landfall. 

 Holding SST constant during the 48-h forecast period introduces a small error.  In the open 

ocean, the diurnal variation of SST is on the average 0.2°C to 0.3°C (Clancy and Sadler, 1992).  

This can be much higher near land or if the water is suddenly well mixed.  The more significant 

error comes from the SST analysis cycle (a process similar to an atmospheric analysis cycle) 

where an objective analysis routine combines buoy and satellite observations with an OTIS model 

first guess.  Clancy and Sadler (1992) suggest that the typical SST RMSE is 0.5°C −1.0°C in our 

domain.  Furthermore, the errors have a high degree of spatial correlation with a length scale of 

roughly 150 km (Cummings, 2002). 

 We attempted to design SST perturbations to mimic the likely error field.  This was done by 

seeding a small field with random numbers, which were then smoothed and stretched to produce a 

field covering our domain and having coherent structure and a somewhat conservative average 

perturbation of 0.7°C.  As an example end result, Figure 22 shows the perturbation for member 

plus01 of ACMEcore+.  The inner domain’s perturbation was made to match up with the outer 

domain to maintain consistency.  Figure 21b is the resulting SST analysis when the perturbation 

is applied to the original SST analysis (Figure 21a).  See Appendix II for all eight SST 

perturbation fields.  
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2. Multimodel Application 

 Application of the multimodel strategy is quite straightforward compared to the perturbed-

model strategy.  The challenge of deciding how to represent the various sources of model 

uncertainty is accomplished by simply using many completely different models in the ensemble.  

Each model may contain unique physics packages, SBPs, numerics, resolution, boundary 

techniques, and vertical coordinate.  In general then, we should expect much more diversity 

among members of a MMMA ensemble versus those of a PMMA ensemble, and thus greater 

dispersion as well.   

 Whether or not the greater dispersion of the multimodel method is a more complete 

representation of uncertainty has to be determined.  Just as with PMMA there is still the question 

of whether the model differences between MMMA ensemble members are representative of 

model uncertainty.  When different models share similar limiting assumptions, the difference in 

their solutions would underestimate model error.  It is also possible that drastically different 

models produce such dissimilar results (perhaps with oppositely signed errors) that their 

differences could overestimate the error of either model.  In that case, a MMMA ensemble would 

be overdispersive, producing a forecast PDF with too much variance. 

 Our MMMA ensemble system is the PME, a group of independent, operational, large-scale 

models (Table 3).  With our focus on the mesocale, the original purpose of importing all these 

data was to provide the ICs and LBCs for the ACME systems. We soon realized however that 

there is value on the synoptic scale in considering these original forecasts as a separate, complete 

EF system.  While the PME suffers from a much lower resolution, it may benefit from the greater 

diversity generated by the differences in the eight models. 

 By comparing the PME with ACMEcore we can explore how the increased dispersion 

provided by the multimodel technique affects ensemble performance.  Furthermore, by 
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comparing the PME with ACMEcore+ we can assess the differences between the PMMA and 

MMMA methods in accounting for model uncertainty.  Model resolution becomes a serious issue 

when performing this later comparison.  Comparing the skill of a set of mesoscale models to that 

of a set of global models is sketchy at best.  We will attempt to account for this in our analysis by 

evaluating only large scale features, using the outer 36-km domain. 

C. Postprocessing and Analysis 

 In this section we will discuss how the SREF data were processed after completion of the 

MM5 runs.  We begin with a description of the data used as verification, which has large 

implications for post processing and analysis.  The two major postprocessing steps described here 

are bias removal and calculation of FP.   

1. Verification 

 A variety of statistical tools and metrics were used to evaluate and compare the skill of the 

four SREF systems, including standard deterministic error measurements such as root-mean-

square error (RMSE) plus statistical tools tailored specifically to measuring EF skill such as the 

verification rank histogram, reliability diagram, Brier skill score, and relative operating 

characteristic diagram (see Appendix I). 

 The most critical question in any type of model verification is what to choose as truth.  Since 

the true state of the atmosphere can never be known precisely, there exist many different 

approximations for it.  The characteristics of the approximation employed in verification must be 

considered since this can significantly influence the results. 

 The primary type of truth used as verification was model-based, gridded analysis.   The big 

advantage is that it provides complete coverage (both horizontally and vertically) over the model 

domain so we can generate a large sample of forecast/observation data pairs.  A large sample is 
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absolutely essential when assessing the quality of an EF system because of the probabilistic 

nature of EF.  The disadvantages of verifying with a gridded analysis are: 1) the value is 

dependent on the quality of the analysis (e.g., biases in the analysis from use of model first guess 

can lead to poor error estimation); and 2) the scales resolved by the analysis must be compatible 

with those of the forecast. 

 For the outer 36-km domain, we chose to use the centroid analysis as verification, rather than 

one of the eight PME analyses, as truth since the centroid analysis likely contains the least 

amount of error and bias.  The verification centroid analysis is slightly different from the from the 

centroid analysis used as an IC in ACME in that we omitted one of the analyses from the Taiwan 

Central Weather Bureau since it proved to contain much more error compared to the other 7 

analyses.  Also, because of its low resolution, the centroid analysis is not appropriate for verifying 

the mesoscale forecast information of our inner domain.  In fact, it does not even contain many 

variables of interest, such as temperature at 2-m (T2) and 10-m wind speed (WS10).  Therefore we 

chose to use the mesoscale analysis provided by the Rapid Update Cycle 20-km resolution 

modeling system (RUC20, Benjamin et al., 2002).  The RUC20 produces a new analysis every 

hour using a 3-Dimensional Variational Data Assimilation (3D-Var) scheme to combine a first 

guess from its 50-level mesoscale model with a large variety of observational assets. 

 To make the RUC20 analysis a fair verification of the 12-km MM5 data, the 12-km forecast 

data was smoothed out to the RUC20 grid using bilinear interpolation.  Figure 23 gives a sample 

result of this refitting process and a RUC20 analysis.  The grid alignment is different between the 

two grids so the 12-km data appears skewed within the 20-km domain.  Wind barbs are at every 

5th grid point on the 12-km plot (60 km apart) and every 3rd grid point on the 20-km plots (60 km 

apart).  The smoothing of the isopleths from the 12-km data to the 20-km data is most evident 

over land, but the solution remains essentially the same.  It is unclear why the RUC20 analysis 
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MSLP appears smoother compared to the 20-km MM5 forecast.  Additionally, the RUC20 

analysis has notably more variance in its T2 analysis, and subjectively appears to be a more 

appropriate representation of mesoscale features compared to the MM5 forecast. 

 To confirm some of our results, we also used raw instrument measurements, i.e., surface 

observations of precipitation, wind, and temperature.  Their advantages are: 1) they verify the 

sensible weather parameters that we are most interested in; and 2) they verify mesoscale 

information.  Their disadvantages are: 1) the observations must be fit to the model grid or vice 

versa;  2) instrument error is often a concern; and 3) it samples subgrid scale frequencies that the 

model can not produce.  (I.e., closely spaced observations compared to the lower resolution 

model data create an overestimation of the error.) 

2. Bias Correction 

 Richardson (2001a) showed that, for medium-range ensemble forecasting (MREF), correcting 

for bias improves skill.  This effect may be even greater for SREF since, as previously discussed, 

model deficiencies (including model bias) contribute a larger portion to the total forecast error in 

the short-range, before error growth from IC errors becomes very large.  It is therefore critical to 

correct for model bias in order to realize the full potential skill of a SREF.  Additionally, we 

found that it is difficult to analyze the results of SREF output without bias correction.  In fact, our 

conclusion of the importance of accounting for model uncertainty in a SREF became much 

stronger using bias-corrected results. 

 In designing a bias removal method, our goal was not to pursue completely unbiased 

forecasts with some complex routine (e.g., multiple regression as used by Model Output 

Statistics) but simply to remove the bulk of the bias with an effective method and then to study 

the effects on ensemble performance.  Scatter plots (Figure 24) of forecasts vs. observations 

reveal that the bias is predominantly linear and easily identifiable at a given model grid point.  A 
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fairly simple method of using a mean bias correction is therefore appropriate.  We also found that 

the bias is highly dependent on location, forecast lead time, flow regime, and ensemble member 

(i.e., model), which somewhat complicated our simple method. 

 Using the complete dataset, Figure 24 shows how the MSLP, 48-h forecast bias (defined as 

forecast/observation) varies for different models at the same grid point.  The ngps and gasp 

forecasts have completely opposite biases while the ukmo forecasts (at this grid point) are nearly 

unbiased.  Notice however that when the ukmo ICs and LBCs are used in MM5 for ACMEcore, the 

forecasts then exhibit bias (of MM5).  Even though all members of ACMEcore use the same 

model, they still have different biases.  In a mesoscale model, there is evidently a component of 

bias from both model and from the ICs and LBCs. 

 Figure 25 shows how MSLP forecast bias varies over space and lead time for a given 

member.  One glaring fact is that the bias behaves very differently over land and ocean.  The high 

bias over the ocean (especially the northern Pacific) is likely due to underforecasting the intensity 

of cyclones.  Over land, there is a predominantly low bias, which could be due to incorrect 

heating in the boundary layer and/or problems with the reduction of pressure to sea level over 

high terrain.  It is very evident that the biases are significant and highly dependent upon location 

and forecast lead time. 

 For a given parameter, we defined bias by  
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where N is the number of forecast cases in the training data,  fi,j,t is the forecast at grid point i, j 

and lead time t, and oi,j is the verifying observation.  This bias was then applied to a new forecast 

(not in the training data) to create a corrected forecast by 
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 In general a large amount of training data (i.e., long training period) is desirable to insure a 

sound statistical sampling of the bias.  However, we found that a long training period (e.g., the 

last 60 forecast cases) produced rather small improvements.  This is likely due to a slow but 

steady shifting of the bias due to changes in the flow regime.  For example, a model that typically 

underforecasts T2 at some location may do so with varying severity depending upon season or the 

prevailing synoptic situation, as evidenced in Figure 26.  At the other extreme, we found that 

using an very short training period (e.g., the last 5 forecast cases) produced highly variable results 

with a mix of spectacular improvements and large degradations.  This likely reflected regime 

shifts in which similar errors occur for several days in a row.  Since it is beyond our ability to 

predict such shifts, we compromised on a 2-week training period to smooth out the variability. 

 Since we wanted to demonstrate a method that could be applied in real time, we used a 

running bias removal where a unique bias correction was computed each 48-h forecast period, 

based on model performance over the previous 2 weeks.  An example training period for the 

forecast initialized at 00Z on 29 Jan 2003 is shown in Figure 10.  Where there are missing case 

days, the training period is extended to always include 14 forecast/observation data pairs.  The 

bias-corrected dataset, a subset of the full dataset, begins on 25 Nov 2002 and consists of 112 

total forecast cases (Figure 10). 

 This bias removal technique worked quite well for MSLP and T2, but not very well for WS10 

for two reasons.  One problem is that while a multiplicative bias is appropriate since WS10 bias 

appears to increase with wind speed (Figure 27a), unrealistic bias values can result for very small 

WS10 values.  Secondly, unlike MSLP and T2, the variance of WS10 errors increases with wind 

(27) 
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speed and also becomes very large toward the 48-h lead time.  Of most concern is that the errors 

can vary widely from case to case, often producing an inappropriate bias.   

 Figure 27b shows that applying the above bias removal technique can result in a severe 

overcorrection.  This effect is greatly relieved by simply removing any instance of forecast or 

observed WS10 below 1.0 m/s, thus avoiding unrealistic bias values (Figure 27c).  However, there 

are still an unacceptably large number of notable underforecasts, which is a larger concern for 

operational forecasting than overforecasting.  Raising the cutoff further reduces this problem, but 

a problem of undersampling then arises.  With a higher cutoff, the 14-day training period often 

contains only a few samples, making it very unreliable.  We therefore chose to keep the cutoff at 

1.0 m/s and reduce the resulting multiplicative bias from Equation (26) by 50%.  In other words, 

once the bias is identified, the forecast is given an adjustment in the right direction but lessened to 

avoid the problem of overcorrection.  We expect a slight overforecast bias to remain, but that is a 

better option than having a large number of underforecasts.  It is the large variability of the WS10 

errors that makes the reduced bias-correction necessary. 

 Figure 28 through Figure 34 show the results of our bias-correction method for all SREF 

systems and forecast parameters of interest.  The RMSE and bias (forecast – analysis) were 

averaged over all grid points of the bias-corrected dataset.  The results for the ensemble mean 

forecast are included for each SREF system since removing its bias is what we are really trying to 

do in this process.  The goal is to produce more highly skilled FP by forcing the forecast PDF to 

be centered about the verification in the long-term average. 

 As one might expect, a larger improvement was realized where there was a larger bias.  This 

is most evident in the MSLP results where the PME members are on the low extreme with small 

average biases and percent improvements, and the ACMEcore+ members are on the other extreme.  

The lower bias of the PME members is likely due to the lower resolution and better tuning of 
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these large-scale models.  A mesoscale model may produce more bias as it attempts to represent 

smaller scale phenomena with smaller grid spacing and more complex parameterizations. 

 The reason that ACMEcore+ generally has larger biases and RMSE values compared to that of 

ACMEcore is because many of the model options selected are inferior to the standard MM5 

version (Table 4).  Notice that this inferiority is mostly reflected in biased error since the 

differences between parallel members of the two systems before bias correction are dramatic but 

negligible after bias correction.  We concluded, by comparing the results of ACMEcore avn and 

ACMEcore+ plus01, that this effect is due to the model option variations and not from bias 

introduced through our SBP perturbations.  These members have nearly identical model options 

and the same average bias and RMSE, but they produce quite different solutions due to plus01’s 

perturbed SBPs.  This likely means that the SBP perturbations are performing precisely as 

desired, producing an equally likely solution by perturbing within uncertainty. 

 Notice that a model can have a shifting bias so that it displays little bias on average.  Consider 

ACMEcore avn MSLP (Figure 29) at 24 h, which shows negligible average bias before and after 

correction, but a 14% improvement in RMSE.  The explanation is that the forecasts contained 

opposing biases that mostly averaged out over space and time but were corrected for by our 

method.  

 There are several conclusions to be made by comparing MSLP bias and RMSE between the 

PME and ACMEcore (Figure 28 and Figure 29).  The MM5 forecast from the same ICs are 

generally worse than the parallel large-scale model, especially for the superior models such as 

avn and ukmo.  This may be partly due to the effect of MM5’s higher model resolution artificially 

increasing RMSE, but it is more likely due to the fact that the global models can more accurately 

predict the development of large-scale weather systems.  Such information is only weakly 

translated into the MM5 solution through LBC updates so synoptic waves within the MM5 
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domain can drift off considerably from the large-scale model’s solution.  Also note the similarity 

in bias and relative RMSE of the parallel component members of the PME, ACMEcore, and 

ACMEcore+ (Figure 28 − Figure 30).  This likely indicates that, for a predominantly synoptic-scale 

parameter such as MSLP, the primary source of forecast error is the ICs since applying the same 

ICs to different models makes only small differences in the error. 

 For T2 bias and RMSE of ACMEcore (Figure 31) there is almost no difference among the 

various members.  This indicates that for T2 , a primarily mesoscale parameter, forecast error is 

mostly influenced by the model and not the ICs since the error is virtually the same no matter 

what IC is applied.  This conclusion is reinforced in Figure 32 where the different models of 

ACMEcore+ do exhibit notable variations in bias and RMSE.  Lastly, the fact that there is very little 

growth in the error with forecast lead time is a third indication of the predominance of model 

error.  (This will be discussed further in the next chapter.)   

 An interesting result of the T2 bias correction is the disparity between the 12/36-h bias and the 

24/48-h bias.  Since all forecasts were made at 00Z (5 PM local time), the difference is for the late 

night bias vs the late afternoon bias.  Evidently, MM5 greatly underforecasts the late afternoon 

temperature from the daytime heating.  This is true for the standard MM5 version and even more 

pronounced for some members of ACMEcore+.  The late night T2 bias is much weaker and varies 

depending on MM5 version.  The strong late afternoon bias points to a serious deficiency in the 

radiation and PBL schemes.  

 The results of the WS10 bias correction (Figure 33 and Figure 34) are unimpressive compared 

to those of MSLP and T2.  The higher variability in WS10 errors makes any bias removal scheme 

less effective.  Furthermore, the effect of the 50% reduction in the multiplicative bias is also 

evident as much of the overforecast bias remains after correction.  All of our attempts to fully 

remove the bias resulted in degradations of RMSE (not shown).  



84 

 

 The variability of the WS10 bias and RMSE among the members is larger than with T2 but not 

as large as with MSLP.  This suggests that for WS10, the source of the error is a fairly even mix of 

model and IC.  This makes sense since surface winds are determined by the large-scale pressure 

gradient at the surface (which is mostly determined by the ICs) and by mesoscale features such as 

local terrain and heating (which are determined by model physics).  Examining the source (model 

vs. IC) is an important issue in this research and will be explored further in the next chapter. 

 Lastly, to confirm the value of this bias removal technique, we used observation-based 

verification over a one week period to evaluate both uncorrected and bias-corrected forecasts.  

This is an indirect way to determine the quality of the gridded analysis used in the bias correction.  

It is possible that our bias correction simply adjusted the forecasts toward a poor or biased 

representation of truth.  If the grid-based bias removal also improves the forecast with respect to 

station observations, we can be more confident in the quality of the gridded analysis.  The big 

advantage of a grid-based vs. an observation-based bias removal is that the grid-based provides a 

domain-wide improved forecast, rather than only at the limited areas covered by observations. 

 Figure 35 shows that for MSLP the grid-based bias removal does work rather well with 

respect to station observations.  Although the negation of bias and percent improvement are not as 

impressive as in Figure 29, they are still quite positive.  This result leads us to conclude that the 

centroid analysis is in good agreement with station observations.  One significant disparity 

between Figure 29 and Figure 35 is the much larger RMSE for the observation-based verification.  

This is most likely due to the concentration of station observations over land for Figure 35 (where 

MSLP is more variable), whereas Figure 29 was made using the entire 36-km domain. 

 The observation-based verification results for T2 are mixed.  Figure 36 shows that while we 

obtained excellent results for negating the bias at all lead times, we were only able to improve 

RMSE in the late afternoon times and actually degraded the forecast in the late night lead times.  
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The reason for the nighttime degradation is likely due to the higher variability of T2 errors, 

making it possible to correct a bias but difficult to improve RMSE.  Additionally, the RUC20 

analysis probably does not agree well with the station observations at night since the RUC20 

model may have serious deficiencies in modeling the nighttime boundary layer. 

3. Forecast Probability Calculation 

 Back in Chapter I.A, we introduced the idea that potentially the most valuable application of 

EF is the production of FP of some forecast event.   This is because it combines all the EF 

information into a single product, encapsulating the forecast uncertainty and providing a product 

useful in decision making.  In this section we will describe the FP calculation method that we 

employed.  To simplify the discussion somewhat, the equations and sample calculations will all 

be for the probability of the verification exceeding the event threshold. 

 There are many possible ways to calculate FP from an EF.  In Chapter I.A we described how 

one could use the appropriate area under a PDF that was directly fitted from the ensemble.  This 

method, revisited in Figure 37 for a hypothetical forecast PDF of WS10, would only be effective 

for a very large ensemble.  For an ideal ensemble of infinite size, the resulting FP = 77.1% for an 

event threshold of 20.0 kt represents the genuine probability of occurrence.  Note that if the 

ensemble is nonideal but infinite in size, this method does not guarantee skillful FP.  To achieve 

high resolution (i.e., sharp forecasts) and high reliability (FP ≈ ORF ), the EF system still has to 

meet the other demands of properly accounting for analysis and model uncertainty. 

 For practical purposes, a different method is required to obtain FP since it is not normally 

possible to reliably fit a PDF to an ensemble of finite size and to a distribution of unknown shape.  

Consider a simulated ensemble of WS10 forecasts at some grid point, created by drawing eight 

random, ordered samples from the true forecast PDF (thick curve in Figure 37): 
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  WS10 = {16.5,  21.1,  23.3,  25.3,  27.4,  34.4,  40.2,  47.8 kt } 

For demonstration purposes, we fit a continuous PDF (thin curve in Figure 37) to this data to 

show how low sampling alone creates an erred FP = 81.6%, but again, such a technique is not 

practical because of the difficulties in making a reliable fit. 

 The most common method (used in current, operational EF) to calculate FP is often called 

democratic voting (DV).  As the name implies, each ensemble member gets an equal vote on 

what the true state of the atmosphere may be.  Mathematically, the probability of the verification 

(V ) occurring above the event threshold (τ ) is simply found by 

   ( ) )if0,
1

if1(
1

τττ ≤>∑
=

=> ii xx
n

VP
n

i

 

where xi is the value of the ith ensemble member.  Using the same τ  as above, FP = 7/8 = 87.5% 

since seven of the forecasts were greater than 20.0 kt.  The large error of 10.4% compared to the 

genuine FP of 77.1% is partly due to the small sampling but is also a result of a systematic 

problem with DV. 

 DV effectively bins FP into n+1 possible values (the topmost values in Figure 38).  There is 

nothing necessarily wrong with binning FP, but for DV the resulting bin values are fixed in a 

biased way with respect to the ordered EF values.  The gaps (ranges of values between two 

members) among the ordered EF members should be considered to be an evenly spread 

continuum of probability since on average the members represent evenly divided quantiles. The 

horizontal arrows in Figure 38 show how possible positions of an event threshold get binned.  DV 

effectively pushes FP toward the extreme values, so that high FP is normally overforecast and 

low FP is normally underforecast.  This exacerbates the problem of low sampling as we will 

demonstrate below. 

(28) 



87 

 

 An alternative method which we adapted from Hamill and Colucci (1997) is called uniform 

ranks (UR).   In the lower part of Figure 38, UR begins by uniformly breaking up the total 

probability into n+1 ranks that match the possible rank positions of the event threshold when 

pooled with the ordered EF members.  Similar to DV, the probability from the ranks that exceed 

the event threshold is summed.  Then, rather than simply add on half the probability from the 

rank where the thresholds occurs, we add on a fraction of the probability proportional to the 

distance from τ  to the surrounding members’ values.  For a τ  with a ranking of i (when 1 < i ≤ n) 

among the ensemble members, the probability of the verification occurring between τ and the ith 

member is: 
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This procedure assumes that the random variable is uniformly distributed between ensemble 

members.  In our example, the result is FP = 7/9 + [ (21.1 – 20.0) / (21.1 – 16.5) ] * 1/9 = 80.4%, 

a value much closer to the genuine FP of 77.1%  compared to the DV FP of 87.5%.  Such an 

improvement is not consistently the case for the two methods, but UR is a superior method on the 

whole. 

 The biggest improvement of UR over DV is for extreme FP values, i.e., when τ  is ranked 1 

or n+1 when pooled with the ensemble members.  Continuing with the same example but now 

with a τ  = 50.0 kt, DV would give FP = 0.0% since all the forecasts are below the threshold.  

However, since the discrete members of the EF are actually representing a PDF and τ  is so close 

the largest member, there is still a nonnegligible chance that the verification will exceed τ.   

 In UR, we calculate the fraction of probability from the outside ranks with a separate 

procedure (Figure 39a).  As with the interior ranks, the probability is found by taking a portion of 

probability in the outside rank based on the numerical distance between the highest member and 

(29) 
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τ.  However, using a linear proportion is inappropriate since we are dealing with the tails of the 

PDF.  Additionally, there is no (n+1)th EF member with which to calculate a linear proportion.  

Therefore, the total probability of rank n+1 is considered to be the upper extreme end of the 

sample’s theoretical Gumbel cumulative density function (CDF) (Wilks, 1995):  

  





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
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π
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where x is the random variable, and β and ξ are the Gumbel parameters estimated using the 

sample standard deviation s and the sample mean x .  The Gumbel distribution was used because 

of its ability to characterize extreme events (Hamill and Colucci, 1997; Wilks, 1995).  The 

probability of the verification occurring above the event threshold is then: 
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where F(τ ) is the Gumbel CDF value at τ, F(xn) is the Gumbel CDF value at the value of the 

highest ranked ensemble member, xn.  After fitting our example EF to the Gumbel, we calculate 

FP = [ (1 – F(50.0)) / (1 – F(47.8)) ] (1/9) = 8.5%.  This is a low but significant chance of 

occurrence for which DV would assign an FP of 0.0%.  

 The opposite extreme of τ  occurring in rank 1 (i.e., τ  falls below the lowest ensemble 

member) is handled in a similar fashion by reversing the Gumbel CDF since it is the right tail that 

represents extreme events so well.  For random variables such as WS10 that are bound by 0.0 on 

the left, we mimic a fixed CDF with an exponential, thus assuring that probability drops to zero 

as required: 

 

(30) 

(31) 
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where x1 is the value of the lowest ranked ensemble member.  

 When the ensemble produces a poor estimate of the forecast PDF, UR can not provide a 

much better approximate FP.  In such cases, which of course occur more frequently for smaller n, 

the FP from both UR and DV suffers equally.  (The only way around that problem is to increase 

ensemble size since a poor sampling can not be identified a priori.)  Ironically though, UR is a 

more dramatic improvement over DV when n is small since DV suffers more for smaller n.  

Therefore, the real improvement of UR over DV is for small n on cases that are reasonable 

approximations to the forecast PDF.  On average, over a large number of realizations, UR 

produces superior FP since it either performs the same or better than DV.   

 Richardson (2001b) showed that the result of undersampling on FP is an overconfident EF.  

Since the tails of the PDF are less likely to be represented, high FP values are normally 

overforecast and low FP values are normally underforecast.  This effect is revealed in a reliability 

diagram by a curve with a clockwise tilt.  What Richardson (2001b) failed to realize is that DV, 

which he used to calculate FP, exacerbates the problem with its biasing of FP toward the extreme 

values. 

 To demonstrate this fact, we performed a sampling experiment similar to that of Richardson 

(2001b) where a perfect ensemble was simulated by taking an observation and n random draws 

from the same WS10 PDF.  The event threshold applied was again τ  = 20.0 kt and the PDFs were 

similar to Figure 37 but allowed to vary from case to case to get a full range of FP.  FP was 

calculated by both DV and UR using a set of 106 simulated forecast cases.  Figure 40 shows that 

both methods result in an overconfident EF, but UR is a dramatic improvement over DV for small 

n.  As n increases, both methods approach perfect reliability and the improvement by UR 

(32) 
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diminishes.  This experiment also provides us a way to estimate the expected Brier Skill score 

(BSS) improvement by the ACME system (n = 17) over ACMEcore (n = 8).  Repeating the 

experiment with those ensemble sizes we found that there was an increase in BSS of ~0.03. 

 While the UR method produces a better estimate of FP, the result is just as uncalibrated as 

DV.  Both methods assume that the ensemble members are all equally likely and that there are no 

systematic errors.  Figure 39b shows how the UR method can be changed into the  

weighted ranks method to account for systematic errors (Eckel, 1998).  Instead of multiplying by 

1/n+1 in Equations (29), (31), and (38), we multiply by the historical probability of verification 

occurring in that rank.  This is provided by a verification rank histogram, a record of where the 

verification has occurred among the ordered EF members over many past cases.  By using rank 

probability based on past performance of the ensemble, systematic errors in the ensemble are 

compensated for.  In Figure 39b, the ensemble is evidently underdispersive so there is a greater 

chance of verification occurrence in the last rank.  The fraction of the rank’s probability is 

calculated as in UR, but the final value of FP is now higher, reflecting the greater odds that the 

event will occur given this particular EF. 

 The weighted ranks method produces a more reliable and calibrated FP (Hamill and Colucci, 

1997; Eckel and Walters, 1998).  We did not, however, apply this technique because FP 

calibration is not a specific issue of this research.  We chose to be satisfied with the results of the 

UR method. 
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Figure 10.  The 129 forecast case days of the research dataset over the 2002-2003 cool season.   A 
48-h forecast cycle was initialized at 00Z on each date.  Darkly shaded dates contain at least one 
incomplete or missing member of one of the ensemble systems, so were dropped from the dataset.  
The lightly shaded 2-week period is an example training period that was used to compute a bias 
correction for the indicated example forecast period.  The bias-corrected dataset consists of 112 
cases, which are the complete cases beginning 25 Nov 2002. 

 

 

 

 

 

30°°°°N

40°°°°N

50°°°°N

60°°°°N

130°°°°W

150°°°°W

160°°°°W

140°°°°W 130°°°°W
125°°°°W

45°°°°N

50°°°°N

(a) (b)

30°°°°N

40°°°°N

50°°°°N

60°°°°N

130°°°°W

150°°°°W

160°°°°W

140°°°°W 130°°°°W
125°°°°W

45°°°°N

50°°°°N

(a) (b)

 
Figure 11.  Grid domains (Lambert conformal projections) of the SREF systems.  (a) 151×127, 
36-km resolution domain.  (b) 103×100, 12-km resolution domain. 
 



92 

 

0
5

10
15
20
25
30

35
40
45
50
55
60
65
70
75

80
85
90
95

100

0

5
10
15

20
25
30

35
40
45

50
55
60

65
70
75

80
85
90

95
100

0

5
10
15

20
25
30

35
40
45

50
55
60

65
70
75

80
85
90

95
100

(a) (b) (c)

R
el

at
iv

e 
H

um
id

it
y 

(%
)

 

Figure 12.  Display of the mirroring of RH for three different values of the centroid RH (thin solid 
line): (a) RHC = 80%, (b) RHC = 50%, and in (c) RHC = 20%.  The thick solid line gives all 
possible values of RHA (moisture analysis).  The dotted line is the resulting mirrored RH with 
truncation of bad values.  The dashed line is the Zeno-mirrored RH value. 
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Figure 13.  2-D demonstration of the mirroring technique.  The solid lines represent eight 
analyses of MSLP across a latitude line and the dotted line is the centroid.  The thick line is the 
analysis used to produce the example mirrored IC (dashed line). 
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Figure 14.  Simulated EF attempts to represent a hypothetical forecast PDF (solid curve).  The 
plots on the left are normalized histogram (class interval size = 5.0 gpm) of eight random samples 
and their fitted normal (dashed curve), representing ACMEcore.  The plots on the right represent 
an expansion of the ACMEcore plots into the full ACME (core, centroid, and the mirrors).  (a) A 
case with x  too big and s too small.  (b) A case of excellent reproduction of the PDF.  (c)  A case 
with x  too small and s too big.  
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Figure 15.  Sampling distribution of x using 5000 samples of size n = 8.  The histogram for the 
sampling distribution of x  matches up well with the sampling theory PDF (thick solid curve) 
since we have such a large number of samples.  The wider, thin curve shows the forecast PDF 
that the samples were drawn from (µ = 5400 gpm and σ  = 15 gpm). 

 

 

 

 

 

0 100 200 300 400 500 600 700 800 900 1000
0

0.002

0.004
σ2(a)

(c)

(b)

Sample Variance (gpm2)

Fr
eq

ue
nc

y

 
Figure 16.  Sampling distribution of s2 from 5000 samples of size n  =  8, similar to Figure 15 
except the sampling theory PDF (thick solid curve) is a χ2 distribution.  The average s2 is      
223.7 gpm 2 and the standard deviation is 130.6 gpm.  For reference, the variances of the three 
cases in Figure 14 are indicated along the distribution. 
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Figure 17.  Impact on forecast probability of the standard error in mean and variance of an 
idealized eight member ensemble. The thick solid curve is for the true (i.e., correct) forecast PDF. 
The thin solid curve is for the standard error in the mean.  The long-dashed curve is for standard 
error in the variance.  The short-dashed curve on the right hand side panels is for the combined 
effect of both errors.  Panels (a) and (b) are the PDFs, panels (c) and (d) are the decumulative 
density functions, and  panels (e) and (f) resulting errors in FP vs. possible event threshold 
(standardized to σ  units by subtracting µ then dividing by σ ).
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Figure 18.  Mean absolute error (MAE) from a single 48-h MSLP forecast of the eta member of 
ACMEcore and the plus03 member of ACMEcore+.  (Note that both model runs began with the same 
IC.)  The eta solution has less error over most of the domain, but there are notable regions where 
plus03 performed better, such as over British Columbia. 
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Figure 19.  Section of the 36-km resolution grid domain showing MM5 land use number over 
western Washington.  Land use #7 is called “grassland”, #14 is called “evergreen needleleaf 
forest”, and #16 is called “water bodies”. 
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Figure 20.  Sample surface boundary parameter PDFs.  The solid curve is for summer and the 
dashed curve is for winter.  The peaks of the curves correspond to the parameter values in the 
standard MM5 land use table.  For a wider PDF there is more uncertainty in the value of the SBP.  
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OTIS SST Analysis

 

SST for Plus01 

 
Figure 21.  Example SST (in °C) fields from 8 Jan 2003.  (a) The unperturbed field used by all 
ACMEcore members.  (b) The perturbed field used by member plus01 of ACMEcore+, made by 
applying the perturbation shown in Figure 22 to (a). 

(a) 
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Figure 22.  Plot of the SST perturbations for member plus01’s outer domain and inner domain, 
which are made to match up.  Isopleths are positive (solid) and negative (dashed) perturbation 
values.  The apparently high gradient at the shoreline is an artifact of the plotting routine and not 
present in the actual perturbations.  
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Figure 23.  Sample ACMEcore avn 3-h forecast data taken from the 12-km MM5 grid (top plots) 
and fit to the 20-km RUC20 grid (middle plots), valid 3Z, 21 Dec 2002.  Left column plots are 
MSLP and WS10 and right column plots are T2.  The bottom plots are the RUC20 analysis data 
used to verify the middle plots.
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Figure 24.  Scatter plots of 36-h forecast MSLP vs. centroid-analysis verification at point 111, 69 
in the 36-km domain, a grid point in eastern Washington.  
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(a)

(b)

 

Figure 25.  MSLP bias (multiplicative) for the avn member of ACMEcore at forecast lead time of 
(a) 24 h, and (b) 36 h. 
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Figure 26.  Scatter plots of 24-h forecast T2 vs. RUC20 verification at point 50,50 in the 20-km 
domain, a grid point in southern British Columbia.   The top plot includes all 129 case days and 
the two lower plots are for subset, 14-day periods, as indicated.  The open diamond in the two 
lower plots is the next, sequential forecast (after the 14-day period) showing that its likely bias is 
normally more closely related to that of the recent past cases. 
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Figure 27.  Scatter plots of 39-h forecast WS10 (in m/s) vs. RUC20 verification at a grid point in 
southern Puget Sound, WA, from member plus01 of ACMEcore+.  (a) The uncorrected forecasts 
and observations showing the increase in error and variability of error with increasing wind 
speed, but with an obvious overforecasting bias.  (b) Using the regular bias-correction method 
results in an overcorrection.  (c) Using the regular bias-correction with a cutoff of 1.0 m/s (fcst. 
and obs. < 1.0 m/s are ignored), greatly improves the correction, but there are still too many 
underforecasts.  (d) Reducing the multiplicative bias by 50% prevents the underforecasting 
problem.
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Figure 28.  Results of MSLP bias correction for PME averaged over all bias-corrected cases, 
using the outer, 36-km domain.  (a) and (b) show RMSE (clear histograms) and bias (shaded 
histograms) before and after bias correction, and the percent improvement (also shaded) in RMSE 
is given in (c).  The results for the EF mean of PME is also shown.
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Figure 29.  As in Figure 28 but for ACMEcore. 
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Figure 30.  As in Figure 28 but for ACMEcore+. 
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Figure 31.  As in Figure 28 but for ACMEcore T2 data from the inner, 12-km domain, fit to the 
RUC20 20-km analysis grid. 
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Figure 32.  As in Figure 28 but for ACMEcore+ T2 data from the inner, 12-km domain, fit to the 
RUC20 20-km analysis grid. 
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Figure 33.  As in Figure 28 but for ACMEcore WS10 data from the inner, 12-km domain, fit to the 
RUC20 20-km analysis grid. 
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Figure 34.  As in Figure 28 but for ACMEcore+ WS10 data from the inner, 12-km domain, fit to the 
RUC20 20-km analysis grid. 
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Figure 35.  Observation-based verification results of MSLP bias correction for ACMEcore 
averaged over a one week period, using about 600 station observations in the outer, 36-km 
domain.  The graphs are similar to the previous figures but note change in scale in (a) and (b) 
when comparing to Figure 29.  Observation-based verification of the EF mean was not available. 
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Figure 36.  As in Figure 35 but for T2 data from the inner, 12-km domain.  Note the downward-
shifted scale in (c) when comparing to similar figures. 
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Figure 37.  Example WS10 PDF at a model grid point.  The thick curve is the PDF of an ideal 
ensemble with infinite members.  The thin curve is a PDF fit to an ensemble of eight members 
(see text) drawn from the same ideal ensemble.  The arrow indicates the event threshold (WS10 > 
20 kt) so the genuine FP for the event is the solid area under the thick PDF to the right of the 
event threshold.  The hatched area is the 8-member ensemble’s estimated FP. 
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Figure 38.  Schematic calculation of FP by DV and UR for the example ensemble WS10 forecast 
and an event threshold of 20.0 kt.  A “gap” is the range of values between two ordered members.  
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Figure 39.  Schematic calculation of FP for an event threshold of 50.0 kt that occurs in the 
extreme right rank.  FP is the shaded area, calculated by (a) UR, and by (b) weighted ranks for a 
hypothetical VRH.  
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Figure 40.  Effect of ensemble size and FP calculation methodology on FP skill.  Results for FP 
calculated by DV are the dashed lines with circles.  Results for FP calculated by UR are the 
dotted lines with squares.  The solid diagonal is the line of perfect reliability which both 
calculation methods should produce since a perfect ensemble was simulated.  To make the 
comparison fair, the continuous FP of UR was binned into the same number of bins (i.e., n+1) as 
set by the DV method.  The Brier skill score (BSS) and its components, resolution (res) and 
reliability (rel), are inset in each plot for the two methods. 
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Table 2.  Brief description of the four SREF systems.  (SMMA = Single-Mo  del Multianalysis, 
PMMA = Perturbed-Model Multianalysis, and MMMA = Multimodel Multianalysis) 

 
 # of   Configuration  EF  Domain   Forecast 
Mbrs. Name ICs   Type   (km) Interval (h) Description 
 
 ACME - 8 Analyses (core)  SMMA 36/12         3 - Analysis-Centroid Mirroring 
  17  - 1 Centroid          Ensemble 
      - 8 Mirror    - All members use the same 
            version of MM5   
 
 ACMEcore 8 Analyses (core)  SMMA 36/12         3 - Core subset of ACME 
      - All members use same  
                  version of MM5   
      
 ACMEcore+ 8 Analyses (core) PMMA 36/12         3 - Core subset of ACME 
   8      - Each member has different  
               version of MM5   
 
 PME 8 Analyses (core) MMMA    36         6 - Poor Man’s Ensemble 
      - Each member has a different 
            model (see Table 3) 
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Table 5.  Data of three core samples of n  =  8 from the normal distribution µ = 5400 gpm and        
σ  = 15 gpm, and the resulting centroid and mirror values. 

 
Case EF Group Data x  s 

(a) Core 5398.3, 5399.7, 5394.5, 5407.3, 5417.0, 5411.9, 5418.7, 5409.1 5407.050 8.868 

  Centroid 5407.1 

  Mirrors 5415.8, 5414.4, 5419.6, 5406.8, 5397.1, 5402.2, 5395.4, 5405.0 5407.050 8.295 

(b) Core 5412.6, 5413.7, 5385.4, 5417.9, 5399.1, 5397.8, 5372.0, 5400.3 5399.835 15.431 

  Centroid 5399.8 

  Mirrors 5387.1, 5386.0, 5414.3, 5381.8, 5400.6, 5401.9, 5427.6, 5399.4 5399.835 14.434 

 (c) Core 5367.0, 5383.2, 5408.9, 5395.8, 5404.5, 5424.3, 5396.1, 5364.6 5393.047 20.558 

  Centroid 5393.0 

  Mirrors 5419.1, 5402.9, 5377.2, 5390.3, 5381.6, 5361.8, 5390.0, 5421.5 5393.047 19.231 
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Table 6.  The standard MM5 land use table, in the exact file format employed in the MM5 code.  
The perturbed surface boundary parameters are albedo (ALBD, as a %), moisture availability 
(SLMO, as a fraction of 1.0), and roughness length (SFZO, cm) .  The other parameters include 
emissivity (SFEM, as a fraction of 1.0),  thermal inertia (THERIN), snow-effect factor (SCFX), 
and heat capacity (SFHC). 
 
USGS 
24,2, 'ALBD   SLMO   SFEM   SFZ0 THERIN   SCFX   SFHC   ' 
SUMMER 
1,      18.,   .10,   .88,   50.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      17.,   .30,   .92,   15.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      18.,   .50,   .92,   15.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      18.,   .25,   .92,   15.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      18.,   .25,   .92,   14.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      16.,   .35,   .93,   20.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      19.,   .15,   .92,   12.,    3.,   .60, 20.8e5,'Grassland' 
8,      22.,   .10,   .88,   10.,    3.,   .62, 20.8e5,'Shrubland' 
9,      20.,   .15,   .90,   11.,    3.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     20.,   .15,   .92,   15.,    3.,    0., 25.0e5,'Savanna' 
11,     16.,   .30,   .93,   50.,    4.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     14.,   .30,   .94,   50.,    4.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,     12.,   .50,   .95,   50.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     12.,   .30,   .95,   50.,    4.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     13.,   .30,   .94,   50.,    4.,   .54, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     14.,   .60,   .95,   20.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     14.,   .35,   .95,   40.,    5.,   .58, 41.8e5,'Wooded Wetland' 
19,     25.,   .02,   .85,   10.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     15.,   .50,   .92,   10.,    5.,   .60, 9.0e25,'Herbaceous Tundra' 
21,     15.,   .50,   .93,   30.,    5.,   .60, 9.0e25,'Wooded Tundra' 
22,     15.,   .50,   .92,   15.,    5.,   .60, 9.0e25,'Mixed Tundra' 
23,     25.,   .02,   .85,   10.,    2.,   .62, 12.0e5,'Bare Ground Tundra' 
24,     55.,   .95,   .95,    5.,    5.,    0., 9.0e25,'Snow or Ice' 
WINTER 
1,      18.,   .10,   .88,   50.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      23.,   .60,   .92,    5.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      23.,   .50,   .92,    5.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      23.,   .50,   .92,    5.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      23.,   .40,   .92,    5.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      20.,   .60,   .93,   20.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      23.,   .30,   .92,   10.,    4.,   .60, 20.8e5,'Grassland' 
8,      25.,   .20,   .88,   10.,    4.,   .62, 20.8e5,'Shrubland' 
9,      24.,   .25,   .90,   10.,    4.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     20.,   .15,   .92,   15.,    3.,    0., 25.0e5,'Savanna' 
11,     17.,   .60,   .93,   50.,    5.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     15.,   .60,   .93,   50.,    5.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,     12.,   .50,   .95,   50.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     12.,   .60,   .95,   50.,    5.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     14.,   .60,   .94,   50.,    6.,   .58, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     14.,   .75,   .95,   20.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     14.,   .70,   .95,   40.,    6.,   .58, 41.8e5,'Wooded Wetland' 
19,     25.,   .05,   .85,   10.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     60.,   .90,   .92,   10.,    5.,    0., 9.0e25,'Herbaceous Tundra' 
21,     50.,   .90,   .93,   30.,    5.,    0., 9.0e25,'Wooded Tundra' 
22,     55.,   .90,   .92,   15.,    5.,    0., 9.0e25,'Mixed Tundra' 
23,     70.,   .95,   .95,    5.,    5.,    0., 12.0e5,'Bare Ground Tundra' 
24,     70.,   .95,   .95,    5.,    5.,    0., 9.0e25,'Snow or Ice' 
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III.   Results 

 In this chapter, we discuss the analysis of the four ensemble systems.  Since each system has 

such unique attributes, intercomparison of the systems reveals answers to many questions 

surrounding SREF and indicates areas in need of further research.  Appendix I reviews the 

various tools and metrics used in this chapter.  Of particular note are two new measures—the 

standardized verification (VZ) and the verification outlier percentage (VOP).  

 The results presented in this chapter may be influenced by the somewhat anomalous weather 

pattern of the 2002-2003 cool season.  Figure 41 (borrowed from McMurdie and Mass, 2003) 

compares the Z500 mean and root-mean-square (RMS) of the time-filtered Z500 for the past two 

cool seasons.  Higher RMS values are indicative of larger Z500 variance and therefore more 

frequent storms.  In a typical cool season, such as in Figure 41a, the Pacific NW experiences a 

fairly continuous train of extratropical cyclones from the predominantly zonal flow aloft over the 

eastern Pacific.  In contrast, during the 2002-2003 cool season of Figure 41b, there were many 

prolonged periods of upper-level blocking that left the Pacific NW under a fair-weather ridge.  

Such blocking patterns are not unusual for the Pacific NW but are normally not so frequent.  We 

suspect that the dominance of the fair-weather ridge pattern influenced our results, as we will 

describe later, but our general conclusions are not affected. 

 Unless otherwise noted, the analysis dataset was the 112 forecast cases of the bias-corrected 

subset (see Figure 10).  Results using bias-corrected forecasts are denoted with an asterisk prior to 

the ensemble system’s name (e.g., *PME).  The entire outer 36-km or inner 12-km grid domain 

was analyzed except for the outer most 5 rows and columns where lateral boundary condition 

(LBC) information was updated.  All analysis of the predominantly synoptic-scale parameters, 

500 mb geopotential height (Z500) and mean sea level pressure (MSLP), was performed on the 

outer 36-km domain data using the centroid analysis (without tcwb) as verification.  All analysis 
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of the mesoscale parameters, 2-m temperature (T2) and 10-m wind speed (WS10), was performed 

on the inner 12-km domain data using the RUC20 analysis as verification by fitting the MM5 12-

km forecasts to the RUC20 20-km grid. 

A.  Impact of Bias Correction 

 In the previous chapter, we demonstrated the need for and the positive results of our bias 

correction method from a primarily deterministic point of view and only touched on the possible 

impacts to SREF.  Now we present results to describe two distinct benefits of removing bias in a 

SREF system: 1) that the quality of all SREF products, particularly forecast probability (FP), is 

increased, and 2) that realistic evaluation and comparison of SREF systems is possible.  The first 

benefit was anticipated but the improvement in SREF by bias correction exceeded expectations 

because the model biases are so large.  The second benefit was unexpected, for as the analysis 

progressed, we discovered that only with bias-corrected data could we draw any firm conclusions. 

 From Figure 28 – Figure 34, it is clear that correcting bias in a SREF system reduces the MSE 

in each member and the ensemble mean.  The benefit to EF is that FP skill is improved by 

approximately centering the forecast PDF on the mean of the verification’s PDF so that the 

average error (verification – forecast) is close to zero.  Recall from Figure 2 that a proper shift in 

the forecast PDF’s location can adjust the FP toward the observed relative frequency (ORF ). 

 To explore improvement in SREF quality by bias-correction, Figure 42 displays a reliability 

diagram for ACMEcore+, before and after bias correction, in which the P(MSLP < 1001 mb) in the 

outer domain was forecast.  This event threshold was chosen somewhat arbitrarily as the ~25th 

percentile of climatologic MSLP (Figure 1).  While this event is not of direct concern in 

operational weather forecasting, it is worthwhile to analyze since MSLP is a common parameter 

among our SREF systems and important to forecasting in general.  Think of the FP for this event 

as the chance of stormy weather (i.e., the probability of low MSLP ).  In Figure 42, it is clear that 
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*ACMEcore+ provides far more reliable (i.e., closer to the diagonal) FP compared to ACMEcore+.  

To confirm this conclusion, Table 7 provides the data for calculating and plotting the reliability 

diagram.  Notice that *ACMEcore+ also improved resolution and not just reliability, which will be 

discussed in detail below. 

 Figure 43 summarizes the reliability diagram results for FP of MSLP < 1001 mb at all lead 

times and for all our SREF systems except ACME.  The plots of reliability (rel) and resolution 

(res) are on much different scales and the ordinate axis of the reliability plot is reversed so that 

upward is better on all plots.  Recall that BSS = (res – rel ) / unc, where BSS is the Brier skill 

score and unc is the uncertainty term. 

 The first thing to notice in Figure 43 is that all the SREF systems are highly skilled in the 

short range at forecasting this event (i.e., BSS far above 0.0), which should be expected for a 

predominantly synoptic-scale parameter such as MSLP.  The improvement in BSS by the bias 

correction is relatively large (~3%) for the ACME systems but insignificant for PME since the 

PME members displayed much less bias compared to ACME systems, as discussed in Chapter II.  

To more intuitively quantify the significance of the ~3% improvement in BSS for the ACME 

systems, we can examine the skills of the systems before and after bias correction across lead 

time.  On average, the skill of *ACMEcore or *ACMEcore+ is the same as that of the uncorrected 

systems six hour previously.  In other words, there was a six-hour improvement in FP skill by the 

bias correction—a great improvement in the short-range.  Lastly, note that there are roughly equal 

contributions from both reliability and resolution to the BSS improvement by bias correction, 

which holds true for all parameters and events that we examined. 

 Figure 44 provides the BSS results for forecasts of P(T2 < 0°C) in the inner domain—a more 

operationally significant event and one intimately connected with model physics and surface 

boundary parameterizations (SBPs).  The BSS improvement by bias correction is about twice as 
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large as that for MSLP because, as we saw in the last chapter, T2 has a much more pronounced 

bias.  There is also a diurnal cycle in BSS that appears contrary to RMSE of bias-corrected T2 

(Figure 31) in which the late afternoon (i.e., 24- and 48-h lead times) T2 has lower RMSE and 

should therefore correspond with higher FP skill rather than lower as in Figure 44.  The sharp dip 

in uncorrected FP skill in the late afternoon is due, in part, to the extreme bias during that period.  

After bias correction, the late afternoon reliability is on a par with the other times of the day but 

the dip remains in the BSS due to the resolution fluctuation.  The marked diurnal signal in the 

resolution is tied to the variability in uncertainty. Intuitively and mathematically, one would 

expect more skillful FP in the late afternoon when uncertainty is at a minimum with T2 < 0°C 

occurring less often (i.e., lower sample climatology, SC).  However, an event that occurs less 

often in space or time is more difficult to discriminate, thus the drop in late afternoon resolution 

and lower BSS. 

 The increase in resolution by the bias correction is an important finding that indicates a 

sharpening of the forecast PDF, or a reduced variance among the ensemble members.  Referring 

back to Figure 37, one can imagine that for any given event threshold, a more narrow PDF is 

more likely to produce FP toward the extreme values (i.e., 0% and 100%), which of course 

increases res.  Table 7 shows that the bulk of the better resolution of *ACMEcore+ compared to 

ACMEcore+ came from a 17% increase in the number of forecasts in the 100% FP bin.  There is 

actually a ~1% decreased weighting in the lower extreme FP by *ACMEcore+ because the bias 

correction shifted the PDF to the right as well as reduced the spread. 

 The reason for the reduced spread is that the bias correction adjusts each ensemble member 

toward the verification (gridded analysis) differently.  The members have different biases, both in 

magnitude and direction from the verification, but are all corrected toward a common center, thus 

reducing variance.  Figure 45 shows evidence of the decrease in EF spread by bias correction, 
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which should be expected if EF spread is a reflection of uncertainty.  In effect, removing model 

bias in an ensemble eliminates bogus uncertainty in the sense that there is no uncertainty in 

systematic errors that can be identified and corrected.  Before systematic errors are removed, they 

appear to be part of the uncertainty since they contribute to the forecast error.  After systematic 

errors are removed, the stochastic error remains as the true uncertainty, which can not be 

corrected but may be accounted for with a well-formulated ensemble system. 

 Besides significantly improved FP, our second point about the importance of bias removal is 

that it allows for realistic evaluation and comparison of SREF systems.  Consider trying to 

determine if ACMEcore+ provides benefit over ACMEcore in Figure 44.  ACMEcore+ performs better 

than ACMEcore at some lead times (e.g., 6 h – 15 h) and the same or worse at other lead times 

(e.g., 18 h – 24 h).  It is only after bias correction that *ACMEcore+ clearly stands out as superior to 

*ACMEcore. 

 As another example of bias-removal benefit to analysis, Figure 46 shows verification rank 

histograms (VRHs) of MSLP for PME, ACMEcore, and ACMEcore+ before and after bias 

correction.  Forecasts with a significant and consistent bias cause a shift of the rank probability 

toward one side.  Notice that in the PME VRH the overdispersion is much more evident after the 

bias removal.  A more disconcerting problem comes about if forecasts have a dual bias that 

changes over time, resulting in a strongly u-shaped histogram which may lead to an incorrect 

conclusion that the ensemble is underdispersive (Hamill, 2001).  Removing the bias by a method 

such as ours eliminates that possibility.  

 As a final comment on Figure 46, notice that bias correction barely altered the verification 

outlier percentage (VOP) for PME and ACMEcore, but VOP was improved for ACMEcore+.  One 

could attribute a lower VOP to an increase in ensemble spread, which may allow truth to be 

portrayed more often.  However, as discussed above, bias correction decreases ensemble spread, 
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especially for ACMEcore+ in which there is more variability among the model biases (i.e., compare 

Figure 31 with Figure 32).  We conclude then that bias correction does not cause better portrayal 

of truth by simply adding unrealistic spread but by shifting the PDF toward regions of verification 

values previously not portrayed.  The additional benefit of increased resolution from a sharper 

forecast PDF occurs simultaneously. 

B. Model Uncertainty 

1. Multimodel vs. Perturbed-model 

 This section addresses the relative merits of the multimodel and perturbed-model approaches 

for accounting for model uncertainty by comparing the results of the PME to the ACMEcore+ 

system.  This comparison is restricted to the 36-km domain because the PME consists of only 

large-scale models with coarse grids.  Additionally, the PME does not contain many of the 

surface forecast parameters of interest (e.g., WS10 and T2) so only Z500 and MSLP were considered 

in this analysis. 

a) Dispersion 

 We begin by examining dispersion diagrams (Figure 47a & b) to explore the systems’ ability 

to represent forecast uncertainty.  Recall that the dispersion diagram is like an error variance 

diagram except that the plotted curves are the EF spread (i.e., variance of ensemble members) and 

the MSE of the EF mean, which are required to match for statistical consistency after adjusting 

for ensemble size as in Equations (7) and (8).  The MSE of the EF mean should be thought of as 

the ‘target variance’ that an ensemble should have to properly represent forecast uncertainty.  

Since each of our SREF systems has a different EF mean MSE, each system should be plotted on 

a separate diagram to avoid confusion.  For example, the plots in Figure 45 contain results for 
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both PME and ACMEcore+ in which the higher spread of PME suggests improved statistical 

consistency by PME since ACMEcore+ is underdispersive (shown later).  However, it is 

meaningless to directly compare the EF spread of the two systems since the target variance is so 

different between the systems.  An exception is that ACMEcore and ACMEcore+ have such a similar 

target variance (i.e., similar EF mean MSE) that it is instructive to plot and analyze them together 

(covered in the next section). 

 Before interpreting Figure 47a & b, there are a few more things to note: 

 1) The apparent decrease in EF spread from 0 to 12 h is due to both the bias correction 

(which was not applied at the 0 h) and the MM5 spin-up period.  Figure 45a shows that 

without bias correction the error growth is large in the first 12 h for PME, but only slight 

for the ACME systems.  In the early part of forecast integration, the MM5 adjusts the 

information from the large-scale models to fit the MM5 attractor so the ACME systems’ 

solutions become more similar and error growth is restricted. 

 2) The 12-h MSE is likely an underestimate of the actual error since the verification (centroid 

analysis) contains much of the forecast information due to use of the forecasts as first 

guess fields in the objective analysis routines of the core analyses.  By the 24-h lead time 

and beyond, the centroid analysis can be considered independent of the forecasts. 

 3) For reference, we included the climatic variance (σc
2) to show how far below error 

saturation the results are in the short range.  The σc
2  values were found using all the 

verification data for the full dataset from the avn analysis for Z500 and MSLP (e.g., see 

Figure 1a), and from the RUC20 analysis for WS10 and T2.  As a confirmation, our Z500 σc
2 

of 14,500 gpm2 is comparable to what is shown in Figure 3b. 

 The most striking difference between PME and ACMEcore+ in Figure 47 is that the PME is 

slightly overdispersive while the ACMEcore+ is very underdispersive.  The forecast PDFs 
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produced by the PME are evidently too wide compared to the PDF from which truth is drawn so 

the PME identifies more uncertainty than is actually present—highly unusual for an EF system.  

ACMEcore+ shows the more typical result of an EF system producing too narrow a forecast PDF, 

and failing to represent all the uncertainty. 

 Since PME and ACMEcore+ used the same ICs, the difference in their dispersive 

characteristics likely reveals that the multimodel system (PME) is able to more accurately 

represent model uncertainty compared to the perturbed-model system (ACMEcore+).  We expect 

the PME to exhibit greater dispersion since it has more model diversity, but the overdispersion of 

PME may mean that the model differences among the PME members are too great.  Regardless, 

the severity of PME’s overdispersion is much less than the large underdispersion of ACMEcore+.  

It appears that even with the extensive efforts in building model diversity into ACMEcore+, the 

perturbed-model approach does not represent many critical aspects of model uncertainty that the 

multimodel approach can, such as the model numerics. 

  Examining Z500 and MSLP VRHs in Figure 48a & b confirms the results of the dispersion 

diagrams and provides more details.  For these synoptic parameters, *ACMEcore+ performed well 

(nearly uniform VRHs), but it is clear that *PME was more successful at portraying truth.  The 

VOP scores show that for MSLP, truth was not portrayed 1.55% of the time by *PME vs. 6.67% 

of the time by *ACMEcore+.  The slight overdispersion of *PME is evident in the subtle n-shape of 

the *PME VRHs. 

 While the superior statistical consistency of *PME over *ACMEcore+ is unquestionable, there 

are other possible reasons for the difference between the two systems besides the systems’ 

relative ability to represent model uncertainty: 

 1) The coarse grid resolution of the PME members (c.f. Table 3) may account for part of the 

PME’s lower MSE, which makes the PME appear more statistically consistent.  However, 
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since only the 36-km domain was considered in this analysis, the effect of resolution is 

likely minor.  Also, some PME members have fairly high resolution (i.e., eta at 32 km and 

avn at ~55 km). 

 2) As discussed above, there is a spin-up period in the ACMEcore+ solutions that restricts error 

growth early in the forecast cycle.  While the spin-up effect does account for some of the 

low spread of *ACMEcore+, Figure 49a shows that the lower dispersion of *ACMEcore+ is 

not due to the spin-up effect.  Once the spread of both systems is matched at the 12-h lead 

time (well after spin-up), *PME clearly shows more dispersion than *ACMEcore+. 

 3) It has been shown that an ensemble that uses a limited-area model (LAM) has lower 

dispersion compared to an ensemble that uses a much larger model domain (Nutter, 2003).  

Beyond the issue raised by Errico and Baumhefner (1987) who pointed out that when 

using a LAM, the LBCs as well as the ICs must be perturbed to avoid limiting  

predictability error growth, Nutter (2003) described how the use of periodically updated 

LBCs may act to filter out short waves and reduce nonstationary wave amplitude from the 

large-domain model providing the LBCs to the LAM.  This effect can cause errors in the 

LAM solution, but more importantly, it may cause an ensemble of LAM solutions to share 

similar errors even when they have different perturbed LBCs (as in ACMEcore+), thus 

reducing spread and causing underdispersion during the forecast cycle. 

 To explore how much of the weaker dispersion of ACMEcore+ may be from filtering of waves 

in the LBCs versus use of incomplete representation of model diversity, we can examine plots of 

standardized verification (VZ).  In Figure 50 Z500 VZ is plotted using bias-corrected forecasts since 

the biased forecasts have unrealistically high standard deviation and thus VZ values that are too 

small.  Z500 was used so that synoptic-scale wave effects could be studied.  The forecast case in 
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Figure 50 is one with above average VOP in which truth really got away from the ensemble.  

Forecast cases with an average or low VOP level had similar results but were not as definitive. 

 As shown in Figure 50, at the 12-h lead time there was long wave trough along the West 

Coast with a rapidly approaching short wave around 150°W that initialized near the boundary 

(not shown).  As the short wave dove into the long wave trough at 24 h and 36 h, the high VZ 

values reveal that in this region truth evolved quite differently compared to all the *PME 

members and much more so for *ACMEcore+ members.  The EF mean is included in these plots to 

show the solution about which the members are varying.  Looking at both the EF mean and VZ, it 

appears that the *ACMEcore+ members are too clustered about a solution with a slower and deeper 

short wave off the Pacific NW coast and thus failing to portray the truth.  By the 48-h lead time, 

the *PME is portraying truth fairly well but the *ACMEcore+ members continued to stay clustered 

together with solutions much different from the truth. 

 How much of the truth not portrayed by *ACMEcore+ is due to weak model diversity and how 

much from use of a LAM?  The short wave analyzed above was initialized partly within the 

domain so it may have suffered some filtering as it completed its entry through the lateral 

boundary.  Additionally, effects of downstream development could have played a role so that 

filtered waves entering later produced further limits to the *ACMEcore+ error growth about the 

wave of interest.  The large-scale models of the PME were able to more accurately develop the 

wave as well as represent more likely possibilities (i.e., higher and meaningful dispersion) since 

waves on all scales are represented over a much larger domain.  It appears possible that some of 

the higher VOP of *ACMEcore+ is due to filtering information in the LBCs , which makes 

*ACMEcore+ members share similar errors and reduces dispersion. 

 However, there is also strong evidence in Figure 50 that it is the weak model diversity of 

*ACMEcore+ (relative to *PME) that increases the VOP.  Consider again the 12-h lead time in 
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Figure 50 in which *ACMEcore+ developed an area of truth not portrayed on the Oregon coast and 

greatly expanded the area over British Columbia compared to *PME.  At only 12 h into the 

forecast cycle and thousands of kilometers from the lateral boundaries, it is highly unlikely that 

these problems were caused by LBC wave filtering but rather were due to the weak model 

diversity of ACMEcore+.  Furthermore, such evidence of the large impact by the weak model 

diversity leads us to speculate that model diversity was also a large factor (perhaps larger than the 

LAM effect) in the above analysis of the short wave that caused so much trouble in Figure 50. 

 We can not make firm conclusions regarding the relative contribution of LAM and model 

diversity effects on the different dispersions of PME and ACMEcore+ since it is extremely difficult 

to separate out the two effects.  However, the analysis results and consideration of the design of 

the two systems (multimodel vs. perturbed-model) suggest that the lower dispersion of ACMEcore+ 

is primarily a result of its inability to capture the amount of meaningful model uncertainty that is 

captured in PME.  As an aside, notice in Figure 50 that much of the difficulty with portraying 

truth originates from the core analyses and their forecasts (i.e., PME) and are amplified in 

ACMEcore+.  We will discuss this further below when covering the performance of ACME. 

b) Skill and Utility 

 Returning to Figure 43, consider the FP skill of the multimodel and perturbed-model 

approaches.  Measuring skill improvement again by forecast lead time, *PME outperformed 

*ACMEcore+ by about 11 h.  Even though the multimodel approach overrepresents uncertainty, it 

yields far superior results to the perturbed-model approach that grossly underrepresents 

uncertainty.  Note that the higher BSS superiority of *PME is completely due to better resolution.  

The reliability of *PME is basically the same or slightly lower compared to *ACMEcore+, but this 

does not mean increased model diversity cannot improve reliability.  The lack of difference in 
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reliability between the two systems is simply because both systems are nearly perfectly reliable 

for this event in the short range. 

 There is an apparent contradiction concerning the resolution improvement and the increased 

model diversity of *PME.  In analyzing the impact of bias removal, we discussed that the 

decreased spread (narrowing of the forecast PDF) improves resolution, and in the last section we 

demonstrated that model diversity increases spread (widening the forecast PDF).  So how can 

*PME improve resolution if it has greater spread? 

 The resolution improvement by *PME can be diagnosed by comparing reliability diagram 

results of *ACMEcore+ and *PME (Figure 42 and Table 7).   Resolution can be improved (i.e., 

higher res value) in two different ways: 

 1) Increase the weight (i.e., number of forecasts) in the FP bins toward the FP extremes. 

 2) Regardless of the weight in each bin, shift points on the reliability diagram toward the FP 

extremes (i.e., further from the zero skill line) 

By either means, an ensemble is then better at discriminating between whether an event will 

occur or not.  *PME has better resolution than *ACMEcore+ only because the *PME points are 

shifted toward the FP extremes.  In fact, *PME actually negated some its resolution improvement 

with reduced weighting of the FP extremes (i.e., in Table 7 compare # of forecasts for FP of 0% 

and 100% between *ACMEcore+ and *PME). 

 These results allow us to resolve the apparent contradiction of *PME’s improved resolution 

and higher spread.  Lower (higher) EF spread always improves (worsens) resolution, but 

resolution can also be improved in a more subtle way, which can be imagined using Figure 37 

once again.  Say the event threshold is at the right end of the *ACMEcore+ PDF so that FP = 0%.  

The *PME PDF extends out a bit further, representing more possible values where the 

verification will likely occur, and so *PME may give a slightly higher FP, say 3%.  For such low 
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FP, the verification will rarely occur above the event threshold, but if the increased spread of 

*PME does give real possibilities, then the event will eventually occur and confirm the validity of 

the *PME FP.  A wider forecast PDF can therefore provide improved res if it better represents 

the possible occurrence of the event.  Consider an EF system in which one member’s PBL 

scheme is switched to something totally different from the other members, but equally valid.  

This perturbed member may give a T2 value completely outside of the other members, increasing 

EF spread and identifying a possible value of truth not previously part of the ensemble.  The new 

ensemble of T2 values is better at discriminating the event since it identifies more valid 

possibilities.  This effect is related to the lower VOP of the *PME since the ability to more 

consistently portray truth results in better discrimination. 

 Another possible advantage of PME is that its overdispersion may somewhat alleviate the 

negative effects of undersampling.  Recall that undersampling results in an overforecast of high 

FP and an underforecast of low FP (see I.B.4 and II.C.3).  With an excessive ensemble spread, 

the PME produces slightly reduced high FP values and slightly lower low FP values, thus 

reversing the undersampling effect.  While this may just sound like a statistical trick, it is an 

actual benefit.  A small ensemble with slightly excessive spread does a better job at representing 

the PDF tails compared to an ideal ensemble with the same number of members.  It may actually 

be advantageous for a small ensemble to be slightly overdispersive.  

2. Mesoscale:  ACMEcore vs. ACMEcore+ 

 Thus far, we have concluded that the perturbed-model approach of ACMEcore+ fails to capture 

all the model uncertainty.  The question that now remains is, putting the limitations of ACMEcore+ 

aside, did inclusion of model diversity improve SREF on the mesoscale, and if so, how?  This 

section presents a detailed comparison of ACMEcore vs. ACMEcore+, revealing that inclusion of 

model diversity is critical for a mesoscale SREF. 
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a) Dispersion 

 We return to the dispersion diagrams (Figure 47) to begin comparing the two mesoscale 

SREF systems.  In Figure 47a & b, *ACMEcore+ made only a small improvement to the severe 

underdispersive quality of *ACMEcore for synoptic-scale parameters.  However, *ACMEcore+ 

made more of an improvement for MSLP than for Z500 because, as a surface parameter, MSLP is 

more influenced by model error.  The influence of model error is even more pronounced in Figure 

47c & d in which the dispersion of surface, mesoscale parameters is examined.  The poor 

dispersion of ACMEcore is more evident (especially for T2) and the improvement by ACMEcore+ is 

more significant.  Also notice that the WS10 and T2 MSE results are much closer to saturation (i.e., 

reaching σc
2), but still well below.  For MSLP and Z500, the MSE results at the 48-h lead time were 

only about 5% of the way toward saturation, but are about 30% of the way for WS10 and T2, thus   

confirming the lower predictability of the mesoscale parameters. 

 Focusing on Figure 47d, there is a pronounced diurnal signal in the T2 MSE but very little 

error growth.  The lack of error growth is not because of error saturation but because T2 is 

primarily locally forced rather than synoptically forced.  The variability in T2 is determined 

mostly by the diurnal heating and only secondly by the large-scale flow in which errors grow.  

The bulk of the error is therefore determined by the model’s deficiencies.  Errors increase during 

the night to a maximum right before sunrise, then reach a minimum by midday—likely due to the 

difficulty in modeling the planetary boundary layer (PBL).  The model can not accurately 

describe the collapse of the PBL and formation of inversions at night so T2 is often greatly in 

error then.  During the day, the model may not get the PBL quite right, but low level mixing is 

normally present to some degree so T2 errors are not as extreme.  Notice that the diurnal signal of 

the MSE correlates very strongly with the *ACMEcore+ spread but only weakly with the 
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*ACMEcore spread—another indication that *ACMEcore+ is a significantly better system for 

representing the forecast uncertainty. 

 Focusing on Figure 47c, there is a slight diurnal signal in the WS10 MSE and significant error 

growth.  The WS10 error growth is dramatically higher than that of T2 because, even though WS10 

is a locally forced mesoscale parameter, it also is strongly influenced by the synoptic flow since 

surface winds are forced by surface pressure, which is dependent upon the deep atmosphere.  The 

resulting error growth from the ICs alone allows the WS10 spread to be much closer to reaching 

the target variance compared to T2.  However, the large increase in spread by *ACMEcore+ shows 

that inclusion of model diversity is still very important for a complete representation of 

uncertainty in WS10. 

 *ACMEcore+ gives some MSE improvement over *ACMEcore for WS10 and notable 

improvement for T2, which appears contrary to the Chapter II statement that the ACMEcore+ 

members are generally inferior to the members of ACMEcore.  Evidently, the inferiority is mainly 

in systematic error for, once the bias is removed, the EF mean of *ACMEcore+ is superior.  So not 

only did ACMEcore+ increase EF spread toward the target variance, it also narrowed the gap 

further by lowering the target variance (i.e., reducing the MSE of the EF mean). 

 In Figure 47a & b there is an estimate of the IC differences since MSLP and Z500 exist as IC 

fields.  For Figure 47c & d, there is no initialization of WS10 and T2 so their initial uncertainty can 

not be considered.  We can however state that the uncertainty in all parameters from which WS10 

and T2 are derived were exactly the same at initialization in ACMEcore and ACMEcore+ since both 

systems used the same ICs.  Most of the increased spread provided by *ACMEcore+ is likely 

realized in the very first forward time step of the model (the first 36 s of the forecast period) in 

which the different model options and SBPs produce much different values of derived surface 

variables.  During the rest of the forecast period the gap between the *ACMEcore and *ACMEcore+ 
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spread increases only slightly as some of the differences provided by model diversity project onto 

growing modes.  For a parameter with a strong synoptic influence like WS10, almost all of the 

predictability error growth (revealed by the EF spread of *ACMEcore) comes from uncertainty in 

the ICs, and the additional spread from model diversity (revealed by the EF spread of 

*ACMEcore+) simply adds a constant correction toward statistical consistency.  Early in the 

forecast period the additional spread provided by *ACMEcore+ is a larger fraction of the total 

spread, and is thus more important to include in the SREF. 

 Compared to a synoptically-influenced parameter like WS10, including model diversity for a 

parameter like T2 is even more important since the vast majority of the forecast error is due to the 

model uncertainty and not the IC uncertainty—an unusual finding discussed further below.  In 

Figure 47d, the low spread of *ACMEcore shows how little of the forecast error originates from 

the ICs and confirms the lack of error growth.  The fact that *ACMEcore+ spread is still far below 

what is required for statistical consistency indicates that much more model diversity is required. 

 The VRHs of Figure 48 are ordered from the parameter in which inclusion of model diversity 

makes the least difference (Z500) to the parameter where it makes the most difference (T2).  

*ACMEcore+ provided only minor improvement for the synoptic-scale parameters (Z500 and MSLP) 

in which the forecast error is dominated by error growth from the ICs.  For the more mesoscale 

parameters of WS10 and T2, it is evident that *ACMEcore is extremely poor at portraying truth.  

With the added spread of *ACMEcore+, the VRHs are adjusted toward uniformity and the large 

VOP is cut in half.  However, as we saw with the dispersion diagrams, it is also obvious that 

*ACMEcore+ is still far from being statistically consistent.  *ACMEcore+ fails to represent a 

considerable amount of the uncertainty that is present and truth is still not portrayed far too often. 

 From Figure 47 and Figure 48, we conclude that the closer to the surface and smaller in scale 

a phenomenon, the more difficult it is to represent its uncertainty and the more model uncertainty 
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appears to play a part.  We also conclude that inclusion of model diversity in a mesoscale SREF 

is critically important for complete representation of forecast uncertainty and that the relative role 

of IC and model uncertainty depends upon the parameter as well as the weather regime. 

 A question that remains is what is the reason for the low dispersion of *ACMEcore+?  From 

the previous section on comparing the *PME and *ACMEcore+ we concluded that the use of a 

LAM limits dispersion of *ACMEcore+ only marginally and the major difference between the two 

systems is their relative amount of model diversity.  That would suggest we need to increase 

model diversity of *ACMEcore+ by expanding the perturbed-model method through more and/or 

larger perturbations.  However, there is another possible source of the low dispersion problem of 

*ACMEcore+: limitations imposed by a finite model grid resolution. 

 Smagorinsky (1969) demonstrated that increasing model resolution increases dispersion of 

the model since higher resolution can represent additional scales of motion.  For an ensemble, 

differences among the members can only exist at the scales represented within the model, so there 

can be no difference (i.e., no dispersion) at unrepresented scales.  Part of the low dispersion of 

ACMEcore+ is likely due to the limited capability of the 12-km members to reveal different 

possibilities at small scales.  Increasing model resolution should generate more useful spread 

among the members by capturing more diversity in smaller scale motions.  To test this hypothesis 

with our research data, we can directly compare the dispersion over matching grid points on the 

12-km and the 36-km domains (i.e., compare every third point in the 12-km domain to the 

subsection of points in the 36-km domain that overlays the 12-km domain).  Results for WS10 

from *ACMEcore+ reveal that the ensemble spread on the 12-km domain is an average 27% higher 

than on the 36-km domain (Figure 49b).  There is likely an asymptotic limit to how much more 

dispersion can be produced by finer model resolution, but we suspect that significantly higher 

dispersion could be realized by increasing model resolution to a few km.  
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b) Skill and Utility 

 Just as *ACMEcore+ did not significantly improve the severe underdispersion of *ACMEcore 

for MSLP, Figure 43 shows that the *ACMEcore+ BSS for an MSLP event is about the same as for 

*ACMEcore.  For T2 on the other hand, Figure 44 shows that *ACMEcore+ is more skillful, which 

means that there is value in the additional spread provide by *ACME core+.  The drastically 

different BSS improvements for MSLP and T2 can be partly explained by the fact that T2 error is 

highly determined by the model, which makes inclusion of model diversity more important. 

 The successful BSS results for T2 appear to contradict the requirement of Murphy (1988) and 

Palmer et al. (1990) that for an EF to have a chance at being effective, the portion of forecast 

error due to IC uncertainty must be larger than the portion due to model uncertainty.  It is clear 

from Figure 47 that model error dominates T2 forecast error, and it is also clear from Figure 44 

that skillful FP was produced for a T2 event.  T2 is however not a state variable but a derived 

variable of the PBL scheme.  The skill of T2 FP depends on many other variables for which IC 

uncertainty may be larger.  The requirement that IC uncertainty be larger than model uncertainty 

applies to the forecast as a whole (over all dimensions) and not a limited slice of phase space. 

 Besides that fact that MSLP is mainly a synoptically forced parameter, another factor for the 

weak *ACMEcore+ MSLP skill improvement is that model error plays a much greater role over 

land than over water.  Convection, wind flow over complex terrain, variations in radiative effects, 

etc. all require more detailed parameterizations and schemes within the model and thus more 

opportunity for model error.  To demonstrate the increased need for model diversity over land, we 

recomputed BSS using ocean-masked data (i.e., use only grid points over land).  For an equitable 

comparison of MSLP BSS, we raised the event threshold to keep a similar SC (and similar unc) as 

that in Figure 43 (i.e., MSLP climatologic PDF is shifted upward over land).  In Figure 51, the 

improvement in BSS by *ACMEcore+ over *ACME core is about 2 h whereas it was not measurable 
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for the full domain.  Furthermore the improvement by *PME is up from 11 h to roughly 18 h.  

The increased improvements by the SREF systems with model diversity suggest that including 

model diversity over land is more important. 

 Figure 52 shows a similar result for ocean-masked T2 on the inner domain.  Note that we did 

not alter the event threshold here since unc of the event was only slightly higher compared to the 

full domain results in Figure 44, which of course makes ocean-masked BSS relatively lower.  The 

difference in ocean-masked and full-domain T2 BSS improvement by *ACMEcore+ is most evident 

by the plots of Figure 53a & b.  The afternoon (18Z – 24Z and 42Z – 48Z) dip in improvement in 

both plots is associated with a relatively low increase in res by *ACMEcore+ during these periods.  

The contribution to BSS improvement by rel and res are comparable except during the afternoon 

when the rel improvement decreases somewhat and the res improvement becomes minimal.  

(Notice however that there is still a large improvement by bias removal in the afternoon.)  A 

possible explanation for the low afternoon res improvement is that as previously noted, the 

variability of T2 is relatively lower compared to the nighttime T2.  While including model 

diversity did increase EF spread in the afternoon (i.e., Figure 47d), the gain was not as spectacular 

as at night in which a much greater widening of the forecast PDF was required.   

 Figure 54 shows the BSS for ocean-masked WS10 > 18 kt (an operationally significant event) 

and supports the conclusion that *ACMEcore+ provides the best FP and that bias correction and 

inclusion of model diversity in a SREF is critical.  However, it is also evident in Figure 53c & d 

that the improvement by *ACMEcore+ was much less for WS10 compared to the improvement for 

T2 because the increase in spread by model diversity did not make as significant an impact as with 

T2, evidenced by Figure 48c & d.  Another observation in Figure 54 is that the difference between 

ACMEcore and ACMEcore+ (either before or after bias correction) is greater earlier in the forecast 

cycle, suggesting that including model diversity is more important for earlier lead times.  This 
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supports the WS10 dispersion diagrams showing that model error contributes a larger fraction of 

the total forecast error in the earlier lead times. 

 The WS10 results demonstrate that the greater improvement over land when including model 

diversity is not simply a statistical artifact.  That is, one might argue that for T2 the higher unc and 

lower BSS of the ocean-masked data provide more of an opportunity for improvement so the 

comparison is unfair.  The counter to that argument is that for WS10 there is lower unc and higher 

BSS (not shown) but the same result of greater improvement over land. 

 Figure 55 gives the relative operating characteristic skill score (ROCSS) results for the three 

events we studied.  In general ROCSS provides a more obvious analysis of the utility of FP and is 

considered to be an upper bound of overall forecast value whereas the BSS is the lower bound 

(Jolliffe and Stephenson, 2003).  (I.e., comparing Figure 55 to Figure 51, Figure 52, and Figure 

54, the ROCSS is consistently higher than the BSS.)  Figure 55 confirms the higher utility of 

*ACMEcore+ over *ACMEcore.  This analysis also shows that the bias removal may not have 

worked well for WS10 or for MSLP in the late afternoon.  However, this is not a conclusive result 

since as Marzban (2003) pointed out, the area under the ROC is not good at discriminating 

between two EF systems that performed well for a certain event. 

C. ACME and Analysis Uncertainty 

 Recall that the purpose of the ACME with its additional members was to mitigate the 

problems associated with a small ensemble by further sampling analysis uncertainty, thereby 

producing more ICs and boosting ensemble size.  This was accomplished by mirroring each of the 

core analyses about the centroid analysis.  In this section we will show that ACME was 

successful at generating new ICs (based on the core analyses) that produced valid, unique 

forecasts with valuable information.  However, ACME failed to significantly improve overall 

skill commensurate with the increase in ensemble size. 
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1. Skill and Utility 

 Figure 56 is a comparison of the overall deterministic performance of the ACME members.  

The core members are named after the analysis that provided their IC and LBCs (listed in Table 

3).  The centroid forecast is called ‘cent’, and, following Equation (19), a mirrored member’s 

name is the name of its source analysis primed.  (E.g., the cmcg′ member was run using the IC 

and LBCs created by mirroring the cmcg across the centroid analysis.)  Figure 56 shows that the 

mirrored members are basically on a par with the core members.  If the mirrored members were 

not valid forecasts, their average RMSEs and rankings would stand out as higher than the core’s. 

 We did not include a similar plot for T2 in Figure 56 since, as discussed above, T2 skill is so 

heavily dependent on the model that varying the IC makes little difference (recall Figure 31).  For 

mesoscale parameters with error that is primarily model dependent, expanding or improving ICs 

contributes almost nothing to improving SREF performance.  To improve FP of T2, one should 

concentrate on representation of the model’s stochastic error since, in general, any reasonable set 

of ICs may be used.  There is little need for an approach such as ACME for these types of 

parameters. 

 A very positive result from the ACME system is the excellent performance of cent.  It has an 

average RMSE equal to or better than the best core member and has the best average ranking.  

The high skill of cent is what convinced us to use the centroid analysis as verification.  The 

centroid analysis is normally the best estimate of truth since averaging of the eight analyses likely 

cancels out a large portion of the errors that exist in the individual analyses (Richardson, 2001a).  

It may be argued that the superior performance of cent is a statistical artifact of its smoothness at 

the initialization.  However, cent is not a smoothed average of other forecasts but a complete 

MM5 run containing information on all scales.  Note that the centroid analysis includes the 
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obviously inferior analysis data from tcwb, which likely degraded cent.  The superiority of cent 

would likely stand out even further if tcwb was omitted from the centroid analysis. 

 The fact that tcwb stands out as an inferior member again raises the question of when does a 

member add benefit to an ensemble.  In section II.B.1 (discussion of the perturbed-model 

method) we explained how a member with lower average skill can still add value to the ensemble 

if it can occasionally perform better, but there is logically a limit to that effect.  If a member 

rarely or never performs well, it may in fact degrade the overall performance of the ensemble.  To 

test if that is the case with tcwb, we removed tcwb from both *PME and *ACMEcore and 

computed BSS for P(MSLP < 1001 mb) to compare with the full ensembles’ BSS results.   Note 

that there should be a slight reduction in BSS (on the order of 0.1%) due to the decrease in 

ensemble size from 8 to 7 members.  Figure 57 shows that the 7-member ensembles with tcwb 

withheld performed better, indicating that tcwb is indeed harmful to our SREF systems.  (The 

effect shows up more clearly in *PME than in *ACMEcore since the *ACMEcore members are 

much more similar.)  It may be that tcwb can occasionally perform well but evidently it is inferior 

so much of the time that its overall effect is to degrade the estimation of the forecast PDF.  As a 

check on this effect, we also found BSS after removing a superior member (ukmo) and after 

removing a member with average skill (ngps).  Figure 57 shows that without ukmo, probabilistic 

skill was significantly reduced and without ngps, was reduced 30-50% as much as the reduction 

from withholding ukmo.  We conclude then that the higher the deterministic skill of a member, 

the more value it adds to an ensemble.  Lower skilled members can add value to an ensemble but 

must perform well a significant portion of the time.  

 A notable difference between the mirrored and the core members is that the mirrored 

members do not have any outstandingly good members whereas the core has the avn and ukmo.  

Furthermore the average performance of the core members is itself mirrored in the mirrored 
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members.  (E.g., ukmo performs great but ukmo′ performs poorly; gasp performs poorly but gasp′ 

performs well).  It is easy to see how combining information from the good cent IC with the bad 

tcwb IC would result in the tcwb′ forecast being better than the tcwb forecast.  However, there 

were cases where the tcwb′ forecast would also outperform many ACME members including 

cent. Evidently the vector between tcwb and cent can occasionally be a very good estimate of the 

analysis error.  Unfortunately, we found no clear way to identify such cases a priori. 

 If we were to accept that the ACME members are additional samples from the same forecast 

PDF as ACMEcore and that ACMEcore exhibited statistical consistency (which of course it does 

not), then we would expect ACME to improve BSS ~0.03 over ACMEcore due solely to the 

increase in ensemble size from 8 to 17 (see section II.C.3).  Figure 58 and Table 8 show that 

*ACME came nowhere close to this expectation and performed about the same as *ACMEcore.   

Varying the event thresholds produced similar results (not shown).  Of the three parameters 

studied, *ACME was only able to slightly improve MSLP because, due to its synoptic nature, 

MSLP is more sensitive to IC variations. 

 An explanation for the lack of improvement by *ACME is that producing more samples from 

a deficient forecast PDF may result in a more detailed, but still deficient, description of the 

possible future states.  Recall that an ideal ensemble with a small n has greater variance in its 

sampling distributions of the mean and spread so that the n members are unable to consistently 

represent their PDF and FP skill is degraded.  Increasing n for an ideal ensemble allows the 

forecast PDF to match the true PDF more consistently.  ACME does result in a more consistent 

representation of the PDF from which the members are drawn, but, since it is not an ideal 

ensemble, ACME does not provide a better representation of the true PDF.  In other words, 

ACME suffers from the same basic problems as ACMEcore but ACME does improve upon the 

poor self-consistency of ACMEcore. The original hope of ACME was that it could not only 
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provide new valid samples but also expand the forecast PDF to sample regions of phase space 

where ACMEcore failed to portray truth.  In the next section we show evidence that ACME was 

able to encompass more truth but did little toward better portrayal of truth. 

2. Dispersion 

 The dispersion diagram for MSLP (Figure 59) shows that the average spread of *ACME is 

slightly lower compared to the spread of *ACMEcore.  The lower spread may be due, in part, to 

the MM5 preprocessing of the ICs.  Recall that the mirroring perturbation factor was designed so 

that ACME would have the same initial spread as ACMEcore.   However, the MM5 preprocessing 

adjusts the fields to obtain vertical balance, thus reducing the initial variance.  Additionally, 

Figure 59 shows that on average, errors grow more slowly in *ACME compared to *ACMEcore so 

perhaps mirrored perturbations sometimes lie off the model attractor and must reconverge before 

growing.  Figure 59 shows that *ACME has roughly the same (perhaps slightly worse) lack of 

statistical consistency as *ACMEcore, supporting the conclusion that the additional sampling of 

ACME did not result in an improved representation of the forecast PDF. 

 This disappointing conclusion is tempered by the VRH results.  The lower missing rate (MR ) 

and VOP of *ACME in Figure 60a – c indicate that *ACME was able to produce many 

verification values that were not represented in *ACMEcore.  However, the missing rate error 

(MRE, difference from the ideal MR of 2 / n+1) reveals that *ACME performed about the same or 

slightly worse than *ACMEcore since the VRHs have about the same degree of nonuniformity.  In 

an absolute sense, *ACME encompassed more truth than *ACMEcore and provided valuable 

information.  However, considering that the expected amount of encompassed truth depends upon 

ensemble size, *ACME performed roughly the same or worse than *ACMEcore.   

 The VRH comparison for T2 in Figure 60c is quite different than that for synoptically forced 

Z500 and MSLP Figure 60a & b.  As discussed above, when the forecast error in a parameter is 
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dominated by the model, additional variations in the ICs provide little benefit.  Notice that the 

*ACME T2 MR decreased only slightly, the MR error greatly increased, and the VOP remained 

the same showing that *ACME was not able to provide new information.  WS10 in Figure 60c is 

an even mix of synoptic and model-driven error so *ACME was able to add some new 

information.  

 The additional encompassing of truth by *ACME for MSLP seems contradictory to the 

dispersion diagram results (Figure 59) that show a lower spread for *ACME, but it is possible to 

decrease the domain-averaged standard deviation and still increase spread over limited areas 

where truth was previously not encompassed.  Consider Figure 61 in which we compare 

occurrences of the verification in the extreme ranks and VZ of *ACME and *ACMEcore.  *ACME 

greatly reduced the MR from *ACMEcore, and almost did as well as *PME.  However, while 

*ACME helped reduce the really high VZ values of *ACMEcore, there was actually a slight VOP 

degradation by *ACME compared to the much improved *PME VOP.  The conclusion is that 

*ACME did very little toward portraying truth better.  Most of the reduction of the MR by 

*ACME occurred where *ACMEcore had already portrayed but not encompassed truth (i.e., where 

the verification occurred in an outside rank with a VZ < 3s).   In other words, *ACME only 

encompassed more truth where it was easy to do so and the major deficiencies (i.e., where truth 

really got away) of *ACMEcore still largely remain in *ACME. 

 Our final conclusion is that the ACME method is a sound way to further sample from the 

PDF defined by the core analyses, but ACME can not correct the deficiencies of ACMEcore.  The 

core analyses occasionally miss key information, such as missing a shortwave trough, and no 

amount of mirroring can produce what was missed.  Mirroring can, however, use the information 

available in the core analyses to create new plausible ICs, resulting in forecasts that provide a 

more thorough sampling of the forecast PDF of ACMEcore.  Particularly effective is the ability of 



148 

 

ACME to better sample the forecast PDF tails, which reduces the MR.  ACME cannot, however, 

magically sample far outside of the forecast PDF of ACMEcore to make up for what ACMEcore 

cannot represent.   

D. Future Research 

 The results presented in this chapter suggest several areas of future research, the first of 

which is to investigate methods to improve the deficient dispersion of a mesoscale SREF. 

A possible technique to boost the synoptic-scale dispersion of our mesoscale SREF is to 

periodically nudge the MM5 forecast of each ACMEcore+ member toward the large-scale model 

from which it was forced, thus imposing the beneficial large-scale dispersion of the PME onto the 

mesoscale SREF.  In effect then, the PME would dictate the synoptic-scale error growth while the 

role of the ACMEcore+ would be to show what that growth implies for mesoscale forecast 

uncertainty. 

 Nudging the ACMEcore members would likely improve SREF of mesoscale parameters that 

have a large component of synoptic forcing, such as WS10 and precipitation, but it would not 

improve statistical consistency for parameters such as T2 that are mostly model dependent.  To 

improve the model-dependent parameters (and the others as well), additional ways to perturb the 

MM5 should be explored.  This could mean simply further tuning the perturbations of ACMEcore+, 

such as increasing the magnitude of the SBPs, or digging deeper into MM5 to find additional 

model aspects to perturb. 

 Another approach to investigate for increasing dispersion of model dependent, mesoscale 

parameters is to increase model resolution.  Such an increase would permit modeling of more 

scales of motion and should produce higher, more accurate dispersion among the ACMEcore+ 

members. Higher resolution would also have the added benefit of reduced reliance on physical 

parameterizations so their errors would no longer have to be approximated.  This is obviously the 
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most costly of solutions to the low dispersion problem so its benefit would have to be weighed 

against the processing requirements.  

 Another subject for future research is continued investigation into the multimodel vs. 

perturbed-model methods for representing model uncertainty.  Nudging ACMEcore+ members to 

eliminate the reduced dispersion of the LAM may allow a more fair comparison of the two  

methods.  However, nudging would also have the potentially beneficial effect of driving the 

model diversity of the PME into ACMEcore+ so that ACMEcore+ would have both multimodel and 

perturbed-model components.  Nudging would therefore only further cloud the distinction 

between the skill of PME and ACMEcore+.  One way to truly compare multimodel and perturbed-

model is to design an 8-member perturbed global model to compare against the PME.  That is, 

make an ensemble using 8 perturbed-model versions of avn which use the PME ICs and compare 

skill of that ensemble to that of the PME.  

 Calibration of FP is a research issue that we mostly ignored except for the partial calibration 

by bias correction.  The success of our bias correction raises some interesting questions 

concerning optimization of postprocessing.  A calibration technique such as the weighted ranks 

method is designed to correct for systematic error of the ensemble as a whole and not by 

individual member.  The advantage of a rigorous calibration is that it can correct for systematic 

dispersion problems besides model bias.  However, a bias correction done on each member 

separately is much better at removing bias from the system since members may have much 

different biases.  Therefore, the way to achieve the highest quality FP from a SREF system is 

likely to postprocess by bias-correcting each member followed by application of a calibration 

technique before producing FP.  To test this one could compare the skill of bias-corrected only 

FP, calibrated only FP, and bias-corrected/calibrated FP. 
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 A potentially valuable calibration technique is to take advantage of the fact that the ensemble 

members are not equally likely.  We found that ACMEcore+ members are not equally likely 

because of the varied skill levels of their ICs and choice of MM5 physics options.  For EF in 

general, unequal skill among ensemble members is acceptable and even beneficial as long as each 

member can perform well some of the time.  If the relative skill among the members could be 

determined a priori, it would benefit both probabilistic and deterministic forecasting.  For FP, the 

relative skill levels could be translated into weights for use in calculating FP.  For deterministic 

forecasting, the weights could be used to create a weighted ensemble mean as the best guess 

forecast. 

 The weights could be determined simply by the long-term average RMSE of the members.  

Unfortunately, Ebert (2001) showed that for a PME, weighting by long-term performance does 

not add value because the relative skill among members likely varies both spatially and 

temporally.  To account for the temporal variation one could calculate the most recent forecasts’ 

relative skills, which assumes there is a high level autocorrelation in a members’ relative skill 

from one forecast cycle to the next.  Simultaneously accounting for the spatial variation 

component is more difficult because if we are primarily concerned about a limited area (such as 

our inner 12-km domain) the relative skill may vary rapidly from one cycle to the next.  A 

possible solution is to determine the relative skill among the members in the part of the 

atmosphere that will affect the 12-km domain in the current forecast cycle.  This could be done 

using the MM5 adjoint model to define a 24-h sensitivity field for the low level flow over WA.  

The sensitivity field could then be multiplied by the RMSE field of the previous ACMEcore+ run 

(using some representative parameter such as 700 mb GPH).  This would reveal the relative 

ranking of the members based on how well they have recently represented the large-scale flow 

that will influence WA’s weather in the current forecast cycle.  That information is carried into 
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the current forecast cycle since the current cycle’s analysis is largely based on the first-guess 

solution from the previous forecast cycle.  

 Lastly, the results of ACMEcore+ showed that while there is definitely room for improvement, 

there is utility in SREF products.  This fact needs to be further demonstrated to the weather 

forecast community through further studies and design of practical applications. 
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(a) Mean Z500 and RMS for Oct 2001 – Mar 2002 

(b) Mean Z500 and RMS for Oct 2002 – Mar 2003 

 
Figure 41.  Mean Z500 and RMS of the time-filtered Z500 for the (a) 2001-2002 and the (b) 2002-
2003 cool seasons (from Figure 5c & d in McMurdie and Mass, 2003).  
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Figure 42.  Reliability diagram for 36-h FP of the event MSLP < 1001.0 mb.  Compare 
ACMEcore+ and *ACMEcore+ for improvement by bias correction.  Compare *PME and 
*ACMEcore+ for improvement of a multimodel system over a perturbed-model system.  Data for 
this plot is found in Table 7.
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Figure 43.  BSS and its components for FP of the event MSLP < 1001.0 mb. 
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Figure 44.  BSS and its components for FP of T2 < 0°C.
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Figure 45.  Dispersion diagram (without MSE of EF mean) for MSLP on the outer 36-km domain 
for (a) uncorrected forecasts, and (b) bias-corrected forecasts.
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Figure 46.  Effect of bias correction on VRHs of forecast MSLP with a 24-h lead time on           
(a) PME, (b) ACMEcore, and (c) ACMEcore+.  The thick-lined VRHs were constructed from the 
original forecasts before bias correction and the shaded VRHs were constructed from the         
bias-corrected forecasts.  
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Figure 47.  Dispersion diagrams showing EF spread (dashed lines with open points) and MSE     
of the ensemble mean (solid line with filled points) for bias-corrected forecasts of (a) Z500,         
(b) MSLP, (c) WS10, and (d) T2.  The PME results are shown separately from the ACMEcore and 
ACMEcore+ since it is such a different system.  In (a) and (b), only the MSE of the ACMEcore mean 
is displayed since the MSE of the ACMEcore+ mean is <1% different.  Local times (L) in 2 digit 
hours are marked on (c) and (d) to emphasize the diurnal signal of the error.  The ? marks by the 
12-h MSE results indicate that there is uncertainty in the result (see text). 
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Figure 47 continued.
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Figure 48.  VRHs that show the impact of including model diversity for forecast (a) Z500,           
(b) MSLP, (c) WS10, and (d) T2 with a 36-h lead time.  VRHs with a dashed outline were 
constructed from the *PME forecasts.  VRHs with a thick outline were constructed from the 
*ACMEcore forecasts.  Shaded VRHs were constructed from the *ACMEcore+ forecasts.  
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Figure 49.  Special dispersion diagrams. (a) As in Figure 45b except that the difference in spread 
at 12 h between *PME and *ACMEcore+ was uniformly added (at all lead times) to the 
*ACMEcore+ spread to make up for the spin-up effect in MM5.  (b)  Comparison of ACMEcore+ 
spread for WS10 from the 12-km and 36-km domains.
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Figure 50.  Z500 ensemble mean and VZ for *ACMEcore+ and *PME forecast initialized 20 Dec 
2002 at 00Z, along with corresponding centroid analyses.  The inset VOP values are specific to 
this forecast case rather than averaged over all cases.  VZ < -3 is lightly shaded and VZ > 3 is 
darkly shaded to show regions where the verification is an outlier with respect to the EF. 
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Figure 50 continued. 
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Figure 51.  BSS and its components for FP of MSLP < 1011 mb using ocean-masked data.
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Figure 52.  BSS and its components for FP of T2 < 0°C using ocean-masked data. 
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Figure 53.  BSS improvement by *ACMEcore+ over *ACMEcore for FP of the events: (a) T2 < 0°C, 
(b) Ocean-masked T2 < 0°C , (c) WS10 > 18 kt, and (d) ocean-masked WS10 > 18 kt.  The average 
(over all lead times) SC and uncertainty for the events are indicated in each plot. 
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Figure 54.  BSS and its components for FP of WS10 > 18 kt using ocean-masked data. 
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ocean-masked data.
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Figure 57.  BSS for P(MSLP < 1001 mb) for regular *PME (solid curve with triangles) and 
regular *ACMEcore (solid curve with circles) compared to 7-member versions of the ensembles 
with tcwb withheld (dotted curves), gasp withheld (dot-dash curve), and ukmo withheld (dashed 
curve).  
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Figure 58.  BSS for P(MSLP < 1001 mb) showing similarity between *ACMEcore and *ACME.  
*PME results are included for reference. 
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Figure 59.  MSLP dispersion diagram for *ACMEcore and *ACME.
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Figure 60.  VRH comparisons between *ACME and *ACMEcore.  Ideal MRs are 22.2% and 
11.1% for *ACMEcore (n = 8) and *ACME (n = 17) respectively. 
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Figure 61.  Z500 verification rank (VR) and VZ for 36-h lead time of the forecast initialized at 00Z, 
20 Dec 2002 (the same case as in Figure 50). 
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IV. Summary 

 The basic premise of ensemble forecasting (EF) is that due to the inability to perfectly 

observe and model the atmosphere, the only complete way to predict its future state is to include 

the inherent uncertainty as part of the forecast process.  In general, forecast uncertainty primary 

results from errors in the analysis (i.e., model initial condition, IC) that grow nonlinearly (since 

the atmosphere is a chaotic system) during forecast integration.  Depending upon the 

phenomenon and scale of interest, model error can also be a large source of forecast uncertainty. 

 EF is a method to incorporate both analysis and model uncertainty in the forecast process by 

using multiple runs of a numerical weather prediction (NWP) model where the IC and model of  

each ensemble member (i.e., individual model run) is varied according to their suspected 

uncertainty.  The resulting set of solutions at any forecast lead time defines a probability density 

function (PDF) of future states of the atmosphere based on the uncertainties in the analysis and in 

the model.  Given a large number of ensemble members, the forecast PDF is then a complete 

description of the future that widens with forecast lead time, reflecting the increase in forecast 

uncertainty.  The challenge of EF is that, since analysis and model errors are not well understood, 

they are difficult to accurately represent in an ensemble system, making the ensemble’s forecast 

PDF only an approximation.  With a good approximation to the forecast PDF, there are many 

potentially beneficial EF products.  In this research, we analyzed the skill of ensemble-based 

forecast probability (FP) for different events of interest (e.g., temperature less than freezing, or 

10-m wind speed greater than 18 kt).   

 While there has been much success in approximating the forecast PDF for medium-range (2 − 

10 days) ensemble forecasting (MREF), development of effective short-range (0 − 48 h) 

ensemble forecasting (SREF) has lagged behind for several possible reasons.  First, the scale and 

parameters of interest in the short-range are less predictable so their errors may saturate too 
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quickly for an ensemble to be of use (i.e., a prediction based on climatology would have more 

value).  Secondly, model uncertainty may have a larger impact on SREF parameters and it is 

difficult to represent such uncertainty in an ensemble since it is so poorly understood.  Lastly, 

error growth is primarily linear in the short-range, which presents challenges for defining the ICs 

for SREF.  For MREF, nonlinear error growth generates large, useful differences among 

ensemble members from almost any reasonable set of ICs.     

 The goal of this research was to explore the major issues of SREF and determine the 

effectiveness of real-time, mesoscale SREF using current capabilities and methods.  A unique 

SREF test bed was built at the University of Washington by running the Fifth-Generation 

Pennsylvania State University−National Center of Atmospheric Research Mesoscale Model 

(MM5) using analyses from different operational forecast centers as ensemble ICs.  The test bed 

included the following four distinct systems that produced 0 – 48-h forecasts (in real time, 

initialized daily at 00Z) over a large dataset of 129 cool season (Nov 2002 – Mar 2003) forecast 

cases over the Pacific Northwest (see Table 2, p 118). 

1) PME (Poor Man’s Ensemble, see Table 3, p 119):  8-member ensemble of low-resolution 
global models—a multimodel, multianalysis system. 

 
2) ACMEcore (Core of the Analysis-Centroid Mirroring Ensemble):  8-member mesoscale 

ensemble running the MM5 (with 36/12-km nested domains and 32 levels) from the 
PME’s analyses as initial/boundary conditions—a single-model, multianalysis system. 

 
3) ACMEcore+ (see Table 4, p 120):  8-member ensemble like ACMEcore but with variations 

to MM5—a perturbed-model, multianalysis system. 
 
4) ACME:  17-member ensemble as an expanded version of ACMEcore —a single-model 

system with multi, centroid, and mirrored analyses. 
 

For verification of these systems, the centroid analysis (mean of all 8 core analyses) was used on 

the outer, 36-km domain and the 20-km Rapid Update Cycle model analysis (RUC20) was used 

for the inner 12-km domain.  A variety of statistical tools were used to analyze deterministic skill, 
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ensemble dispersion, and FP skill/value of 500-mb geopotential height (Z500), mean sea level 

pressure (MSLP), 10-m wind speed (WS10), and 2-m temperature (T2). 

 The first question we sought to answer was whether a group of independent analyses (i.e., 

multianalysis approach) provides a useful estimate of analysis error for SREF.  Since the majority 

of forecast uncertainty for a synoptic-scale parameter comes from analysis error, skillful FP is 

only possible when ensemble ICs are able to represent that error well.  The PME, ACMEcore, and 

ACMEcore+, which used the multianalysis approach, had positive FP skill for parameters with 

strong synoptic-scale influence (c.f., Figure 43, p 154 and Figure 54, p 167), implying that 

averaged over many forecast cases, analysis error was well represented by the spread of the 

analyses.  However, the multianalysis approach is often hampered by high correlation among the 

analyses, which is discussed below. 

 For several reasons, the key to the success of our multianalysis approach for SREF is that the 

differences among the analyses are predominantly synoptic-scale.  Ensemble ICs should include 

synoptic-scale differences since synoptic-scale errors are the largest errors generated by an 

analysis cycle.  Secondly, it is the synoptic-scale errors that grow the largest so they must be 

included in ensemble ICs to consistently represent forecast uncertainty.  Lastly, in the midlatitude 

cool season and over complex terrain, much of the mesoscale uncertainty is driven by the 

synoptic-scale error growth so small-scale errors may not need to be represented in the ICs. 

 The second question concerning analysis error was the possibility of expanding upon the core 

analyses to increase ensemble size beyond the limits imposed by the multianalysis approach (i.e., 

number of ensemble members equals the number of available analyses, which was 8 in our case).  

The purpose of the ACME system was to address this question and ameliorate the problems 

associated with small ensemble size.  A small ensemble often does a poor job at representing the 

PDF from which the members are drawn, resulting in degraded FP.    
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 ACME generated additional ICs from the information in the eight core analyses by using the 

difference between each core analysis and the centroid analysis as an estimate of the analysis 

error vector.  The actual analysis error vector, which points in model phase space from the 

analysis to the true state, can never be known.  The components of each of our eight estimates of 

the analysis error vector were made up of the grid point by grid point difference between the 

centroid analysis and each core analysis of all state variables at all model levels.  Each estimated 

analysis error vector contained structural information (e.g., variation in position of a long wave 

trough) on the likely analysis errors besides error magnitude.  To generate another possible IC, an 

analysis error vector was added back onto the centroid analysis, producing a mirror of an original 

core analysis about the centroid analysis.  Lateral boundary conditions (LBCs) were handled in 

exactly the same manor. 

  The mirroring process of ACME produced an additional 9 ensemble members since the 

centroid analysis and each of the 8 mirrored ICs/LBCs was used to run MM5.  We found that 

these additional members yielded unique solutions that were generally on a par with the forecasts 

from the core analyses (c.f., Figure 56, p  169).  We also found that there was considerable 

variability in skill among the members, including among the core members, which is generally 

considered to be a detrimental attribute for an EF system. 

 In strict EF theory, it is required that all members be independent and equally likely so that 

they can be considered random draws from the forecast PDF.  However, this work demonstrated 

that an effective ensemble can be made up of unequally skilled members.  A member with lower 

average skill can add value to an ensemble as long as it occasionally performs well.  Only a 

member that performs poorly the majority of the time can degrade the skill of an ensemble (c.f., 

Figure 57, p 170).  
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 Comparing ACME and ACMEcore, we found that ACME unfortunately did not demonstrate 

an improvement in skill commensurate with the increase in ensemble size from 8 to 17.  

However, ACME was better able to encompass (i.e., completely surround) the verification 

compared to ACMEcore, so the additional ACME members did provide valid forecasts not 

produced in ACMEcore.  To explore how ACME could appear to be of no additional value for FP 

but at the same time be valuable for encompassing truth more often, we developed a new analysis 

tool called the standardized verification (VZ). 

 For highly reliable FP, the verification should appear to be drawn from the PDF represented 

by the ensemble members—an objective termed ‘statistical consistency’.  VZ tests for failure to 

meet statistical consistency by subtracting the ensemble mean from the verification at each grid 

point and then dividing by the ensemble standard deviation (s), thus translating the verification 

into s units.  A large VZ value (chosen as > 3 or < -3) indicates that the verification was an outlier 

with respect to the ensemble PDF (i.e., truth “got away” from the ensemble and was not a random 

draw from the ensemble’s PDF).  Comparing plots of VZ, we found that ACME and ACMEcore 

shared the same areas where the verification was an outlier (c.f., Figure 61, p 173).  Furthermore, 

the areas where ACMEcore had failed to encompass the verification, but ACME did, were actually 

areas where | VZ | < 3 for ACMEcore (i.e., verification was not an outlier).  Therefore, the apparent 

gain made by ACME in encompassing truth was of little value since it did not correct the 

problems (i.e., where truth got away) of ACMEcore, which is why ACME provided no 

improvement in FP skill. 

 Our conclusion concerning use of independent analyses as ensemble ICs is that, while the 

differences among the analyses do represent analysis error well on average, there are often 

occasions when the analyses share similar errors and are too highly correlated.  For example, over 

a poorly observed area of the Pacific Ocean all the analyses may omit a developing short wave, 
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which leads to a large region in the forecast fields where truth gets away from the ensemble since 

none of the members would contain the ensuing cyclone.  The mirroring method was successful 

at producing more valid samples from the forecast PDF of ACMEcore, but ACME did not improve 

FP skill because it only provided more samples from a deficient PDF.  The additional members 

of ACME could only vary the position of short waves represented in ACMEcore but could not 

produce short waves that were entirely missed by all the analyses.  A valuable outcome from the 

ACME system was that the MM5 run from the centroid analysis displayed the best overall 

deterministic performance among the individual ensemble members.  This likely means that the 

centroid analysis is the best representation of synoptic-scale truth, although it does tend to smooth 

out structures.  

 Another major question we researched was by how much and by what means do model 

deficiencies (both stochastic and systematic error) impact SREF skill and value?  Our results 

showed conclusively that model deficiencies do play a significant role in SREF.  Stochastic errors 

(i.e., random model errors) are a large source of uncertainty and must be accounted for within a 

SREF system in order to maximize utility, particularly for mesoscale, sensible weather 

phenomena.  Systematic errors (i.e., model biases) are clearly not part of the forecast uncertainty 

but are a large part of the forecast error and can seriously degrade ensemble performance if not 

corrected. 

 To eliminate the bulk of the systematic error, we applied a simple grid-based, 2-week, 

running-mean bias correction to each member separately.  This approach was based on findings 

that biases are predominantly linear and dependent on location, forecast lead time, weather 

regime, and ensemble member (c.f., Figure 24 – Figure 26, p 102 – p 104).  To demonstrate a 

method for real-time application, we used the previous two weeks as training data for the bias 

correction of each forecast cycle.  A 2-week training period was used to: 1) capture the short 
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timescale variability in bias that arises from shifts in weather regime, and 2) obtain a reasonably 

sized sample of data at each point.  We found that forecast bias can be influenced by both the 

model and the analysis, so fixing the IC and model for the members in our ensemble systems 

made bias correction more effective. 

 The larger and more consistent the bias in a parameter, the more improvement was realized 

from the bias correction (c.f., Figure 28 − Figure 34, p 106 – p 112).  The PME members 

generally had lower bias compared to the ACME system members since the large-scale models 

have lower resolution and are better tuned.  A mesoscale model produces more bias as it attempts 

to represent smaller-scale phenomena with additional parameterizations. 

 Bias correction benefited SREF by greatly improving FP skill by: 1) improving reliability by 

adjusting the mean of the ensemble’s PDF to match the mean of the verification’s PDF, and 2) 

improving resolution by narrowing the ensemble’s PDF where members had opposing biases.   

Figure 43 (p 154) shows how bias correction improved the performance of ACMEcore by 6 h, 

which is significant for a short-range forecast.  An additional benefit of bias correction was that 

analyzing bias-corrected results led to firmer conclusions, such as the importance of accounting 

for stochastic model error.  For example, in Figure 52 (p 165), it is only after bias correction that 

ACMEcore+ stands out as superior to ACMEcore at all lead times.  

 The ACMEcore+ system was designed to account for model uncertainty and explore how 

inclusion of model diversity affects a SREF on the mesoscale and for sensible weather.  

ACMEcore+ (see Table 2, p 118) applied the perturbed-model strategy in which the members used 

the same ICs as ACMEcore but each was given a unique version of MM5.  The goal of this 

approach was to generate large and realistic dispersion that represented the model uncertainty of 

MM5.  Model perturbations consisted of different combinations of physics options (planetary 

boundary layer, cloud microphysics, cumulus, and radiation schemes) and randomly perturbed 
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surface boundary parameters (SBPs) (sea surface temperature, moisture availability, albedo, and 

roughness length).   

 Comparing ACMEcore and ACMEcore+, we found that inclusion of model diversity 

dramatically increased ensemble spread, which improved statistical consistency but still fell well 

short (c.f., Figure 47c & d, p 158).  (For statistical consistency, ensemble spread must match the 

mean square error of the ensemble mean when averaged over many forecast cases.)  So while 

ACMEcore+ was able to improve FP skill (discussed below), there is still room for improvement in 

our mesoscale SREF methodology.  This analysis also revealed a dramatic lack of error growth 

for T2 (Figure 47d) but the error was not saturated in the short range.  Since ensemble spread was 

such a small fraction of forecast error for ACMEcore (in which all members shared the same 

version of MM5), we concluded that for our dataset the error in T2 is dominated by model error.  

In other words, analysis error and the error growth it produces contributes very little to the 

observed T2 forecast errors—a result completely different from that for a variable with strong 

synoptic-scale influence, such as WS10.  That finding led to a general conclusion:  the relative 

influence of analysis and model uncertainty for SREF is greatly dependent upon the scale and 

variable of interest. 

 ACMEcore+ did display greatly improved (in both reliability and resolution) FP skill over 

ACMEcore, revealing that model errors are a large part of the forecast error at the mesoscale and 

can be at least partly represented by the perturbed-model approach (c.f., Figure 52, p 165 and 

Figure 54, p 167).  Unlike bias removal that improves skill by narrowing the forecast PDF away 

from values where the verification is unlikely to occur, including realistic model diversity 

improves skill by widening the forecast PDF toward values where the verification may occur.  

We also confirmed that including model diversity is more important near the surface over land 

where model parameterizations have the greatest influence (c.f., Figure 53, p 166). 
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 Further study on the issue of representation of model uncertainty was performed by 

comparing the multimodel approach of the PME to the perturbed-model approach of ACMEcore+.  

It was expected that the PME would exhibit greater dispersion since the model differences among 

the PME members are likely much greater.  We found that the PME was actually slightly 

overdispersive (c.f., Figure 47a & b, p 158) and performed much better on the synoptic scale 

compared to ACMEcore+ (c.f., Figure 51, p164).  Just as the differences between model options in 

ACMEcore+ appear to represent model error to some degree, the large differences among the PME 

members’ models can skillfully represent model error.  Furthermore, the greater model diversity 

within PME makes it more skillful than ACMEcore+.  The downside of the PME is that it does not 

include the desired information on the mesoscale—the reason for the implementation of 

ACMEcore+. 

  We proposed a two-part strategy for improving the low dispersion problem of ACMEcore+, 

which should also improve FP skill.  First, the MM5 forecast of each ACMEcore+ member should 

be periodically nudged toward the large-scale model from which it was forced, thus improving 

the large-scale dispersion.  Besides greater model diversity, the PME produces more dispersion 

than ACMEcore+ because the PME grows the large-scale errors globally whereas a mesoscale 

ensemble reduces error growth by running on a limited-area domain, even with updated lateral 

boundaries.  The second part of the solution deals with small-scale error growth.  We found that 

our 12-km domain was able to produce greater ensemble spread compared to the 36-km domain 

since finer model resolution is able to capture variability on smaller scales of motion (c.f., Figure 

49b).  We proposed that further increasing the grid resolution should produce higher, more 

accurate dispersion among the ACMEcore+ members and thus more highly skilled FP.  Higher 

resolution would also have the added benefit of reduced reliance on physical parameterizations so 

their errors would no longer have to be approximated. 
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 A final comment on the issue of representing stochastic model error in SREF concerns how 

much improvement we should expect from more thorough error representation.  While it is clear 

that there is value in either the multimodel or perturbed-model approaches, their chief limitation 

is the use of gross model differences (either by differences between models or model options) to 

approximate model error rather than rigorously perturbing all parameterizations individually.  

How much more value could be realized from SREF by perturbing the model more rigorously?  

We speculate that such an effort would not be worth the cost since we may never truly understand 

many aspects of model error and therefore never be able to perturb them rigorously.  It may be 

more beneficial to SREF to focus on improving the mesoscale model to reduce the uncertainty 

within the model. 

 In analyzing our MM5 SREF results, it became clear that there are significant deficiencies in 

current mesoscale modeling.  For example, the error in T2 is about the same in the first few hours 

of the forecast as it is at the 48-h lead time, which reveals the models inability to represent 

surface and boundary layer effects.  Analysis of SREF may help to identify the most deficient 

aspects of the model.  Dispersion diagrams such as Figure 47 (p 158) reveal poor model 

dispersion and point out where model options may be unable to represent certain atmospheric 

behaviors.  Plots of standardized verification such as Figure 61 (p 173) identify structures that are 

not represented by the forecasts and may be traced to model or analysis deficiencies. 

 In closing, this research was not an attempt to build an ideal SREF but rather an opportunity 

to realize most of the potential SREF benefits by employing sound methods that are currently 

computationally feasible.  Detailed analysis revealed that while there are limitations to SREF, 

there is value in mesoscale SREF even with today’s capabilities.  Intercomparison of our different 

systems yielded answers to basic SREF issues that apply to the development of more optimal 

SREF systems in the future.  
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Appendix I:  EF Statistical Toolbox 

 This appendix presents statistical techniques for evaluating the quality of an EF system, 

which is not a straightforward matter.  Similar challenges as faced by deterministic forecast 

verification are present for evaluation of EF, such as verification on the appropriate scales, 

differences between observation-based and model analysis-based verification, interpolation of 

data from observation locations to model grid points or vice versa, and errors or biases in the 

verification itself.  For EF, there is the additional problem of verifying a stochastic-type forecast 

with deterministic observations since stochastic observations are generally not available.  The 

tools explained here were designed to meet these challenges, but each has unique strengths and 

weaknesses.  When used collectively these tools represent a fair and thorough means to evaluate 

and compare EF systems. 

  There are two general types of EF statistical evaluation tools: consistency tools and utility 

tools.  A consistency tool evaluates whether the verification can be considered a random sample 

from the PDF defined by the ensemble members.  This is a necessary condition for the ensemble 

to properly represent the forecast uncertainty and is often termed statistical consistency.  A utility 

tool evaluates whether or not an ensemble can produce useful information for a particular user or 

users in general.  An EF system can be statistically consistent but yet of little value.  For example, 

highly reliable forecast probability (FP) could be provided simply by the climatologic norm but 

such forecasts would not be able to distinguish between events and nonevents (i.e., possesses no 

resolution).  

A. Dispersion diagram 

 A dispersion diagram is a consistency tool that displays how well the mean square error 

(MSE) of the ensemble mean matches the ensemble variance.  Besides statistical consistency, it 
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also reveals the predictability error growth of the variable being examined.  This diagram and the 

Error Variance Diagram are thoroughly detailed in section I.B.1 (page 13) so will not be covered 

here.   

B. Verification Rank Histogram 

 The verification rank histogram (VRH) is a consistency tool based on Anderson’s (1996) 

binned probability ensemble technique.  It is a useful tool for visualizing statistical consistency 

and the dispersive character of an ensemble.  Construction of a VRH for a parameter such as 850-

mb temperature (T850) in Figure 62 begins by pooling a verification value at one location with the 

forecast values from an n-member ensemble, followed by sorting of the n+1 values from least to 

greatest.  The resulting rank (i.e., ordered position among the n+1 values) of the verification is 

recorded over many such trials (over space and/or time) to build a histogram of the number of 

occurrences within each rank.  Dividing the total verifications that occurred in each rank by the 

total number of trials gives the probability that the verification occurred within each rank. 

 An example of a hypothetical trial, just one datum for the construction of a Figure 62, is 

detailed in the “realistic forecast” in Table 9 and Figure 63.  With eight forecasts, there are nine 

possible ranks for the verification, so if the observed T850 is 2.1°C then a verification rank of 6 is 

recorded for this trial.  In the event that the verification exactly equals one or more of the EF 

forecasts, the rank is randomly assigned among its possible values (Hamill and Colucci, 1997).  

(E.g., if the observed T850 in the example was -0.18°C then verification rank is randomly assigned 

to rank 3 or rank 4.) 

 For a very large number of trials, a well calibrated EF produces a uniform VRH if the 

verification is a random draw from the same PDF as the EF’s forecast PDF.  In other words, on 

average the verification should have an equal chance of occurrence in each rank equal to              

1 / (n + 1) (Anderson, 1996).  This may seem counterintuitive at first given that the widths of the 
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ranges of possible verification values within each rank can vary quite a lot.  Consider the 

idealized forecast in Table 9 and corresponding plots in Figure 63a & b.  From a quantile point of 

view, the eight forecasts are uniformly spread, so, while each of the nine possible verification 

ranks has different sized ranges of the random variable T850, the probability of occurrence in each 

rank is still 1/9. 

 However, in the realistic example (Figure 63c and d) it is clear that, besides different sized 

ranges of T850, there is also unequal probability among the nine possible verification ranks.  For 

this single trial, the verification will most likely occur in rank 3.  But over many trials, the 

average probability of occurrence in each rank will equal 1/9.  This is why the principle of VRH 

uniformity for a well-calibrated EF applies only to very large amounts of data.   

 When the verification’s PDF is quite different from the EF’s forecast PDF, the probability of 

occurrence among ranks will not be uniform on average.  Figure 62 shows a u-shaped VRH, 

commonly found in EF, which indicates the verification has a greater variance compared to the 

forecast PDF since the verification occurs too often in the extreme ranks.  A u-shaped VRH may 

also indicate weak dispersion of the ensemble members since truth is too often not encompassed. 

 Note that a uniform VRH is a necessary but not sufficient condition for an EF system to be 

considered well calibrated.  It is possible for problems of an EF system to be camouflaged by 

various aspects of the forecast and verification data (Hamill, 2001).  For example, Hamill (2001) 

demonstrated how an overdispersive EF system that also has a conditional bias (positive at times 

and negative at other times) can produce a uniform VRH.  Furthermore, a uniform VRH is not a 

measure of an ensemble’s skill since uniformity could simply be achieved by forcing spread 

toward climatology, which would reduce skill. 

 A factor often analyzed from a VRH is the missing rate (MR), which is the total percentage of 

verifications that occurred in the outer ranks (i.e., rank 1 and rank n+1): 
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where Nx is the number of verifications that occurred in a rank x, and M is the total number of 

trials.  A MR greater (less) than the statistically consistent value of 2/(n+1) provides a quantitative 

evaluation of the underdispersion (overdispersion) of an EF system and also the ability of the EF 

to encompassed truth.  In comparing the MR between ensembles of difference size, it is better to 

compare the missing rate error (MRE) since the statistically consistent value of the MR depends 

on n: 
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C. Standardized Verification 

 As described above, the MR or MRE only reveals an ensemble ability to encompass truth and 

can not answer the more important question of an ensemble’s ability to portray truth.  (Recall our 

definition that the verification is portrayed if it occurs within three standard deviations from the 

mean of the EF’s approximate forecast PDF.)  A high value of MR could be associated with few 

or many verification values not portrayed depending upon the shape of the PDF tails involved.  

Also, a low MR (generally indicating overdispersion) does not necessarily mean that the 

verification is being portrayed too often. 

 A way to measure an ensemble’s ability to portray truth follows the statistical calculation of 

the standard normal random variable which transforms the value of a variable into units of 

standard deviation (Devore, 1995): 
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where VZ is termed the standardized verification, e  is the ensemble mean, V is the verification 

value, and s is the ensemble standard deviation, all at a single grid point.  This provides an 

excellent tool to determine when and if the verification is an outlier and not portrayed by the 

ensemble.  Furthermore, by plotting VZ for a single forecast case, it is possible to explore how 

truth gets away from an ensemble by revealing any structure to the regions where the verification 

occurs beyond 3s.  Note also that VZ carries a sign to indicate the direction (+, high; −, low) of the 

verification in relation to the ensemble mean.  Note that while VZ can reveal where an ensemble 

has failed its primary goal of portraying the truth, VZ can not show anything concerning whether 

the ensemble is overspread.  

  As another check for statistical consistency, we could also calculate an average VZ over 

many points:  
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where M is the number of data points being verified, and the m subscripts reference a single grid 

point.  However, while the expected value of ZV is around 1.0, it also depends upon ensemble 

size and the shape of the distribution.  Therefore ZV can not easily be used to measure the 

statistical consistency of an ensemble.  VZ is not truly standardized to 1.0 for our purposes. 

 An overall measure that is useful will be termed the verification outlier percentage, VOP: 
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Basically this finds the average percentage of the data pairs in which the verification is not 

portrayed by the ensemble.  That is, if the verification falls beyond 3s from the mean on either 

side, we call it an outlier with respect to the EF.  For a normal PDF, outliers beyond 3s are rare 

but are still expected to occur ~0.3% of the time.  Therefore, the amount that VOP exceeds 0.3% 

 (36) 
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is a measure of how much truth gets away from the ensemble.  However, for the same reason that 

VZ is not actually a standardized measure, that rule is only a rough guide. 

 It is more useful to compare the VOP between ensemble systems as a relative measure of 

each system’s ability to portray truth.  This is superior to comparing the missing rate because a 

similar value of missing rate can have a variable VOP.  For example, we found the missing rate 

for Z500 *ACMEcore+ to be 27.50% and 27.52% for both the 36- and 48-h lead times respectively, 

but VOP = 4.16% at 36 h and 3.85% at 48 h.  The VOPs indicate that *ACMEcore+ was better able 

to portray the truth at 48 h while the MR could not because of its limitations.  

D. Brier Score and Brier Skill Score 

 The Brier score (BS ), essentially a mean square error measure for FP (Wilks, 1995), 

measures the accuracy of a set of FPs for the same event.  With a large number of such forecasts 

and corresponding verifying observations, the BS is calculated as (Equation 7.22, Wilks, 1995): 
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where N  is the total number of forecasts/observation samples, and FPi is the forecast probability 

of the ith sample.  OBSi equals 1 if the event occurred for the ith sample, and 0 if it did not occur.  

Therefore, BS varies between 0 (perfectly accurate) and 1 (totally inaccurate). 

 The BS is very useful for comparing the relative skill of two sets of probability forecasts (e.g., 

forecasts from the ACMEcore vs. forecasts from ACMEcore+).  A more explicit measure for a single 

set of forecasts, called the Brier skill score (BSS), can be made by comparing the BS to BSclim, 

which comes from forecasts based on the climatologic probability of occurrence.  
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since BSperfect = 0 (Equation 7.23, Wilks, 1995).  Equation (39) gives the amount of improvement 

over the climatologically based forecasts.  The BSS is a utility tool where a value of 1.0 indicates 

perfect forecasts and a value of 0.0 or less indicates a worthless forecast. 

E. Reliability Diagram  

 A reliability diagram is a graphic display of the BS created by binning the continuous FP 

values into I discrete, contiguous bins of probability, then plotting the FP at the center of each bin 

(FP ′) against the corresponding observed relative frequency (ORF ′).  The BS ′ can then be 

calculated through decomposition into reliability (rel), resolution (res), and uncertainty (unc).  

 ( ) ( ) ( )SCSCSCFORN
M

FORPFN
M

SB
I

i
ii

I

i
iii −−−′−′−′=′ ∑∑

==

1
11

1

2

1

2  

 (rel) (res) (unc)  

where M is the total number of forecasts/observation data pairs for the event, i is the index for the 

I bins, Ni is the number of forecasts within the ith bin, FPi′ is the forecast probability at the center 

of each bin, ORFi ′ is the observed relative frequency for the forecasts in bin i, and SC is the 

sample climatology (Equation 7.28, Wilks, 1995).  Note that Equation (40) is an approximation to 

Equation (38) because of the binning of the forecast probabilities.  If FPi values were rounded to 

FPi′ values for use in Equation (38), or if I → ∞ in Equation (40), then the two equations would 

be equivalent. 

 The reliability diagram plots ORFi ′ vs. FPi′ so a perfectly reliable forecast follows a line of 

slope = 1.0 starting at the origin.  (E.g., for the set of all cases in which 20% chance of occurrence 

was forecast, the event should be observed to occur for 20% of those cases.)  The rel term is a 

measure of the distance away from the perfect forecast line weighted by the number of forecasts 

at each FPi′.  Better forecasts result in a smaller rel and thus a BS  ′ closer to zero.  Note that a 

forecast based on the climatologic probability has perfect reliability (rel = 0.0). 

(40) 
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 Figure 64 is a detailed example of a reliability diagram from Eckel (1998) built from the data 

in Table 10.  The event forecast was 24-h cumulative precipitation > 0.25 inch at the 36-h 

forecast lead time.  Since M = 11, the original forecast probabilities are, in effect, rounded to the 

nearest 10%, making FPi '  bins of 0.0% – 4.9%, 5.0% – 14.9%, …, 95.0% – 100%.  The 

histogram in Figure 64 is a display of the relative frequency of usage of the forecast probabilities 

(i.e., how many forecasts were made within each FPi′   bin). 

 The SC is the overall frequency of occurrence of the event.  The resolution term is a measure 

of distance away from the climatologic probability forecast (dashed line labeled zero resolution) 

weighted by the number of forecasts at each FPi′.  Better forecasts result in a larger res and thus a 

BS closer to zero.  Resolution is a measure of the forecast’s ability to discriminate between 

occurrence and nonoccurrence of the event.  It is possible then to improve the reliability of a 

forecast system by increasing its spread toward the climate PDF (Evans, 2000).  But this does not 

improve the system’s quality since res would decrease.  Note that a set of forecasts based on the 

climatologic probability of occurrence has the worst possible resolution (res = 0.0) since for such 

forecasts, ORF = SC. 

 The uncertainty term is determined by the SC and thus independent of the forecasts (Figure 

65).  It can be thought of as a measure of how easy it is to forecast the event in question.  The 

highest possible unc of 0.25 (most difficult to forecast) is associated with an event that occurs 

half of the time on average (i.e., SC = 50%).  An event that rarely occurs or frequently occurs has 

a lower unc (easier to forecast) with a minimum of 0.0 when SC = 0.0% or 100%. 

 The BSS can be computed from a reliability diagram by applying the fact that for a 

climatologically based forecast the res and rel terms are both zero, as described above.  

Substituting the BS  ' from Equation (40) into Equation (39) , we get (Equation 7.29, Wilks, 1995): 



193 

 

                
unc

unc

unc

relres

unc

uncresrel
SBS −−+=

+−
−−−=′ 1

00
1  

  
    unc

relres
SBS

−=′  

Therefore, for a point in a reliability diagram to contribute positive skill, it must have rel < res.  

This requirement defines a skill zone as the shaded region in Figure 64.  Forecasts that exhibit an 

overall negative BSS ′ performed worse than a simple climatologically based forecast. 

 Note that the main difference between BSS and BSS ′ is in the choice of what is used as the 

climatologically based forecast.  The BSS can be calculated with respect to the BSclim from a long-

term climatologic forecast, while the BSS  ′ uses the short term average chance of occurrence over 

just the dataset (i.e., the SC).  In this respect, the BSS ′ is a more stringent score since, for a 

limited dataset, the SC reflects the climatology of the sample and should therefore produce a 

better average FP compared to the long-term climatologic forecast.  Furthermore, since the long-

term climatology for an event is often difficult to obtain, normally only BSS ′ is computed.  (Note:  

In the body of this dissertation we drop the prime notation since the only BSS employed is from 

Equation (41). ) 

 Interpreting a reliability diagram can be tricky.  A primary concern is the sample size since to 

be confident in the diagram, there should many samples (perhaps minimum of about 50) within 

each FPi′ bin.  Next, the relative sampling among the FPi′ bins (the histogram in Figure 64) needs 

consideration since that shows how the res and rel components are weighted.  Obviously, it is 

desirable for data points to fall in the skill zone, but some points with small weight may fall 

outside so that an overall positive BSS ′ results. 

 The two basic curves often observed in a reliability diagram of an EF, the S and the reverse S, 

are a result of the basic dispersion characteristics of the EF.  Points above the perfect line are 

(41) 
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associated with underforecasting while points below are overforecasts.  So the reverse S means 

that the EF overforecasts the higher probabilities and underforecasts the lower probabilities.  It 

can be seen that this corresponds to an underdispersive EF by considering the u-shaped VRH.  

When an underdispersive EF gives a FP of 10% for some event threshold, the actual chance of 

the verification falling above the threshold is much higher (i.e., large probability in the outer 

rank) so this is an underforecast.  The reverse holds for the case of a high FP.  The entire scenario 

flips for the S-shaped reliability diagram curve so that it corresponds to an overdispersive EF.  

While the point of inflection for these curves can be pushed toward one end of the diagram, it will 

still be identifiable as either the S or the reverse S. 

F. Relative Operating Characteristic 

 The relative operating characteristic (ROC) is a verification tool that employs signal detection 

theory, a technique designed to evaluate binary-type forecasts in which forecasts are restricted to 

a “no” (i.e., FP = 0%) or a “yes” (i.e., FP = 100%).  The initial step in computing the ROC is to 

reduce the full probabilistic information from an EF down to binary-type forecasts for the event. 

 For example, say an EF forecasts a 37% chance for the event that 24-h cumulative 

precipitation will be > 0.25 in.  Setting a cutoff FP threshold of 50% for forecasting a “yes”, the 

FP = 37% would be a “no” forecast for this event.  Although there is actually 37% chance of 

occurrence, the binary-type forecast is that the event will not occur.  If the event does not occur 

the forecast is called a correct rejection (CR), but if it does occur the forecast is a miss (M).  

Alternatively, a “yes” forecast where the event does occur is termed a hit (H) and for a non-

occurrence, the forecast is a false alarm (FA). 

 Varying the cutoff FP threshold gives a different false alarm rate (FAR) and hit rate (HR) 

which are plotted against each other to produce the ROC (Stanski et al., 1989).   
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which are built from a contingency table (Figure 66).  These two ratios are both concerned with 

the outcome from a “yes” forecast.  The HR (hits divided by occurrences) is the fraction of the 

times when the event did occur that it was forecast to occur.  The FAR (false alarms divided by 

nonoccurrences) is the fraction of the times when the event did not occur that it was forecast to 

occur. 

 Table 11 uses the same forecast data as Table 10 and shows the values used in calculation of 

the ROC points of Figure 67.  Each FP threshold generates a unique contingency table and thus a 

point in the ROC.  A lower FP threshold has a high number of hits and a high number of false 

alarms, thus producing a high HR and a high FAR.  ROC is another way to measure resolution 

since it reveals the system’s ability to discriminate between occurrences and nonoccurrences, but 

the ROC does not measure reliability (Evans et al., 2000).  A set of forecasts with perfect 

discrimination has HR = 1.0 with a FAR = 0.0, so a ROC curve closer to the upper left of the 

graph represents better forecasts.  The diagonal line on the ROC is the zero skill line where 

forecasts are not able to discriminate at all (Jolliffe and Stephenson, 2003) 

 The area (A) under the ROC curve is an overall measure of the utility of the forecasts from a 

signal detection point of view.  The A can be used to produce a ROC skill score (ROCSS ) akin to 

the BSS (Jolliffe and Stephenson, 2003): 

  ROCSS  =  2A – 1  

so that a ROCSS of 1.0 represents perfect forecasts and a ROCSS ≤ 0.0 represents useless 

forecasts. 

(42) 

(43) 

(44) 
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Figure 62.  Example VRH for 1,781,676 trials (i.e., forecast/verification data pairs) of T850 using 
bias-corrected, ACMEcore, 24-h forecasts and centroid analysis verification. The probability for a 
rank, normally the only quantity displayed, is found by dividing the number of occurrences of the 
verification in the rank by the total number of trials. 
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Figure 63.  Hypothetical PDF (top) and decumulative density function (bottom) for an idealized 
EF (a & b) case and realistic EF (c and d) case for forecasts of T850.  Italic numbers label the nine 
possible ranks in which the verification may occur.  Notice that in the idealized case, each bin 
marks out an equal area under the PDF of exactly 1/9, which corresponds to the equal spacing 
among the quantiles.  In the realistic case, the eight forecasts are random draws that typically do 
not come out as evenly space quantiles.  
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Figure 64.  (adapted from Figure 7.8, Wilks, 1995) Reliability diagram for data in Table 10.  
Open dots (o) showing the observed relative frequency at each tenth of forecast probability are 
connected with line segments.  The shaded area is the skill zone in which points make a positive 
contribution to the BSS ′ since rel < res. 
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Figure 65.  Graph all possible values of the uncertainty term in the BS.  Maximum uncertainty of 
0.25 occurs at SC = 0.5. 
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Figure 66.  Contingency table of signal detection theory where H is number of hits, M is number 
of misses, FA is number of false alarms, and CR is the number of correct rejections. 
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Figure 67.  ROC for the data in Table 11.  Total area under the curve is 0.90.  Points are labeled 
here (but not normally not included in the ROC) with the FP threshold that produced each FAR 
vs. HR datum.
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Table 9.  Two sets of hypothetical EFs of T850 ordered from least to greatest, produced from the 
PDF in Figure 63.  The “idealized forecasts” are evenly spaced quantiles, which only occurs for a 
long-term average of many realizations.  The “realistic forecast” is made up of random draws 
from the PDF. 

  
    EF Idealized Forecast Realistic Forecast 
Member # Quantile Forecast(°C) Quantile Forecast(°C) 
 

 1 0.889 -3.93  0.937  -5.47 
 2 0.778 -1.97  0.761   -1.76 
 3 0.667 -0.72  0.606  -0.18 
 4 0.556  0.23 0.490   0.72   
 5 0.444  1.04 0.370   1.54 
 6 0.333  1.78 0.161   2.93 
 7 0.222  2.51 0.108   3.33  
 8 0.111  3.30 0.072   3.64 
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Table 10.  Summary of 22,402 probability forecasts of 24-h cumulative precipitation > 0.25 inch 
at the 36-h forecast lead time.  ORFi ' is found by dividing the number of occurrences (Occ.) by 
the number of forecasts (Fcsts.). 

 

   # of # of    
i FPi '   Fcsts. Occ. ORFi '  

1 0.0 15609 210 0.01  
2 0.1 1483 152 0.10  
3 0.2 884 121 0.14  
4 0.3 273 61 0.22  
5 0.4 457 102 0.22  
6 0.5 395 92 0.23 
7 0.6 369 130 0.35 
8 0.7 209 78 0.37 
9 0.8 595 267 0.45 
10 0.9 716 328 0.46 
11 1.0 1412 990 0.70 
   TOTALs:       22402            2531 

 

 
Table 11.  Calculated values for the ROC for the same source data as in Table 10, where the 
number of non-occurrences is simply the number of forecasts minus the number of occurrences.  
Each probability threshold in effect produces its own unique contingency table.  The arrows give 
examples of which values are summed to arrive at H, FA, CR, and M.  

 

      FP # of # of  
Threshold   Occ. Non-occ. H FA CR M FAR HR 

 0.00 0 0 2321 4472 0 0 1.000 1.000 
 0.05 210 15399 2321 4472 15399 210 0.225 0.917 
 0.15 152 1331 2169 3141 16730 362 0.158 0.857 
 0.25 121 763 2048 2378 17493 483 0.120 0.809 
 0.35 61 212 1987 2166 17705 544 0.109 0.785 
 0.45 102 355 1885 1811 18060 646 0.091 0.745 
 0.55 92 303 1793 1508 18363 738 0.076 0.708 
 0.65 130 239 1663 1269 18602 868 0.064 0.657 
 0.75 78 131 1585 1138 18733 946 0.057 0.626 
 0.85 267 328 1318 810 19061 1213 0.041 0.521 
 0.95 328 388 990 422 19449 1541 0.021 0.391 
 1.00 990 422 0 0 19871 2531 0.000 0.000 
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Appendix II:  ACMEcore+ Reference Data 

 This appendix provides additional material and data on the perturbations to the surface 

boundary parameters (SBPs) in ACMEcore+. 

A. Uncertainty in Moisture Availability 

 The goal of this discussion is to demonstrate the difficulty of understanding and quantifying 

the uncertainty in a model parameterization, a major challenge in designing an EF system.  One 

such parameterization in this research was the MM5 SBP of moisture availability (M), for which 

we endeavored to design a proper perturbation of for ACMEcore+.  M is used in MM5 to model the 

evaporation rate (i.e., moisture flux at the surface), E, so that is where this discussion begins.  

 Determining E is an essential element of modeling the planetary boundary layer (PBL) since 

the amount of moisture there greatly determines the evolution of weather phenomena.  From 

Monin-Obhukov similarity theory, E is described by the bulk transfer relation (Garratt, 1992) 

where moisture and wind speed are known at measurement height h1 (e.g., 2 m). 

  ( )
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qw

E 10
0

−
=′′=

ρ
 

  11 VCr Ha =  

where ρ is the standard atmosphere’s surface air density (1.23 kg m-3), ( )
0

qw ′′ is moisture flux at 

the surface [m s-1], q0 is the mixing ratio at the surface [ ], q1 is the mixing ratio at h1 [ ], ra is the 

aerodynamic resistance [s m-1], CH is the drag coefficient (function of V1, h1, surface roughness 

length z0, thermal roughness length zT, and L) [ ], and V1 is the wind speed at h1 [m s-1]. 

Evaporation is the mass of water vapor leaving a unit surface area, per unit time, that is replacing 

water vapor fluxing up toward air with a lower mixing ratio (q1).  Note that if q1 > q0 then 

(45) 
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( )
0

qw ′′  is reversed and dew or frost forms at the surface.  While this equation works well over 

water, it is an overestimate over land where E can be limited by unsaturated soil and vegetation.  

 A more thorough description of evaporation is obtained by including the Clausius Clapeyron 

equation, energy balance, and stomatal resistance.  This gives an equation for the evaporation 

over an ideal (i.e., saturated), vegetated surface (Bretherton, 2002). 
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where RN is the net downward radiative flux at the surface [W m-2], HG is the downward ground 

heat flux [W m-2], L is the latent heat of evaporation (2.5 x 106  J kg-1), CP is the specific heat at 

constant pressure (1004  J K-1 kg-1), TR is a reference temperature [K], *q1  is the saturation mixing 

ratio at h1 (function of T1)  [ ], *q0  is the saturation mixing ratio at the surface (function of T0)  [ ],  

and q0 is the mixing ratio at the surface [ ]. 

 For a nonvegetated surface that is not saturated, the evaporation is also a function of available 

soil moisture, described by the surface relative humidity, RH0. 

  ( )10 0 qqRH
r

E *

a

−= ρ  

Ideally then, a mesoscale model would use Equation (46) in a wet, vegetated grid box, Equation 

(47) over a nonvegetated soil or water grid box, and some appropriate amalgamation of the two 

for a mixed grid box.  While such a strategy is possible, it is not practical for a real-time modeling 

system where parameterizations are designed to give reasonable results without being too 

demanding of processing power.  A big concern for a real-time mesoscale model is completing 

(46) 

(47) 
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the simulation quickly in order to make products available to weather forecasters in a timely 

manner. 

 The MM5 models E by using M to represent the effects of stomatal resistance, aerodynamic 

resistance, and soil moisture. 

  ( )11 0 qqVCME *
H −= ρ   

which most closely resembles Equation (47) except ra is now replaced by the total resistance,        

r = ra + rst.  This means that MM5 considers  
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revealing the primary fault of this parameterization scheme.  The stomatal resistance should not 

be modeled as a function of the aerodynamic resistance since ra and rst are independent. 

Additionally, it is difficult to see how M could possibly represent soil moisture at the same time.  

Further uncertainty in M is also provided by the use of the land use table, as discussed in the main 

text. 

 While this discussion certainly provides an understanding of the uncertainty in M, it is clear 

that there is no practical way to quantify the uncertainty.  The problem is the same with other 

SBPs and can get even worse when considering other model aspects.  This is the chief challenge 

in designing an EF system such as ACMEcore+ that attempts to account for model uncertainty with 

model perturbations. 

B. Land Use Table 

 Table 12 –Table 14 provide the values of the gamma variables applied to Equation (25) to 

generate perturbed values of the surface boundary parameters (SBPs).  Table 15 then shows the 

eight perturbed land use tables, which were generated using random deviates from the SBP PDFs.

 Figure 68 provides a plot of the fixed SST perturbation field for each of the 8 members of 

(48) 

(49) 
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ACMEcore+.  These perturbations were applied to the daily OTIS SST field (used by the ACMEcore 

members) to produce a unique SST for each ACMEcore+ member.

 

 



205 

 

Plus01 SST PerturbationPlus01 SST Perturbation

 

Plus02 SST PerturbationPlus02 SST Perturbation

 
Figure 68.  Plots of the SST perturbations for each member of ACMEcore+. 
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Figure 68.  Continued 
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Figure 68.  Continued 
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Figure 68.  Continued 
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Table 12.  Gamma variables for the 48 PDFs used to generate albedo values. 

Land
Use # reverse shape spread translate reverse shape spread translate

1 1 50 0.57 9.85 1 50 0.566 9.85
2 1 50 0.57 10.85 1 50 0.566 4.85
3 1 50 0.57 9.85 1 50 0.566 4.85
4 1 50 0.57 9.85 1 50 0.566 4.85
5 1 50 0.57 9.85 1 50 0.566 4.85
6 1 50 0.57 11.85 1 50 0.566 7.85
7 1 50 0.57 8.85 1 50 0.566 4.85
8 1 50 0.57 5.85 1 50 0.566 2.85
9 1 50 0.57 7.85 1 50 0.566 3.85

10 1 100 0.35 14.64 1 100 0.35 14.64
11 1 100 0.30 13.67 1 100 0.3 12.67
12 1 100 0.30 15.67 1 100 0.3 14.67
13 1 100 0.25 12.80 1 100 0.25 12.8
14 1 100 0.25 12.80 1 100 0.25 12.8
15 1 10 1.11 -3.04 1 10 1.11 -4.04
16 -1 30 0.31 -17.00 -1 30 0.31 -17
17 1 100 0.35 20.66 1 100 0.35 20.66
18 1 100 0.35 20.66 1 100 0.35 20.66
19 1 100 0.30 4.72 1 100 0.3 4.72
20 1 3 4.62 -5.83 -1 3 4.62 -69.18
21 1 3 4.04 -6.96 -1 3 4.04 -58.05
22 1 3 4.33 -6.39 -1 3 4.33 -63.62
23 1 3 4.62 -15.83 -1 3 4.62 -79.18
24 -1 10 2.21 -74.81 1 15 1.81 -44.74

WinterSummer
Albedo

 

 
Table 13.  Gamma variables for the 48 PDFs used to generate moisture availability values. 

Land
Use # reverse shape spread translate reverse shape spread translate

1 1 4 3.00 -0.98 1 4 3 -0.98
2 1 3.5 5.88 -15.22 -1 5 4.92 -79.81
3 1 500 0.45 173.20 1 500 0.447 173.2
4 1 3.5 5.35 -11.59 -1 7 3.4 -70.28
5 1 3.5 3.47 -16.24 -1 7 2.46 -54.73
6 1 3.5 5.35 -21.59 -1 5 4.47 -77.98
7 1 3 3.18 -8.58 -1 10 1.9 -47.08
8 1 3.5 2.14 -4.66 -1 8 1.24 -28.63
9 1 3.5 2.51 -8.77 -1 9 1.57 -37.52

10 1 4 3.00 -5.98 1 4 3 -5.98
11 1 3.5 5.88 -15.22 -1 5 4.92 -79.81
12 1 3.5 5.88 -15.22 -1 5 4.92 -79.81
13 1 500 0.45 173.20 1 500 0.447 173.2
14 1 3.5 5.88 -15.22 -1 5 4.92 -79.81
15 1 3.5 5.88 -15.22 -1 5 4.92 -79.81
16 1 99 99.00 99.00 1 99 99 99
17 1 6 2.65 -46.78 -1 4.5 3.11 -85.74
18 1 3 6.35 -22.05 -1 3 6.35 -82.93
19 1 2 1.06 -0.94 -1 10 0.32 -7.85
20 1 3.5 5.08 -37.09 -1 2 7.78 -97.85
21 1 3.5 5.08 -37.09 -1 2 7.78 -97.85
22 1 3.5 5.08 -37.09 -1 2 7.78 -97.85
23 1 1.1 10.49 -0.95 -1 1.1 10.49 -96.04
24 -1 3 1.27 -97.54 -1 3 1.27 -97.54

Summer Winter
Moisture Availability
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Table 14.  Gamma variables for the 48 PDFs used to generate roughness length values. 

Land
Use # reverse shape spread translate reverse shape spread translate

1 1 2 21.21 -28.86 1 2 21.21 -28.86
2 1 100 0.35 19.66 1 3 2.02 -0.95
3 1 100 0.35 19.66 1 3 2.02 -0.95
4 1 100 0.35 19.66 1 3 2.02 -0.95
5 1 100 0.35 20.66 1 3 2.02 -0.95
6 1 100 0.50 29.50 1 100 0.5 29.5
7 -1 30 0.50 -26.30 -1 30 0.46 -23.24
8 1 100 0.25 14.78 1 100 0.25 14.78
9 1 100 0.25 13.78 1 100 0.25 14.78

10 1 100 0.25 9.78 1 100 0.25 9.78
11 1 1.5 34.30 -32.52 1 1.5 34.3 -32.52
12 1 1.5 34.30 -32.52 1 1.5 34.3 -32.52
13 1 1.5 34.30 -32.52 1 1.5 34.3 -32.52
14 1 1.5 34.30 -32.52 1 1.5 34.3 -32.52
15 1 1.5 34.30 -32.52 1 1.5 34.3 -32.52
16 1 1.3 0.02 0.00 1 1.3 0.0175 -0.0047
17 1 100 0.50 29.50 1 100 0.5 29.5
18 1 3 6.35 -27.45 1 3 6.35 -27.45
19 1 100 0.25 14.78 1 100 0.25 14.78
20 1 100 0.25 14.78 1 100 0.25 14.78
21 1 3 6.35 -17.45 1 3 6.35 -17.45
22 1 10 1.26 -3.64 1 10 1.26 -3.64
23 1 10 1.11 -0.04 1 3 2.02 -0.95
24 -1 15 0.28 -8.97 -1 15 0.28 -8.97

Summer Winter
Roughness Length
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Table 15.  MM5 land use tables used for ACMEcore+.   The format shown is exactly as a land use 
file is employed in the MM5 code.  The perturbed parameters are albedo (ALBD, %), moisture 
availability (SLMO, % * 100), and roughness length (SFZO, cm) .  Parameters not perturbed 
include emissivity (SFEM, % * 100), thermal inertia (THERIN), snow-effect factor (SCFX), and 
heat capacity (SFHC).   

 
LANDUSE.TBL.plus01 
 
 
USGS 
24,2, 'ALBD   SLMO   SFEM   SFZ0 THERIN   SCFX   SFHC   ' 
SUMMER 
1,      16.,   .16,   .88,   49.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      17.,   .37,   .92,   20.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      20.,   .33,   .92,   12.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      25.,   .32,   .92,    9.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      25.,   .28,   .92,   12.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      14.,   .84,   .93,   29.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      16.,   .35,   .92,   17.,    3.,   .60, 20.8e5,'Grassland' 
8,      20.,   .09,   .88,    6.,    3.,   .62, 20.8e5,'Shrubland' 
9,      14.,   .15,   .90,    9.,    3.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     18.,   .24,   .92,   20.,    3.,    0., 25.0e5,'Savanna' 
11,     16.,   .43,   .93,   51.,    4.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     17.,   .68,   .94,   94.,    4.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,     10.,   .46,   .95,  145.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     10.,   .60,   .95,   95.,    4.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     13.,   .56,   .94,  123.,    4.,   .54, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     14.,   .63,   .95,   23.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     19.,   .34,   .95,   41.,    5.,   .58, 41.8e5,'Wooded Wetland' 
19,     23.,   .03,   .85,   15.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     14.,   .49,   .92,   14.,    5.,   .60, 9.0e25,'Herbaceous Tundra' 
21,     38.,   .59,   .93,   37.,    5.,   .60, 9.0e25,'Wooded Tundra' 
22,     24.,   .43,   .92,   16.,    5.,   .60, 9.0e25,'Mixed Tundra' 
23,     35.,   .08,   .85,   10.,    2.,   .62, 12.0e5,'Bare Ground Tundra' 
24,     57.,   .96,   .95,    6.,    5.,    0., 9.0e25,'Snow or Ice' 
WINTER 
1,      13.,   .13,   .88,   54.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      25.,   .32,   .92,    6.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      20.,   .66,   .92,    4.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      15.,   .43,   .92,    3.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      25.,   .24,   .92,    7.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      16.,   .65,   .93,   21.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      23.,   .27,   .92,    9.,    4.,   .60, 20.8e5,'Grassland' 
8,      18.,   .12,   .88,   12.,    4.,   .62, 20.8e5,'Shrubland' 
9,      19.,   .23,   .90,    8.,    4.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     13.,   .19,   .92,    9.,    3.,    0., 25.0e5,'Savanna' 
11,     20.,   .15,   .93,   65.,    5.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     16.,   .60,   .93,   77.,    5.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,     12.,   .66,   .95,   80.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     15.,   .33,   .95,   44.,    5.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     16.,   .64,   .94,   56.,    6.,   .58, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     15.,   .70,   .95,   26.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     12.,   .71,   .95,   49.,    6.,   .58, 41.8e5,'Wooded Wetland' 
19,     24.,   .03,   .85,    7.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     56.,   .83,   .92,    9.,    5.,    0., 9.0e25,'Herbaceous Tundra' 
21,     51.,   .61,   .93,   20.,    5.,    0., 9.0e25,'Wooded Tundra' 
22,     49.,   .67,   .92,   16.,    5.,    0., 9.0e25,'Mixed Tundra' 
23,     59.,   .85,   .95,    6.,    5.,    0., 12.0e5,'Bare Ground Tundra' 
24,     79.,   .93,   .95,    5.,    5.,    0., 9.0e25,'Snow or Ice' 
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Table 15 continued: 

 
 
LANDUSE.TBL.plus02 
 
 
USGS 
24,2, 'ALBD   SLMO   SFEM   SFZ0 THERIN   SCFX   SFHC   ' 
SUMMER 
1,      16.,   .10,   .88,   51.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      23.,   .46,   .92,   11.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      16.,   .52,   .92,   18.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      16.,   .28,   .92,   18.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      17.,   .32,   .92,   13.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      18.,   .54,   .93,   17.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      19.,   .13,   .92,   13.,    3.,   .60, 20.8e5,'Grassland' 
8,      19.,   .12,   .88,   13.,    3.,   .62, 20.8e5,'Shrubland' 
9,      24.,   .18,   .90,   12.,    3.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     26.,   .31,   .92,   12.,    3.,    0., 25.0e5,'Savanna' 
11,     20.,   .19,   .93,   54.,    4.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     16.,   .38,   .94,   64.,    4.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,     13.,   .51,   .95,  111.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     15.,   .20,   .95,   66.,    4.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     17.,   .30,   .94,   85.,    4.,   .54, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     14.,   .60,   .95,   26.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     14.,   .53,   .95,   52.,    5.,   .58, 41.8e5,'Wooded Wetland' 
19,     21.,   .02,   .85,   12.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     14.,   .41,   .92,    9.,    5.,   .60, 9.0e25,'Herbaceous Tundra' 
21,     13.,   .64,   .93,   33.,    5.,   .60, 9.0e25,'Wooded Tundra' 
22,     12.,   .50,   .92,   17.,    5.,   .60, 9.0e25,'Mixed Tundra' 
23,     27.,   .07,   .85,   10.,    2.,   .62, 12.0e5,'Bare Ground Tundra' 
24,     49.,   .85,   .95,    5.,    5.,    0., 9.0e25,'Snow or Ice' 
WINTER 
1,      22.,   .14,   .88,   46.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      26.,   .16,   .92,    4.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      18.,   .60,   .92,    9.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      22.,   .56,   .92,    7.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      22.,   .33,   .92,    2.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      17.,   .65,   .93,   31.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      29.,   .30,   .92,   11.,    4.,   .60, 20.8e5,'Grassland' 
8,      23.,   .16,   .88,   15.,    4.,   .62, 20.8e5,'Shrubland' 
9,      23.,   .29,   .90,   12.,    4.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     18.,   .15,   .92,   16.,    3.,    0., 25.0e5,'Savanna' 
11,     17.,   .63,   .93,   57.,    5.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     17.,   .72,   .93,   66.,    5.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,     16.,   .58,   .95,  138.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     12.,   .67,   .95,   74.,    5.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     11.,   .64,   .94,   54.,    6.,   .58, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     17.,   .79,   .95,   20.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     19.,   .75,   .95,   58.,    6.,   .58, 41.8e5,'Wooded Wetland' 
19,     25.,   .04,   .85,    9.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     68.,   .93,   .92,   16.,    5.,    0., 9.0e25,'Herbaceous Tundra' 
21,     47.,   .39,   .93,   48.,    5.,    0., 9.0e25,'Wooded Tundra' 
22,     55.,   .96,   .92,   22.,    5.,    0., 9.0e25,'Mixed Tundra' 
23,     71.,   .94,   .95,    7.,    5.,    0., 12.0e5,'Bare Ground Tundra' 
24,     70.,   .93,   .95,    5.,    5.,    0., 9.0e25,'Snow or Ice' 
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Table 15 continued: 

 
 
LANDUSE.TBL.plus03 
 
 
 
USGS 
24,2, 'ALBD   SLMO   SFEM   SFZ0 THERIN   SCFX   SFHC   ' 
SUMMER 
1,      20.,   .06,   .88,   98.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      13.,   .37,   .92,   14.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      23.,   .56,   .92,   18.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      20.,   .25,   .92,   12.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      15.,   .35,   .92,   17.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      18.,   .48,   .93,   32.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      20.,   .13,   .92,    9.,    3.,   .60, 20.8e5,'Grassland' 
8,      33.,   .10,   .88,   10.,    3.,   .62, 20.8e5,'Shrubland' 
9,      18.,   .23,   .90,    4.,    3.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     22.,   .35,   .92,   13.,    3.,    0., 25.0e5,'Savanna' 
11,     17.,   .38,   .93,  205.,    4.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     11.,   .31,   .94,  108.,    4.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,     10.,   .47,   .95,   69.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     11.,   .41,   .95,   44.,    4.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     19.,   .26,   .94,  129.,    4.,   .54, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     16.,   .58,   .95,   19.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     13.,   .49,   .95,   44.,    5.,   .58, 41.8e5,'Wooded Wetland' 
19,     27.,   .08,   .85,   11.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     24.,   .56,   .92,   10.,    5.,   .60, 9.0e25,'Herbaceous Tundra' 
21,     22.,   .51,   .93,   36.,    5.,   .60, 9.0e25,'Wooded Tundra' 
22,     16.,   .58,   .92,   11.,    5.,   .60, 9.0e25,'Mixed Tundra' 
23,     29.,   .41,   .85,   13.,    2.,   .62, 12.0e5,'Bare Ground Tundra' 
24,     56.,   .92,   .95,    3.,    5.,    0., 9.0e25,'Snow or Ice' 
WINTER 
1,      20.,   .21,   .88,   79.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      23.,   .38,   .92,    5.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      27.,   .46,   .92,    4.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      19.,   .63,   .92,    9.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      24.,   .41,   .92,    7.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      24.,   .53,   .93,   24.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      26.,   .21,   .92,    7.,    4.,   .60, 20.8e5,'Grassland' 
8,      27.,   .17,   .88,   14.,    4.,   .62, 20.8e5,'Shrubland' 
9,      35.,   .21,   .90,   10.,    4.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     13.,   .16,   .92,   17.,    3.,    0., 25.0e5,'Savanna' 
11,     21.,   .55,   .93,   48.,    5.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     15.,   .31,   .93,   63.,    5.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,      9.,   .52,   .95,   47.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     18.,   .56,   .95,   81.,    5.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     16.,   .58,   .94,   41.,    6.,   .58, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     13.,   .70,   .95,   19.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     22.,   .66,   .95,   34.,    6.,   .58, 41.8e5,'Wooded Wetland' 
19,     24.,   .06,   .85,    6.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     49.,   .91,   .92,   10.,    5.,    0., 9.0e25,'Herbaceous Tundra' 
21,     55.,   .70,   .93,   23.,    5.,    0., 9.0e25,'Wooded Tundra' 
22,     55.,   .61,   .92,   26.,    5.,    0., 9.0e25,'Mixed Tundra' 
23,     71.,   .69,   .95,    3.,    5.,    0., 12.0e5,'Bare Ground Tundra' 
24,     85.,   .95,   .95,    7.,    5.,    0., 9.0e25,'Snow or Ice' 
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Table 15 continued: 

 
 
LANDUSE.TBL.plus04 
 
 
USGS 
24,2, 'ALBD   SLMO   SFEM   SFZ0 THERIN   SCFX   SFHC   ' 
SUMMER 
1,      23.,   .21,   .88,  117.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      13.,   .24,   .92,   15.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      15.,   .60,   .92,   13.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      25.,   .28,   .92,   17.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      18.,   .28,   .92,    8.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      24.,   .37,   .93,   26.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      18.,   .16,   .92,   15.,    3.,   .60, 20.8e5,'Grassland' 
8,      23.,   .12,   .88,    4.,    3.,   .62, 20.8e5,'Shrubland' 
9,      20.,   .19,   .90,    9.,    3.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     18.,   .09,   .92,   16.,    3.,    0., 25.0e5,'Savanna' 
11,     14.,   .57,   .93,  284.,    4.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     15.,   .22,   .94,   39.,    4.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,      8.,   .39,   .95,   74.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     15.,   .31,   .95,  175.,    4.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     15.,   .26,   .94,   69.,    4.,   .54, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     15.,   .60,   .95,   31.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     23.,   .51,   .95,   34.,    5.,   .58, 41.8e5,'Wooded Wetland' 
19,     29.,   .03,   .85,    8.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     28.,   .41,   .92,    7.,    5.,   .60, 9.0e25,'Herbaceous Tundra' 
21,     14.,   .61,   .93,   25.,    5.,   .60, 9.0e25,'Wooded Tundra' 
22,     23.,   .43,   .92,   16.,    5.,   .60, 9.0e25,'Mixed Tundra' 
23,     39.,   .05,   .85,   10.,    2.,   .62, 12.0e5,'Bare Ground Tundra' 
24,     53.,   .93,   .95,    7.,    5.,    0., 9.0e25,'Snow or Ice' 
WINTER 
1,      15.,   .10,   .88,  110.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      28.,   .66,   .92,   16.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      21.,   .49,   .92,    4.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      22.,   .46,   .92,    4.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      18.,   .21,   .92,    5.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      21.,   .39,   .93,   26.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      27.,   .30,   .92,   10.,    4.,   .60, 20.8e5,'Grassland' 
8,      24.,   .21,   .88,    8.,    4.,   .62, 20.8e5,'Shrubland' 
9,      24.,   .20,   .90,   10.,    4.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     21.,   .16,   .92,   23.,    3.,    0., 25.0e5,'Savanna' 
11,     15.,   .55,   .93,   60.,    5.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     16.,   .53,   .93,  103.,    5.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,     11.,   .52,   .95,  280.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     10.,   .58,   .95,   51.,    5.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     16.,   .54,   .94,   45.,    6.,   .58, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     14.,   .80,   .95,   22.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     17.,   .59,   .95,   34.,    6.,   .58, 41.8e5,'Wooded Wetland' 
19,     28.,   .05,   .85,   10.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     36.,   .88,   .92,    6.,    5.,    0., 9.0e25,'Herbaceous Tundra' 
21,     42.,   .91,   .93,   45.,    5.,    0., 9.0e25,'Wooded Tundra' 
22,     53.,   .88,   .92,   22.,    5.,    0., 9.0e25,'Mixed Tundra' 
23,     57.,   .89,   .95,    6.,    5.,    0., 12.0e5,'Bare Ground Tundra' 
24,     68.,   .96,   .95,    4.,    5.,    0., 9.0e25,'Snow or Ice' 
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Table 15 continued: 

 
 
LANDUSE.TBL.plus05 
 
 
USGS 
24,2, 'ALBD   SLMO   SFEM   SFZ0 THERIN   SCFX   SFHC   ' 
SUMMER 
1,      21.,   .08,   .88,   97.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      15.,   .31,   .92,   19.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      18.,   .71,   .92,   13.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      16.,   .28,   .92,   24.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      16.,   .26,   .92,   12.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      18.,   .40,   .93,   22.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      14.,   .18,   .92,   11.,    3.,   .60, 20.8e5,'Grassland' 
8,      21.,   .13,   .88,   14.,    3.,   .62, 20.8e5,'Shrubland' 
9,      13.,   .13,   .90,   13.,    3.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     23.,   .18,   .92,   15.,    3.,    0., 25.0e5,'Savanna' 
11,     23.,   .30,   .93,   85.,    4.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     12.,   .33,   .94,   83.,    4.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,     14.,   .44,   .95,   90.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     13.,   .58,   .95,   49.,    4.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     10.,   .55,   .94,   64.,    4.,   .54, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     16.,   .71,   .95,   18.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     16.,   .58,   .95,   39.,    5.,   .58, 41.8e5,'Wooded Wetland' 
19,     22.,   .05,   .85,    7.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     22.,   .45,   .92,   11.,    5.,   .60, 9.0e25,'Herbaceous Tundra' 
21,     25.,   .74,   .93,   36.,    5.,   .60, 9.0e25,'Wooded Tundra' 
22,     10.,   .50,   .92,   29.,    5.,   .60, 9.0e25,'Mixed Tundra' 
23,     26.,   .13,   .85,    8.,    2.,   .62, 12.0e5,'Bare Ground Tundra' 
24,     60.,   .94,   .95,    5.,    5.,    0., 9.0e25,'Snow or Ice' 
WINTER 
1,      16.,   .20,   .88,   59.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      32.,   .63,   .92,    8.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      16.,   .58,   .92,    7.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      23.,   .49,   .92,    6.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      19.,   .37,   .92,    3.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      19.,   .57,   .93,   24.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      24.,   .36,   .92,    9.,    4.,   .60, 20.8e5,'Grassland' 
8,      24.,   .18,   .88,    8.,    4.,   .62, 20.8e5,'Shrubland' 
9,      22.,   .27,   .90,   12.,    4.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     24.,   .10,   .92,   14.,    3.,    0., 25.0e5,'Savanna' 
11,     21.,   .65,   .93,   42.,    5.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     17.,   .48,   .93,   57.,    5.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,     15.,   .57,   .95,   71.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     17.,   .47,   .95,   70.,    5.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     22.,   .27,   .94,   71.,    6.,   .58, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     14.,   .73,   .95,   11.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     13.,   .50,   .95,   38.,    6.,   .58, 41.8e5,'Wooded Wetland' 
19,     26.,   .04,   .85,    8.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     51.,   .78,   .92,   10.,    5.,    0., 9.0e25,'Herbaceous Tundra' 
21,     49.,   .95,   .93,   24.,    5.,    0., 9.0e25,'Wooded Tundra' 
22,     59.,   .81,   .92,   15.,    5.,    0., 9.0e25,'Mixed Tundra' 
23,     61.,   .93,   .95,    2.,    5.,    0., 12.0e5,'Bare Ground Tundra' 
24,     75.,   .95,   .95,    5.,    5.,    0., 9.0e25,'Snow or Ice' 
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Table 15 continued: 

 
 
LANDUSE.TBL.plus06 
 
 
USGS 
24,2, 'ALBD   SLMO   SFEM   SFZ0 THERIN   SCFX   SFHC   ' 
SUMMER 
1,      21.,   .17,   .88,   94.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      14.,   .51,   .92,   17.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      16.,   .50,   .92,   11.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      15.,   .37,   .92,   16.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      18.,   .20,   .92,   11.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      21.,   .31,   .93,   26.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      18.,   .18,   .92,    8.,    3.,   .60, 20.8e5,'Grassland' 
8,      23.,   .16,   .88,   16.,    3.,   .62, 20.8e5,'Shrubland' 
9,      24.,   .13,   .90,   12.,    3.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     26.,   .13,   .92,   18.,    3.,    0., 25.0e5,'Savanna' 
11,     15.,   .32,   .93,   43.,    4.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     18.,   .27,   .94,   68.,    4.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,      7.,   .36,   .95,  107.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     12.,   .37,   .95,   67.,    4.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     17.,   .47,   .94,   73.,    4.,   .54, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     15.,   .66,   .95,   12.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     19.,   .35,   .95,   51.,    5.,   .58, 41.8e5,'Wooded Wetland' 
19,     23.,   .02,   .85,   12.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     30.,   .63,   .92,    8.,    5.,   .60, 9.0e25,'Herbaceous Tundra' 
21,     18.,   .52,   .93,   32.,    5.,   .60, 9.0e25,'Wooded Tundra' 
22,     34.,   .51,   .92,   14.,    5.,   .60, 9.0e25,'Mixed Tundra' 
23,     23.,   .21,   .85,    9.,    2.,   .62, 12.0e5,'Bare Ground Tundra' 
24,     54.,   .96,   .95,    4.,    5.,    0., 9.0e25,'Snow or Ice' 
WINTER 
1,      23.,   .07,   .88,   95.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      22.,   .69,   .92,    8.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      22.,   .52,   .92,    9.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      25.,   .51,   .92,    4.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      23.,   .38,   .92,    5.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      26.,   .44,   .93,   16.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      19.,   .29,   .92,    4.,    4.,   .60, 20.8e5,'Grassland' 
8,      21.,   .25,   .88,   10.,    4.,   .62, 20.8e5,'Shrubland' 
9,      25.,   .28,   .90,   13.,    4.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     19.,   .13,   .92,   14.,    3.,    0., 25.0e5,'Savanna' 
11,     16.,   .65,   .93,   92.,    5.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     17.,   .56,   .93,   39.,    5.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,     13.,   .57,   .95,   50.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     17.,   .61,   .95,   58.,    5.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     11.,   .50,   .94,  147.,    6.,   .58, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     15.,   .68,   .95,   12.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     13.,   .70,   .95,   32.,    6.,   .58, 41.8e5,'Wooded Wetland' 
19,     26.,   .04,   .85,    6.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     55.,   .87,   .92,    9.,    5.,    0., 9.0e25,'Herbaceous Tundra' 
21,     45.,   .91,   .93,   47.,    5.,    0., 9.0e25,'Wooded Tundra' 
22,     35.,   .44,   .92,   17.,    5.,    0., 9.0e25,'Mixed Tundra' 
23,     72.,   .51,   .95,   17.,    5.,    0., 12.0e5,'Bare Ground Tundra' 
24,     69.,   .91,   .95,    7.,    5.,    0., 9.0e25,'Snow or Ice' 
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Table 15 continued: 

 
 
LANDUSE.TBL.plus07 
 
 
USGS 
24,2, 'ALBD   SLMO   SFEM   SFZ0 THERIN   SCFX   SFHC   ' 
SUMMER 
1,      26.,   .12,   .88,   53.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      18.,   .20,   .92,   23.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      16.,   .41,   .92,   15.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      17.,   .20,   .92,   12.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      17.,   .41,   .92,   12.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      25.,   .33,   .93,   27.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      19.,   .14,   .92,   12.,    3.,   .60, 20.8e5,'Grassland' 
8,      23.,   .14,   .88,    6.,    3.,   .62, 20.8e5,'Shrubland' 
9,      21.,   .24,   .90,   12.,    3.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     16.,   .12,   .92,   18.,    3.,    0., 25.0e5,'Savanna' 
11,     16.,   .34,   .93,   52.,    4.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     15.,   .32,   .94,   41.,    4.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,     15.,   .55,   .95,   47.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     15.,   .35,   .95,  131.,    4.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     14.,   .26,   .94,   38.,    4.,   .54, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     14.,   .56,   .95,   29.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     16.,   .49,   .95,   61.,    5.,   .58, 41.8e5,'Wooded Wetland' 
19,     22.,   .02,   .85,   10.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     28.,   .44,   .92,   10.,    5.,   .60, 9.0e25,'Herbaceous Tundra' 
21,     20.,   .70,   .93,   32.,    5.,   .60, 9.0e25,'Wooded Tundra' 
22,     28.,   .59,   .92,   15.,    5.,   .60, 9.0e25,'Mixed Tundra' 
23,     27.,   .01,   .85,   16.,    2.,   .62, 12.0e5,'Bare Ground Tundra' 
24,     46.,   .95,   .95,    4.,    5.,    0., 9.0e25,'Snow or Ice' 
WINTER 
1,      21.,   .09,   .88,   70.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      18.,   .43,   .92,   17.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      25.,   .59,   .92,    7.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      22.,   .42,   .92,   10.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      19.,   .38,   .92,   12.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      18.,   .51,   .93,   16.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      21.,   .31,   .92,   13.,    4.,   .60, 20.8e5,'Grassland' 
8,      28.,   .18,   .88,   15.,    4.,   .62, 20.8e5,'Shrubland' 
9,      28.,   .22,   .90,   10.,    4.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     25.,   .20,   .92,   14.,    3.,    0., 25.0e5,'Savanna' 
11,     20.,   .57,   .93,   59.,    5.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     15.,   .66,   .93,   87.,    5.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,     11.,   .42,   .95,   97.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     11.,   .42,   .95,  127.,    5.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     16.,   .59,   .94,  133.,    6.,   .58, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     17.,   .73,   .95,   19.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     16.,   .76,   .95,   55.,    6.,   .58, 41.8e5,'Wooded Wetland' 
19,     26.,   .06,   .85,   12.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     54.,   .91,   .92,   15.,    5.,    0., 9.0e25,'Herbaceous Tundra' 
21,     32.,   .80,   .93,   20.,    5.,    0., 9.0e25,'Wooded Tundra' 
22,     31.,   .87,   .92,   25.,    5.,    0., 9.0e25,'Mixed Tundra' 
23,     67.,   .91,   .95,    5.,    5.,    0., 12.0e5,'Bare Ground Tundra' 
24,     80.,   .95,   .95,    5.,    5.,    0., 9.0e25,'Snow or Ice' 
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Table 15 continued: 

 
 
LANDUSE.TBL.plus08 
 
 
USGS 
24,2, 'ALBD   SLMO   SFEM   SFZ0 THERIN   SCFX   SFHC   ' 
SUMMER 
1,      20.,   .10,   .88,   47.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      22.,   .18,   .92,   12.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      28.,   .40,   .92,   13.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      13.,   .34,   .92,   13.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      16.,   .24,   .92,   12.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      17.,   .31,   .93,   15.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      13.,   .30,   .92,   11.,    3.,   .60, 20.8e5,'Grassland' 
8,      27.,   .08,   .88,   10.,    3.,   .62, 20.8e5,'Shrubland' 
9,      19.,   .30,   .90,   12.,    3.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     20.,   .22,   .92,   14.,    3.,    0., 25.0e5,'Savanna' 
11,     15.,   .32,   .93,  108.,    4.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     17.,   .33,   .94,  116.,    4.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,     13.,   .59,   .95,   86.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     12.,   .57,   .95,   33.,    4.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     16.,   .28,   .94,   68.,    4.,   .54, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     10.,   .58,   .95,   19.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     12.,   .31,   .95,   48.,    5.,   .58, 41.8e5,'Wooded Wetland' 
19,     28.,   .01,   .85,    8.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     19.,   .63,   .92,   11.,    5.,   .60, 9.0e25,'Herbaceous Tundra' 
21,     20.,   .49,   .93,   35.,    5.,   .60, 9.0e25,'Wooded Tundra' 
22,     25.,   .59,   .92,   20.,    5.,   .60, 9.0e25,'Mixed Tundra' 
23,     31.,   .17,   .85,   13.,    2.,   .62, 12.0e5,'Bare Ground Tundra' 
24,     52.,   .88,   .95,    3.,    5.,    0., 9.0e25,'Snow or Ice' 
WINTER 
1,      15.,   .09,   .88,   36.,    3.,   .52, 18.9e5,'Urban and Built-Up Land' 
2,      22.,   .55,   .92,    4.,    4.,   .60, 25.0e5,'Dryland Cropland and Pasture' 
3,      22.,   .44,   .92,   10.,    4.,   .60, 25.0e5,'Irrigated Cropland and Pasture' 
4,      22.,   .42,   .92,    3.,    4.,   .60, 25.0e5,'Mixed Dryland/Irrigated Cropland and Pasture' 
5,      26.,   .26,   .92,    5.,    4.,   .60, 25.0e5,'Cropland/Grassland Mosaic' 
6,      18.,   .57,   .93,   18.,    4.,   .60, 25.0e5,'Cropland/Woodland Mosaic' 
7,      24.,   .24,   .92,   11.,    4.,   .60, 20.8e5,'Grassland' 
8,      22.,   .21,   .88,   13.,    4.,   .62, 20.8e5,'Shrubland' 
9,      28.,   .23,   .90,   12.,    4.,   .60, 20.8e5,'Mixed Shrubland/Grassland' 
10,     21.,   .18,   .92,   14.,    3.,    0., 25.0e5,'Savanna' 
11,     13.,   .36,   .93,   51.,    5.,   .56, 25.0e5,'Deciduous Broadleaf Forest' 
12,     17.,   .60,   .93,   66.,    5.,   .50, 25.0e5,'Deciduous Needleleaf Forest' 
13,     11.,   .40,   .95,   58.,    5.,    0., 29.2e5,'Evergreen Broadleaf Forest' 
14,     10.,   .47,   .95,   84.,    5.,   .50, 29.2e5,'Evergreen Needleleaf Forest' 
15,     13.,   .50,   .94,   95.,    6.,   .58, 41.8e5,'Mixed Forest' 
16,      8.,   1.0,   .98,  0.01,    6.,    0., 9.0e25,'Water Bodies' 
17,     16.,   .67,   .95,   16.,    6.,   .55, 29.2e5,'Herbaceous Wetland' 
18,     13.,   .67,   .95,   30.,    6.,   .58, 41.8e5,'Wooded Wetland' 
19,     25.,   .03,   .85,   10.,    2.,   .62, 12.0e5,'Barren or Sparsely Vegetated' 
20,     63.,   .54,   .92,    8.,    5.,    0., 9.0e25,'Herbaceous Tundra' 
21,     51.,   .78,   .93,   26.,    5.,    0., 9.0e25,'Wooded Tundra' 
22,     31.,   .90,   .92,   14.,    5.,    0., 9.0e25,'Mixed Tundra' 
23,     73.,   .82,   .95,    7.,    5.,    0., 12.0e5,'Bare Ground Tundra' 
24,     73.,   .89,   .95,    5.,    5.,    0., 9.0e25,'Snow or Ice' 
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