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Abstract

Mountain Waves and Downslope Winds: Forecasts, Predictability, and Data
Assimilation

Patrick Alexander Reinecke

Chair of the Supervisory Committee:
Professor Dale R. Durran

Atmospheric Science

An investigation of the predictability of mountain-waves and downslope winds

is conducted with high-resolution numerical weather prediction (NWP) ensem-

ble simulations. While the features predicted in these models look realis-

tic, their predictability has yet to be explored. An ensemble Kalman filter

(EnKF) is implemented into the atmospheric portion of the Navy’s Coupled

Oceanic/Atmospheric Modeling System (COAMPS) to explore the predictabil-

ity characteristics of orographically generated mountain waves and downslope

winds.

The predictability of two prototypical downslope wind events is explored

with a 70 member ensemble generated with an EnKF and the COAMPS model.

In the first event, large amplitude mountain-wave breaking is the dominant

mechanism responsible for the strong downslope winds. In the second event the

mountain wave experiences non-linear amplification associated with the layer-

ing of the upstream static stability profile. Wave breaking is not present for

the second event. While the predictability is shown to differ for each event, the

forecast uncertainty for both cases grows rapidly with the ensemble members

differing by as much as 30 m s−1 within a 12-hr simulation. The mechanisms





for error growth in each event will be discussed.

The potential for assimilating mesoscale observations into a high-resolution

NWP model is also explored. It is shown that the EnKF can produce realistic

analysis increments associated with surface wind observations. Several exam-

ples of analysis increments are given for wind observations both upstream and

downstream of a major mountain barrier.

Analytic solutions for discrete flow over topography suggest that numeri-

cal errors associated with poorly resolved features lead to decreased mountain-

wave and downslope-wind predictability at non-hydrostatic scales. Linear anal-

ysis shows that insufficient resolution of non-hydrostatic waves forced by the

topography can lead to a 30% over-amplification of the mountain wave. This

result is confirmed in the fully nonlinear COAMPS model where discretization

errors produce a significant amplification of the standing mountain wave and

result in up to a 20 m s−1 over-prediction of downslope winds. Modifying the

advection scheme in the model significantly reduces the ensemble spread of

downslope winds.
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at z = 4 km. The time of the analysis is 00 UTC, 17 April. The
sensitivities have been multiplied by an ensemble standard devi-
ation so that the dimensions are m s−1 for each plot. Also plotted
are the analyzed (a) 7 km wind speeds and the (b) 4 km potential
temperature. The location of the metric box is indicated by the
green lines. The dots in (b) represent the Brunt-Väisälä pertur-
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Chapter 1

INTRODUCTION

1.1 Overview and Motivation

In recent years the availability of high resolution numerical weather prediction

(NWP) has increased substantially, due in part to great strides in computing

ability. In fact, it is not uncommon for the horizontal resolution of operational

forecasts to exceed 2 km (e.g Grubišić et al., 2008). While these models appear

to be producing realistic looking forecasts, the ability to accurately predict fea-

tures on such small scales is largely unknown.

Early assessments of mesoscale predictability suggested that small-scale

motions may have an intrinsically shorter prediction period than larger-scale

motions (Lorenz, 1969). However, as mesoscale models became common place,

an optimistic view of mesoscale predictability emerged. Anthes et al. (1985) ar-

gued that many mesoscale phenomenon can attain extended predictability be-

cause they are either well organized and are able to resist the energy cascade

described in Lorenz or are controlled by by well known physical boundaries

such as orography and land characteristics. However, Anthes et al. did not

propose a physical mechanism of how orography or land characteristics could

extend predictability and subsequent studies found that much of the apparent

enhancement was due to a combination of numerical dissipation, deterministic

lateral boundary conditions which advected “error-free” information into the

domain, and the fact that the initial perturbations projected onto gravity wave

modes which rapidly decayed after an initial period of geostrophic adjustment

(Errico and Baumhefner, 1987; Paegle and Vukicevic, 1989; Ehrendorfer and
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Errico, 1995). Nevertheless, there is a widely held belief that topography sig-

nificantly enhances mesoscale predictability (e.g. Vukicevic and Errico, 1990;

Mass et al., 2002).

One of the earliest examples of the apparent enhancement of mesoscale pre-

dictability by topography was given in the context of a linear two-dimensional

mountain-wave and downslope-wind model (Klemp and Lilly, 1975). The model

was initialized with soundings upstream of the Colorado Rockies and used to

forecast downslope wind events in Boulder, CO. For soundings taken 3-5 hours

prior to the event the model produced a positive correlation between the pre-

dicted and observed winds. This positive correlation led some to speculate that

the predictability of downslope winds and mountain waves was determined al-

most entirely by the synoptic scale predictability and that accurate downslope

wind forecasts could be made up to 24 hrs in advance (e.g. Anthes, 1984). While

Klemp and Lilly found a high correlation between the predicted and observed

wind speeds, subsequent use of the model demonstrated that it had a tendency

to over-forecast wind-storm frequency (Bower and Durran, 1986).

One issue with the Klemp and Lilly model is that downslope winds can be

a strongly non-linear phenomenon (Peltier and Clark, 1979; Durran, 1986a,

1992). More recently, Nance and Coleman (2000) developed a two-dimensional

non-linear downslope-wind forecasting tool. Their model was initialized with

Eta soundings upstream of several mountainous locations throughout the west-

ern United States. Unfortunately, as with the Klemp and Lilly model, their

model was unable to differentiate between wind-storm events and null events.

They hypothesized that the low forecast skill was associated either to the two-

dimensional model being unable to capture the relevant downslope-winds dy-

namics, or the Eta model was unable to provide adequate initial conditions.

The latter hypothesis implies a sensitivity to the upstream conditions.

Downslope winds and mountain-waves are an important mesoscale phe-
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nomenon routinely forecast in high-resolution NWP simulations. While early

guidance suggests a predictability up to 24-hrs prior to the event, several stud-

ies have indicated that downslope-wind and mountain-wave predictions are

very sensitive to the model formulation and physical parameterizations (e.g.

Clark et al., 1994; Doyle et al., 2000). Furthermore, simulations of downslope

winds and mountain waves frequently verify poorly against observations (e.g.

Gohm et al., 2004; Garvert et al., 2007). Basic questions regarding the pre-

dictability of these events are generally unanswered. For example, what is

the predictive time scale for downslope wind simulations, and, can consistent

model biases result in poor mountain-wave forecasts and decreased predicta-

bility? Furthermore, the applicability of modern ensemble data assimilation

in regions of complex terrain has not been explored. This thesis will investi-

gate these questions and provide significant insight into the predictability of

downslope winds and mountain waves.

The thesis is organized as follows. The rest of this chapter contains ad-

ditional background material. In chapter 2 an analysis of discretization er-

rors which lead to mountain-wave over-amplification in numerical models will

be presented. The impact of these discretization errors on the predictability

of mountain-waves and downslope winds will also be discussed. In chapter

3, a predictability experiment for downslope-wind forecasts will be presented.

Chapter 4 contains an evaluation of the potential application of ensemble data

assimilation in regions of complex terrain. Conclusions are presented in chap-

ter 5.

1.2 Background

Significant advancements in the theoretical understanding of downslope winds

have occurred over the past three decades and several pathways to strong

downslope winds have been identified (Durran, 1990). One type occurs when
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a large amplitude mountain wave breaks down and strong downslope winds

form beneath the breaking region (Clark and Peltier, 1977; Peltier and Clark,

1979). Wave breaking can also lead to severe turbulence which can be a sig-

nificant threat to aviation (Lilly, 1978; Nastrom and Fritts, 1992). A second

type occurs when a layer of strong static stability is located underneath weak

upper-tropospheric stability (Durran, 1986a). For this class of windstorms,

wave breaking is not a dominant mechanism. This thesis does not intend to

explore the dynamics of the processes leading to strong downslope winds, but

instead to examine the predictability of the different types of downslope wind

storms. Furthermore, the predictability of clear-air turbulence and mountain

wave breaking will be investigated.

1.2.1 Forecasting Mountain Waves and Downslope Winds

Numerous studies have demonstrated that the numerical models can simulate

realistic looking orographically generated flows. For example, Shutts (1992)

was able to simulate orographically induced lee waves with a high-resolution

numerical model. Based on comparisons between the model simulations and a

handful of radiosonde profiles, they speculated that operational models would

be capable of deterministically predicting mountain-waves and clear-air tur-

bulence. In another example Clark et al. (1994) presented two- and three-

dimensional simulations of a severe downslope windstorm in Boulder, CO. They

found that while the model was able to predict a wind storm, it was not able

to simulate the detailed evolution or location of the storm. Furthermore, the

model solutions were strongly dependent on the formulation of the boundary

layer scheme.

While the previous examples were limited in the sense that they were ini-

tialized with horizontally uniform soundings, full physics high-resolution NWP

models with time dependent boundary conditions have also shown the ability to
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simulate orographically induced phenomenon. In one example, Colle and Mass

(1998) were able to successfully simulate a downslope wind event along the

western slopes of the Washington Cascades. The model demonstrated its abil-

ity to realistically depict features such as upstream blocking, shooting down-

slope flow, and flow splitting around the Olympic mountains. In another ex-

ample, Doyle and Shapiro (2000) demonstrated that the COAMPS model could

realistically simulate a severe downslope wind event associated with the non-

linear amplification of a mountain wave due to the upstream layering of static-

stability in a frontal boundary.

While the general qualitative success of these models is extensive, quantita-

tive evaluation is difficult due to limited observations in complex terrain. How-

ever, Clark et al. (2000) compared LIDAR observations to model simulations

of mountain-wave breaking associated with a Boulder, CO wind storm. They

claimed that the model was able to accurately represent the wave-breaking re-

gion and the deterministic forecasts of clear-air turbulence associated with the

wave breaking were feasible. The mesoscale alpine program (MAP) provided

several opportunities to verify model simulation of mountain waves against

observations. In general, it was difficult to obtain quantitatively accurate com-

parisons between model simulations of mountain waves during MAP and ob-

servations (e.g. Doyle et al., 2002; Volkert et al., 2003).

One persistent problem in both real-time and a posteriori forecasts is the

tendency to over-predict the mountain-wave amplitude directly over the bar-

rier. One possible consequence of mountain-wave over prediction is a greater

tendency for waves to break down and generate severe downslope winds (e.g.

Peltier and Clark, 1979). Additionally, excessive wave breaking in model fore-

casts can lead to inaccurate forecasts of clear-air turbulence. Real-time, a prior,

forecasts of mountain-waves, used for mission planing during MAP, produced

mountain waves with much larger amplitude than observed as well as frequent
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wave breaking (Doyle 2008, personal communications). Furthermore, a poste-

riori simulations indicate that simulated waves in high resolution models were

substantially stronger than observed (Doyle and Jiang, 2006). Mountain-wave

over-prediction is not limited to the European Alps. Garvert et al. (2007) used

horizontal winds derived from a dual-Doppler radar mounted on the NOAA P-

3 aircraft to compare observations of a mountain-wave event over the Oregon

Cascades to high-resolution model simulations. They found that the simulated

mountain-wave amplitude was much stronger than observed.

1.2.2 Downslope Wind and Mountain Wave Sensitivities

While downslope winds are strongly forced by the underlying topography, sim-

ply specifying the terrain does not in general guarantee accurate forecasts. For

example the removal of low-level stable layers upstream of mountain ranges

can result in a large difference when simulating downslope winds (Durran,

1986a). Durran conducted a pair of idealized non-linear numerical simula-

tions using a sounding from the 11 January, 1972 Boulder windstorm (Lilly

and Zipser, 1972; Lilly, 1978). The sounding contained a region of high static

stability near crest level and strong cross-barrier flow through the depth of

the atmosphere. In the first simulation, a strong downslope wind response

was apparent on the lee slope of the topography with a large amplitude moun-

tain wave propagating away from the mountain. In the second simulation,

the low-level stable layer was removed. As a consequence the downslope wind

storm and large amplitude mountain wave did not develop in the model so-

lution. While the modification to the initial sounding was relatively large, it

provides an example of how variations in the upstream synoptic-scale flow can

lead to large changes of the downslope wind response.

Several additional studies of the 11 January, 1972 Boulder windstorm have

been conducted with idealized two-dimensional models. In order to verify that
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high-resolution models could simulate upper-tropospheric and stratospheric

wave breaking, Doyle et al. (2000) conducted a series numerical model inter-

comparisons in which 11 different models were initialized with the same up-

stream sounding from the Boulder windstorm. While all of the models were

able to produce a region of wave breaking in the lower stratosphere, the tempo-

ral evolution of the breaking was significantly different between the individual

models. Furthermore, both the downslope wind response and the upper-level

wave breaking response were found to be very sensitive to small variations in

the stratospheric profiles of wind speed and temperature.

In an effort to systematically evaluate mountain-wave and downslope wind

sensitivities Doyle and Reynolds (2008) performed idealized, two-dimensional

ensemble simulations using the same 11 January, 1972 Boulder windstorm

sounding. Perturbations with magnitudes similar to radiosonde observational

errors were added to the initial sounding in order to construct the ensem-

ble. They found that for a linear response, forced by a small hill, weak er-

ror growth occurred and that the ensemble distribution was narrow. As the

height of the hill increased and the flow became more non-linear, the error

growth increased and the ensemble spread broadened. For non-linear flow,

near the wave-breaking threshold, the ensemble spread was characterized by

a bimodal distribution with half of the members simulating a large amplitude

breaking wave in the stratosphere and the other half of the members simulat-

ing a trapped-wave response. Additionally, the downslope wind speed varied

by over 25 m s−1 between the ensemble members.

Doyle et al. (2007) used an adjoint model to explore downslope-wind sensi-

tivity in an idealized two-dimensional model. They found for smalls hills, in

which the flow is linear and hydrostatic, the lee-slope winds are sensitive to

perturbations in two lobes which extended upstream and above the topogra-

phy. These two lobes represent downward propagating internal gravity waves.
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For larger amplitude mountain waves, the sensitivity patterns were consider-

ably more complex. Large sensitivities to middle tropospheric perturbations of

potential temperature and wind speed 1-hr prior to the optimization time were

found. This suggests that the predictive time scales of downslope winds could

potentially be as short as 1-hr.

The predictability studies summarized above are limited to two dimensional

simulations and are primarily focused on the 11 January, 1972 Boulder wind-

storm. The predictability limitations of downslope winds and mountain waves

in fully three-dimensional NWP models has been largely unexplored. While it

should be expected that the sensitivities associated with wave breaking, and

described in Doyle and Reynolds (2008), are applicable in more complex mod-

els, this has not been fully explored. Furthermore, strong downslope winds

can develop without wave breaking. For example, if the upstream profile is

structured so that a layer of strong static stability is located beneath a layer

of upper-tropospheric weak static stability then non-linear wave amplification

can lead to strong winds (Durran, 1986a). The predictability of this type of

event is unexplored.

Other predictability studies related to orography

Several authors of examined the predictability of orographic precipitation in

cloud resolving models (Walser et al., 2004; Hohenegger et al., 2006). Hoheneg-

ger et al. looked at error growth in cloud-resolving numerical model simula-

tions of several several orographic precipitation events during MAP. Using an

small ensemble in which the synoptic-scale flow is assumed to be “perfectly pre-

dictable” by specifying identical lateral boundary conditions for each ensemble

member, they proposed a mechanism based on the group velocity of gravity

waves in which errors could grow in limited area models. They hypothesize

that if the group velocity propagates upstream, then small errors on the meso-
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scale will have the opportunity to grow before being advected out of the domain.

These results, however, would be strongly dependent on the size of the numeri-

cal domain. Additionally, errors at inflow boundaries will always be present in

limited-area model forecasts and should be accounted for when addressing the

predictability of flows with strong synoptic dynamics.

Predictability of Moist Baroclinic Waves

In addition the the predictability of orographic flows, it has been shown that

moist processes can significantly reduce the predictability of baroclinic waves

in mesoscale models (Ehrendorfer et al., 1999; Zhang et al., 2002, 2003, 2007a).

Ehrendorfer et al. (1999) used singular vectors to show that the inclusion of

moist process increased the initial condition sensitivity in a situation of baro-

clinic instability compared to otherwise equal, but dry simulations. (Zhang

et al., 2007a) showed that small initial errors in moist baroclinic flow can grow

in three stages. In the first stage, rapid error growth occurs on the convec-

tive scale with error saturation occurring within 6-hrs. In the second stage,

errors associated with the convective growth can project onto balanced motions

leading to errors in the potential vorticity (PV) field. These PV perturbations

project onto growing baroclinic modes which leads to a third stage of large scale

baroclinic error growth.

1.2.3 Ensemble Data Assimilation

The EnKF is an ensemble based data assimilation method, which under suit-

able assumptions provides an optimal combination of observations and back-

ground estimates of the atmosphere (Evensen, 2003; Hamill, 2006). The back-

ground estimates are usually short-term model forecasts that were initialized

with a previous EnKF assimilation cycle (e.g. Evensen, 1994). The short-term
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forecasts are used to estimate the background error covariance statistics, Pb.

If xb is a vector containing all model variables at all the grid points then

Pb =
{
xbxbT

}
, where the curly braces indicate that it is an expected value over

the ensemble. The background error statistics are used to spread observational

information around the model domain and update the short-term forecast to a

new analysis state.

Several studies have demonstrated the benefit of using the EnKF for at-

mospheric applications. While the method was first limited to global mod-

els in which observations were drawn from the model solution (Houtekamer

and Mitchell, 1998; Mitchell and Houtekamer, 2002), subsequent work has

shown that the EnKF can be beneficial when using real-data observations

(Houtekamer et al., 2005). The EnKF has also been adapted for mesoscale

models (Zhang et al., 2006; Torn et al., 2006; Zhang et al., 2007b; Dirren et al.,

2007; Torn and Hakim, 2008b). Torn and Hakim demonstrated that assimi-

lating observations with the EnKF improved 6-hr forecasts up to 50% when

compared to forecasts without data assimilation.

One issue with limited-area ensembles is the influence of the lateral bound-

aries on the ensemble variance. If deterministic boundaries are specified, the

variance can artificially decrease over time. Torn et al. (2006) developed and

tested several methods in which the boundary conditions could be perturbed for

limited area models. They found a “fixed-covariance” perturbation method, in

which the boundary perturbations were derived from a static covariance model,

was particularly attractive.

Using limited area convective scale models, several authors have demon-

strated that the EnKF is able to assimilate synthetic observations of radar

reflectivities and velocities into an ideal model simulations of convective thun-

derstorms (Synder and Zhang, 2003; Zhang et al., 2004; Tong and Xue, 2005;

Caya et al., 2005). Furthermore, Dowell et al. (2004) was able to assimilate
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Doppler velocities and reflectivities of an observed tornadic supercell with an

EnKF. While these studies have shown that the flow-dependent nature of the

background-error covariances are beneficial when assimilating mesoscale ob-

servations, the improvement to subsequent forecasts is unclear. Furthermore,

these high-resolution data-assimilation experiments are sensitive to the en-

semble initiation procedure (e.g. Synder and Zhang, 2003; Zhang et al., 2004).

Orographic flows often exhibit a strong time tendency. Static background-

error statistics derived from balance relations such as geostrophy or thermal-

wind are not appropriate under such circumstances. Additionally, terrain-

induced flows are often strongly dependent on larger scale motions and as

such any data-assimilation system must account for this multi-scale aspect.

In one example, Echevin et al. (2000) demonstrated that the flow-dependent

background-error statistics from the EnKF produced more realistic analysis in-

crements in a coastal ocean model with bottom topography than an OI scheme,

however, the capability of flow-dependent statistics to capture mesoscale struc-

tures such as orographic blocking, mountain-waves, and downslope winds is

unknown.

Several studies have demonstrated that data assimilation in complex ter-

rain can improve the realism of short-term forecasts. For example, Doyle and

Smith (2003) showed that cycling a forecast system with an optimal interpo-

lation (OI) data assimilation step provided a more realistic representation of

the horizontal wavelength of mountain-waves. Jaubert et al. (2005) used an

OI system to assimilate in-situ temperature data in an alpine-valley cold pool

into a high-resolution NWP simulation of a foëhn event. They found that the

simulations initialized with the cold pool were able to better captured the evo-

lution of the surface foëhn winds compared to the simulations without the cold

pool. This thesis will explore the capability of the EnKF for data assimilation

in complex terrain.
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Chapter 2

GRAVITY WAVE OVER-AMPLIFICATION IN NUMERICAL
SOLUTIONS TO FLOW OVER TOPOGRAPHY

The influence of numerical error on the mountain-wave amplitude is exam-

ined in this chapter. With the aid of linear theory it will be shown that nu-

merical models with second-order-accurate advection and the common “C-grid”

staggering (Mesinger and Arakawa, 1976) are not capable of accurately simu-

lating waves forced by flow over a 10∆x-wide obstacle. Davies and Brown (2001)

investigated the minimum horizontal resolution need to accurately simulate

hydrostatic flow over topography. The concluded that while models demon-

strate appreciable skill for 6∆x-wide features 10∆x was required for conver-

gence. More generally, the impact of discretization errors across a wide range

of hydrostatic and non-hydrostatic scales is investigated with a variety of nu-

merical schemes on both a staggered and unstaggered meshes.

2.1 Discrete flow over topography

In this section the role of discretization errors in simulations of linear Bouss-

inesq flow over an isolated two-dimensional barrier will be quantified by com-

paring discrete analytic mountain-wave solutions with the solution to the con-

tinuous problem. Klemp et al. (2003) computed discrete analytic mountain-

wave solutions to demonstrate the need for consistent finite-differencing in

domains with vertically transformed coordinates. Here, we compute similar

analytic mountain-wave solutions to investigate the errors due to inadequate

horizontal resolution in finite-difference models for flow over orography. We fo-
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cus first on non-hydrostatic waves, which are more likely to be poorly resolved

by operational mesoscale models and then consider the impact of discretization

on hydrostatic waves.

2.1.1 The Discrete Boussinesq System

Consider a differential-difference approximation to the continuous Boussinesq

system in which the spatial derivatives are computed with finite differences

and the time derivatives are left in continuous form. As is common in many

finite-difference NWP models, the unknown fields are defined on a “C-Grid”,

such that the perturbation pressure P and buoyancy b are co-located at the in-

dex point (p, q), while the perturbation horizontal momentum (u, v), and ver-

tical momentum w, are staggered one-half grid point in the horizontal and

vertical directions, respectively. Staggering the variables in this way allows

the pressure gradient and divergence terms to be calculated on a numerical

mesh with twice the resolution of the grid, leading to a better representation of

the shortest resolvable gravity waves when compared to an unstaggered mesh.

Further improvements to the numerical accuracy can be obtained by computing

the horizontal advective terms with higher-order-accurate finite differences.

We consider the impact on the discrete solution when the order of accuracy

for the horizontal advective terms ranges from first- through sixth-order.

Assuming there are no y-direction variations, the semi-discrete Boussinesq

system for flow with uniform background wind speed, U , Brunt-Väisälä fre-

quency, N , and Coriolis parameter f , can be concisely expressed with the aid of

operator notation as

∂u

∂t

∣∣∣∣∣
p− 1

2
,q

+ UDnxup− 1
2
,q − f

〈
vp− 1

2
,q

〉x
+ δxPp− 1

2
,q = 0 (2.1)

∂v

∂t

∣∣∣∣∣
p,q

+ UDnxvp,q + f 〈up,q〉x = 0 (2.2)
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∂w

∂t

∣∣∣∣∣
p,q− 1

2

+ UDnxwp,q− 1
2

+ δzPp,q− 1
2

=
〈
bp,q− 1

2

〉z
(2.3)

∂b

∂t

∣∣∣∣∣
p,q

+ UDnxbp,q +N2 〈wp,q〉z = 0 (2.4)

δxup,q + δzwp,q = 0. (2.5)

Here, δx and δz are operators representing second-order centered finite differ-

ences in the horizontal and vertical directions with grid spacing ∆x/2 and ∆z/2,

respectively. The operator Dnx is a nth-order approximation to the first deriva-

tive with grid spacing ∆x. Table 1 shows Dnx for first- through sixth-order

differences as a function of the centered finite-difference operator

δnxf(x) =
f
(
x+ n

2
∆x

)
− f

(
x− n

2
∆x

)
n∆x

. (2.6)

Note that δx and δz are defined by (2.6) for the case of n = 1. In addition to the

finite-difference operators, an averaging operator defined by

〈f(x)〉x = f
(
x+

1

2
∆x

)
+ f

(
x− 1

2
∆x

)
(2.7)

is used in (2.1)-(2.4).

Analogous to the familiar approach used with the continuous Boussinesq

system, the semi-discrete dispersion relationship can be computed by substi-

tuting discrete plane-wave solutions of the form

ψ = ψ0e
i(kp∆x+mq∆z−ωt) (2.8)

into (2.1)-(2.5) and solving for ω (Durran, 1999). Here, the horizontal and verti-

cal wavenumbers are given by k and m, respectively, while the frequency of the

oscillation is given by ω. The exact formulation of the semi-discrete dispersion

relationship depends on the order of accuracy in which the horizontal advec-

tive terms are computed, as well as the horizontal and vertical grid spacing,

however, a generalized form can be written as

ω = UK̃n −
(
Ñ2k̃2 + f̃ 2m̃2

k̃2 + m̃2

) 1
2

. (2.9)
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Table 2.1: The first- through sixth order discrete operator, Dnx, to the first
derivative, as well as the discrete representation of the wavenumber associated
with that finite difference approximation to a plane wave function.

n Dnx Kn

1 δ2x − ∆x
2
δ2
x k̃2 + i [cos(k∆x)−1]

∆x

2 δ2x k̃2

3 δ2x − ∆x2

6
δ2
xD1x

1
3
(4k̃2 − k̃4)− i

3
[cos(k∆x)−1]2

∆x

4
(
1− ∆x2

6
δ2
x

)
δ2x

1
3
(4k̃2 − k̃4)

5
(
1− ∆x2

6
δ2
x

)
δ2x + ∆x4

30
δ4
xD1x

(
3
2
k̃2 − 3

5
k̃4 + 1

10
k̃6

)
+ i

15
[cos(k∆x)−1]3

∆x

6
(
1− ∆x2

6
δ2
x + ∆x4

30
δ4
x

)
δ2x

(
3
2
k̃2 − 3

5
k̃4 + 1

10
k̃6

)

Here iK̃n, ik̃, and im̃ are the eigenvalues associated with various finite differ-

ence operators in (2.1)-(2.5), such that

k̃ =
sin

(
∆x
2
k
)

∆x
2

, m̃ =
sin

(
∆z
2
m
)

∆z
2

, (2.10)

and K̃n, the horizontal wavenumber associated with the approximation of the

horizontal advection terms, is given in Table 1 as a function of

k̃n =
sin

(
n
2
∆xk

)
n
2
∆x

. (2.11)

The k̃ and m̃ terms arise from the δx and δz finite-difference operators associ-

ated with the pressure gradient and divergence terms in (2.1), (2.3), and (2.5).

Apparent from the definition of k̃n is that k̃ = k̃1. Finally, Ñ and f̃ are associated

with the averaging operators in (2.1)-(2.4) and are defined by

Ñ = cos
(

∆z

2
m
)

and f̃ = cos
(

∆x

2
k
)
, (2.12)

respectively. Note the similarity between the semi-discrete dispersion relation-

ship (2.9) and the continuous dispersion relationship,

ωc = Uk ±
(
N2k2 + f 2m2

k2 +m2

) 1
2

. (2.13)
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In the limit of good horizontal and vertical resolution K̃n→k, k̃→k, m̃→m,

Ñ→N , and f̃→f implying that ω→ωc.

2.1.2 Flow Over Topography

To investigate the effects of numerical errors in the discretized problem we

must first consider the continuous case. Following Smith (1979) the vertical

velocity for a single Fourier mode over an infinitely long ridge is

ŵ(k, z) = ikUĥ(k)eimz. (2.14)

In the preceding ĥ(k) is the Fourier transform of the topographic profile h(x)

and ŵ is the transform of the vertical velocity. The vertical wavenumber m is

obtained by setting ωc = 0 in (2.13) and solving the resulting equation to give

m2 = k2

[(
N

Uk

)2

− 1

] 1− (
f

Uk

)2
−1

. (2.15)

Substituting for m in (2.14) and taking the inverse Fourier transform gives

the vertical velocity w from which P , b, u, and v can be recovered from the

polarization relations (Gill, 1982).

Non-dimensional parameters governing the mountain-wave structure may

be defined as follows. Inspection of (2.15) reveals two relevant horizontal length

scales, U/N and U/f . Vertical propagation is possible over the range f/U <

k < N/U . Since N/f ≈ 100 in mid-latitudes, the spatial scales of vertically

propagating waves can vary by two orders of magnitude. If the horizontal scale

of the topography is a then δ = Na/U is the non-dimensional mountain width

and Ro = U/(fa) ≈ 100/δ is the Rossby number. For δ = O(1) the response

is dominated by non-hydrostatic motions and rotational effects are negligible.

For δ = O(10), the wave motions are primarily hydrostatic and rotational effects

only minimally modify the solution. As δ increases beyond 10, the influences of

rotation must be considered.
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a

-4a -2a 0 2a 4a

Figure 2.1: Topography given by (2.16), solid line, compared to a Witch of Ag-
nesi with half-width a (dashed). The tick marks are plotted every 2

3
a corre-

sponding to the grid spacing for the examples in lines 1 and 2 of Table 2.

The terrain profile is specified as

h(x′) =


h0

16

[
1 + cos

(
π x

4a

)]4
, if | x

4a
| ≤ 1;

0, otherwise,
(2.16)

which, as shown in Fig. 2.1, is similar to the widely used Witch of Agnesi except

that it drops to zero at a finite distance (of 4a) from the mountain crest. To

compute ĥ(k) from (2.16), a Fast Fourier transform (FFT) is used on a grid

with 2048 points spaced 0.05a apart. The vertical velocity field is recovered by

applying the inverse FFT to (2.14).

Figure 2.2 shows the vertical velocity in the continuous system for flow over

h(x) with δ = 1.8. Consistent with the scaling arguments presented above,

the impact of rotation is ignored by setting f = 0. The vertical velocity is

normalized by Uh0/a, which arises from (2.14) by setting the scale for k as a−1.

The x-axis has been normalized by the mountain half-width x′ = x/a and the

z-axis has been normalized by the vertical wavelength of a two-dimensional

hydrostatic mountain wave z′ = zN/(2πU). The non-hydrostatic nature of the

flow is clearly evident in Fig. 2.2 as the wave is dispersive with a substantial

amount of wave energy propagating both vertically and downstream (Durran,

1986b).
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Figure 2.2: Non-dimensionalized vertical velocity for linear two-dimensional
flow over an isolated ridge. The flow is non-hydrostatic with δ = 1.8. The
contour interval is 0.125 and the zero contour is omitted. A line that makes a
50◦ angle with the horizontal is plotted for reference.

Turning now to the discrete system, the vertical velocity is given by

ŵ(k, q∆z) = ikUĥ(k)eimnq∆z. (2.17)

Here mn is the vertical wave number associated with the nth-order finite differ-

ence scheme satisfying the steady version of (2.9). Setting ω = 0 in (2.9) and

using (2.10) and (2.12) the discrete vertical wavenumber is

mn =
2

∆z
cos−1


√√√√√√

(
∆zk̃

)2
+ 4−

(
2R̃n

)2

(
k̃N

U
∆z
K̃n

)2
+ 4−

(
2R̃n

)2

 , (2.18)

where R̃n = f̃/
(
UK̃n

)
. The discrete linear solutions are obtained using Fourier

transforms in an identical manner as the continuous case with one exception:

h(x) is defined on a horizontal grid with spacing ∆x.

To appreciate the errors that may occur when computing approximations to

the solution in Fig. 2.2, suppose the non-dimensional horizontal and vertical

grid intervals used to evaluate the discrete solutions are ∆x′ = ∆x/a = 0.67
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Table 2.2: Illustrative physical parameters for the three mountain-wave so-
lutions considered assuming the background wind speed and Brunt-Väisälä
frequency are U = 25 m s−1 and N = 0.01 s−1, respectively.

δ a (km) f (s−1) ∆x (km) ∆z (km)

1.8 4.5 0 3.0 0.75

10 25 10−4 16.7 0.75

10 25 10−4 33.6 0.75

and ∆z′ = ∆zN/(2πU) = 0.048. Figure 2.1 shows the horizontal grid point

spacing in relation to the topographic profile and indicates that the barrier is

resolved by roughly 8 grid points. A concrete example of one representative set

of dimensional parameters corresponding to this case is listed in the first row

of Table 2. Note that the high vertical resolution makes the solutions relatively

insensitive to moderate variation in ∆z′.

The normalized vertical velocity forced by the topographic profile (2.16) is

shown for first- through sixth-order schemes in Fig. 2.3. It is not surprising

that the well-known diffusive nature of the first-order scheme (Fig. 2.3a) pro-

duces excessive damping of the mountain-wave solution. The large errors of

the second-order scheme (Fig. 2.3b) for flow over the 8∆x-wide mountain were

however, unexpected. Considering the maximum vertical velocity within the

first positive phase of the wave (from z′ = 0.25 to z′ = 1.0), the second-order

solution is 30% stronger than the corresponding continuous solution. This is

a direct result of the second-order scheme being unable to adequately resolve

waves forced by the 8∆x topography. In addition, the morphological behavior

of the second-order solution is substantially different from the continuous so-

lution. The second-order solution does not correctly capture the downstream

propagation evident in the continuous solution. Instead, the majority of wave
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Figure 2.3: The non-dimensional vertical velocity for the discrete solution to
linear non-hydrostatic (δ = 1.8) Boussinesq flow over an isolated ridge for (a)
first-, (b) second-, (c) third-, (d) fourth-, (e) fifth-, and (f) sixth-order-advection
schemes. The horizontal grid spacing is ∆x′ = 0.67 resulting in 8 grid points
across the ridge. The contour interval is 0.125 and the zero contour is omitted.

energy is found directly over the crest of the topography, as would be expected

in a hydrostatic mountain wave.

Increasing the order-of-accuracy of the advective scheme improves the mor-

phological behavior of the mountain wave and reduces the magnitude of the

errors in the vertical velocity. For example, the third-order scheme more faith-

fully represents downstream wave propagation (Fig. 2.3c), however, the implicit

numerical diffusion in the third-order approximation removes too much energy

from the shortest wavelengths. Downstream propagation is clearly evident in

the solution obtained using the fourth-order scheme (Fig. 2.3d), however, sim-

ilar to the second-order solution, the vertical velocity amplitude in the first

phase of the wave is over-predicted by 11%. The two best performing numerical
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methods are the fifth and sixth-order schemes (Figs. 2.3e and f, respectively).

In both of these solutions the downstream energy propagation evident in the

continuous solution is present. Additionally, the vertical velocity amplitude

within the first phase of the wave compares well with the continuous solution.

The fifth and sixth-order schemes are respectively, 1% and 4% stronger than

the corresponding continuous solutions. It is interesting that despite the nu-

merical diffusion associated with the fifth-order solution, the wave amplitude

is stronger than the continuous solution.

We now consider the discretization impact on hydrostatic mountain waves.

Figure 2.4a shows the normalized vertical velocity in the continuous Boussi-

nesq system for δ = 10. The influence of the Coriolis force is included in the so-

lution, however, the impacts are minimal since the Rossby number is relatively

large (Ro = 10). As expected, the majority of wave energy is located directly over

the mountain crest and the phase-lines tilt upstream with height (e.g. Smith,

1979). The second-order discrete solution for flow over an 8∆x wide mountain

when ∆x′ = 0.67 and ∆z′ = 0.048 is shown in Fig. 2.4b. Note that the waves

propagate upstream and the vertical-velocity amplitude is decreased over the

mountain crest by 7% relative to that in the continuous solution. Represen-

tative dimensional parameters for this problem are given on line 2 of Table 2

and are typical of the resolutions used in operational NWP forecasts. The grid-

point locations relative to the mountain are shown in Fig. 2.1 and are identical

to those in the previously considered δ = 1.8 case.

A less-well-resolved case is shown in Fig. 2.4c, in which the normalized

horizontal resolution is ∆x′ = 1.35, corresponding to slightly more than four

grid-points spanning the mountain barrier. A 4∆x wavelength feature is often

accepted as being adequately resolved (Grasso, 2000). Line 3 of Table 2 gives

the dimensional parameters for an illustrative example that would map to this

case. Clearly the wave structure is grossly distorted; a substantial amount
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Figure 2.4: The non-dimensional vertical velocity when δ = 10 and Ro = 10 for
the (a) continuous solution as well as second-order solutions with (b) ∆x′ = 0.67,
and (c) ∆x′ = 1.35. The contour interval is 0.125 and the zero contour is omitted.

of wave-energy is propagating upstream and the magnitude of the vertically

propagating wave is significantly reduced. The maximum vertical velocity in

the first phase of the wave is 39% lower than the corresponding continuous

solution.

2.1.3 Pressure Drag

One important quantity related to mountain waves is the pressure drag across

the mountain barrier. This drag can be large enough to significantly alter the

general circulation of the atmosphere (e.g. Bretherton, 1969) and must be ac-

counted for in global models which do not explicitly resolve the topography

(Palmer et al., 1986; McFarlane, 1987). In this section the pressure drag in the

discrete solution is compared to the drag in the continuous solution.

The drag for the second- and fourth-order discrete solutions, normalized by

the continuous drag, is shown as a function of the non-hydrostatic parameter

δ in Fig. 2.5. Consistent with the examples shown in Figs. 2.3 and 2.4b, the

horizontal resolution for the discrete solution is fixed at ∆x′ = 0.67a. For non-

hydrostatic flow (δ < 3), the drag in the second-order scheme is more than 25%
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Figure 2.5: The pressure drag as a function of the non-hydrostatic parameter δ
for the second-order (solid) and fourth-order (thick dashed) schemes where the
horizontal resolution is ∆x′ = 0.67a. The pressure drags have been normalized
by the drag for the continuous solution. Also plotted is the continuous pressure
drag (thin dashed) normalized by the pressure drag for hydrostatic linear flow
over a Witch of Agnesi profile.
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larger than the continuous drag, while for the hydrostatic waves (δ > 5) it is

close to 5% larger. Figure 2.5 also shows the continuous drag, normalized by

the drag for linear hydrostatic flow over a Witch of Agnesi profile. Although

the overprediction by the second-order scheme is large for the non-hydrostatic

waves, it is not particularly alarming because the continuous drag is relatively

weak for these wavelengths. However, for the hydrostatic waves, where the

continuous drag is relatively large, the overprediction represents an excessive

force on the atmosphere that may need to be accounted for when formulating

drag parameterizations for grid-point mesoscale and global models. Consistent

with the improvement of the discrete mountain wave solutions for the fourth-

order scheme, the drag calculations are significantly improved and are very

close to the continuous drag.

2.2 Group Velocity Analysis

The differences between the mountain-wave solutions in the continuous and

discrete systems can be understood by comparing the group velocities for each

system. First, we consider group velocities for wavelengths associated with the

non-hydrostatic mountain waves shown in Figs. 2.2 and 2.3. Then, the impact

of numerical errors on the group velocity across a wide range of horizontal

scales and numerical resolutions is investigated by considering the angle the

group velocity vector makes with the horizontal plane. Finally, the influence of

grid staggering on group-velocity errors is explored.

2.2.1 Continuous and Discrete Group Velocities

In the continuous case, the horizontal and vertical components of the group-

velocity vector cg are

cgx = U − km2 (N2 − f 2)

(k2 +m2)
3
2 (N2k2 + f 2m2)

1
2

(2.19)
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and

cgz =
k2m (N2 − f 2)

(k2 +m2)
3
2 (N2k2 + f 2m2)

1
2

. (2.20)

While cg admits both steady and non-steady motions, attention is restricted to

steady flow by requiring m to satisfy (2.15). The horizontal and vertical compo-

nents of the continuous group velocity for steady flow are plotted (using solid

lines) in Figs. 2.6a and b as functions of the normalized horizontal wavelength

λ′x = λxN/(2πU). For decreasing λ′x the influence of non-hydrostatic motions

become important as evident by the increasing amount of downstream propa-

gating wave energy in Fig. 2.6a. Near the non-hydrostatic cut-off of λ′x = 1, cgz

drops rapidly to 0 and cgx increases to 1; the majority of wave energy at these

short horizontal scales is propagating downstream.

In the context of the continuous non-hydrostatic mountain-wave solution

(Fig. 2.2), the range of λ′x presented in Figs. 2.6a and b contains most of the

power forced by the δ = 1.8 mountain. For example, Fourier analysis of the

vertical velocity field in the non-hydrostatic mountain wave shows the domi-

nant horizontal wavelength is λ′x = 1.55. From Fig. 2.6, cg = (1.04U, 1.23U) for

this wave implying that the group-velocity vector makes an angle of θ ≈ 50◦

with the horizontal plane. The dashed line in Fig. 2.2 is drawn at an angle of

θ = 50◦ showing that the majority of wave energy propagates downstream at

this angle.

Now consider the effect of discretization on the group-velocity vector. In an

analogous manner to the continuous system, the discrete steady version of cg

can be derived by differentiating (2.9) with respect to k and m and substituting

(2.18) for m into the resulting two equations. The steady-state horizontal and

vertical discrete group velocities are plotted in Figs. 2.6a and b for the second,

fourth, and sixth-order numerical schemes. The odd-order schemes are not

plotted since their group velocities are identical to those for the next higher
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Figure 2.6: The discrete group velocities in the (a) horizontal and (b) vertical
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indicates the number of points resolving λ′x. The grid spacing corresponds to
the example given in the first line of Table 2.
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even-order schemes. The number of grid-points-per-wavelength indicated along

the top axis of both panels corresponds to the numerical resolution of the waves

forced by the topography in Fig. 2.3.

As evident in Fig. 2.6, the second-order scheme is unable to accurately

approximate the correct non-hydrostatic group velocities for any value of λ′x
between 0.5 and 2.5. The downstream component of the group velocity is

significantly reduced compared to the continuous system and there is a non-

trivial vertical component of the group velocity for wavelengths which would

be evanescent in the continuous system (λ′x < 1). These errors in the group

velocity lead to an accumulation of wave energy over the topography resulting

in over-amplification of the vertically propagating wave (Fig. 2.3b). In con-

trast, at the same wavelengths the fourth and sixth-order schemes more faith-

fully represent the downstream propagation of cg. However, the shortest non-

hydrostatic waves are still poorly represented by the fourth-order advection

scheme and as a result cgx is retarded at these wavelengths. The sixth-order

scheme performs well, even at the shortest horizontal wavelengths.

2.2.2 Angle of Propagation

While the preceding analysis was particular to the grid spacing used to approx-

imate the non-hydrostatic mountain waves shown in Figs. 2.2 and 2.3, it can be

concisely extended to a wide range of horizontal scales and numerical resolu-

tions by considering the angle θ that the discrete group-velocity vector makes

with the horizontal plane. Figure 2.7 shows contour plots of θ for a steady inter-

nal gravity wave as a function of the normalized horizontal wavelength λ′x and

the number of grid-points-per-wavelength λx/∆x. In order to clearly display θ

across a wide range of horizontal scales λ′x has been plotted on a logarithmic

axis. While the contour plots are independent of any particular mountain ge-

ometry, each δ can be associated with a particular λ′x through the maximally
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Figure 2.7: The discrete angle of propagation for the (a) second-, (b) fourth-,
and (c) sixth-order schemes as a function of the normalized horizontal wave-
length and the number of points-per-wavelength. The dots represent the loca-
tion in the parameter space of the dominantly forced wavelength in the three
mountain-wave solutions considered in Table 2. The dashed curves represent
a slice through the parameter space where 90% of the wave energy is forced in
the mountain-wave solutions. The value of the non-hydrostatic parameter δ for
the maximally forced wavelength is shown on the right-hand axis.

forced horizontal wavelength in the vertical velocity field for that particular δ.

The right-hand axis show the non-dimensional mountain width δ for which λ′x

is the horizontal wavelength at the peak of the vertical velocity spectrum forced

by the mountain profile (2.16).

In the continuous limit λx/∆x → ∞ (left edge of each plot in Fig. 2.7), the

group-velocity vector points downstream for the shorter non-hydrostatic wave-

lengths and points increasingly towards the vertical as λ′x approaches 10. How-

ever, as λ′x exceeds 10, Coriolis effects become important and the group-velocity

vector again tilts downstream. The impact of discretization on a particular

monochromatic wave can be seen by moving from left to right in each plot. As

the horizontal resolution decreases, the errors in θ increase. For example, for

the second-order scheme (Fig. 2.7a) decreasing the number of grid points per
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wavelength of the λ′x = 5 wave leads to the vector pointing increasingly up-

stream such that when the wave is resolved by 8 grid points, θ ≈ 125◦ instead

of the correct value of θ ≈ 78◦. The errors in the second-order scheme grow more

rapidly than those of the fourth and sixth-order schemes with decreasing hor-

izontal resolution, as evidenced by the greater horizontal extent of θ contours

from the left edge of Figs. 2.7b and c.

The approximate locations in this parameter space of the three discrete

mountain-wave cases shown in Figs. 2.3 and 2.4 are indicated by the black

dots and dashed lines in Fig. 2.7. The black dots are plotted at the wavelength

and spatial resolution at which the vertical velocity is maximally forced, and

the dashed lines are the locus of all such points containing 90% of the power

in the vertical velocity spectrum forced by each mountain. For the second-

order non-hydrostatic mountain-wave solution (Fig. 2.7a) the group velocities

are oriented too vertically (θ > 70◦) for all wavelengths within 90% of the maxi-

mum forcing. For example, at the dominant horizontal wavelength (λ′x = 1.55),

θ = 71◦ in the second-order scheme, compared to 50◦ in the continuous solution.

In this case the horizontal resolution is inadequate, and as a result the energy

in these non-hydrostatic modes propagates vertically instead of downstream,

leading to an over amplification of the mountain wave directly above the to-

pography. Higher-order schemes provide more accurate representations of the

topographically forced vertical velocity spectrum; for λ′x = 1.55, θ = 53◦ for the

fourth-order scheme (Fig. 2.7b) and 50◦ (the correct value) for the sixth-order

scheme (Fig. 2.7c).

Turning now to the discrete solutions for the hydrostatic mountain waves,

δ = 10, the parametric points of the maximally forced wavelength in the verti-

cal velocity spectrum (λ′x = 8.63) yields an angle of θ = 142◦ for the 8∆x-wide

mountain and θ = 174◦ for the 4∆x-wide mountain compared to θ = 80◦ in the

continuous system. Additionally, the 90% threshold for the vertical velocity
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spectrum spans a wide range of propagation angles leading to the dispersive

nature of the discrete hydrostatic mountain waves and the upstream propaga-

tion observed in Figs. 2.4b and c.

2.2.3 Higher-order Finite-Differences on the Staggered Mesh

The numerical errors in the preceding are exacerbated by the use of the stag-

gered “C-grid”. Inspection of Fig. 2.7 reveals that at intermediate resolution (6-

12 points-per-wave) the sixth-order-scheme often generates larger errors than

the fourth-order-scheme, especially at hydrostatic wavelengths. For example,

at λ′x = 10 with 8 points-per-wave resolution, θ = 76◦ for the fourth-order

scheme and θ = 59◦ for the sixth-order scheme, compared to θ = 79◦ in the

continuous solution. One way to improve the solution obtained using sixth-

order advection is to employ a fourth-order approximation of the derivatives on

the staggered mesh,
∂f

∂x
=
(

9

8
δx −

1

8
δ3x

)
f +O

(
∆x4

)
. (2.21)

Figure 2.8 shows θ obtained when (2.21) is used to compute the pressure gra-

dient in (2.1) and the horizontal divergence in (2.5) in combination with fourth

or sixth-order advection (the 4-4 and 6-4 schemes, respectively). The increased

accuracy of the 6-4 scheme is evident as the horizontal extent of θ contours

from the left-axis is much greater than the 6-2 scheme. Considering the same

parametric location as above, a nearly correct value of θ = 80◦ is given by the

6-4 scheme.

The source of the errors in θ can be partially understood by considering

how inconsistencies between K̃n and k̃ influence the downstream component of

group velocity. In the limit of good vertical resolution, the discrete horizontal

group velocity for hydrostatic, non-rotating flow is

c̃gx = UK̃n
∂

∂k

[
log

(
K̃n

k̃

)]
≈ UK̃n

∂

∂k

(
K̃n

k̃

)
. (2.22)
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Figure 2.8: The discrete group-velocity angle for (a) fourth- and (b) sixth-order
horizontal advection schemes when the horizontal pressure gradient and diver-
gence terms are computed with a fourth-order finite difference.

Errors in c̃gx arise when K̃n and k̃ are different functions of the true horizontal

wave number k, as will always be the case on staggered meshes. At very fine

resolutions K̃n/k̃→1 and c̃gx → cgx = 0, however, at intermediate resolutions,

small differences in the dependence of K̃n and k̃ on k can lead to large errors

in c̃gx. Figure 2.9 shows the ratio between K̃n and k̃ for the previously consider

finite-difference combinations.1 From (2.22) errors in c̃gx, and thus θ, are large

where the slope of K̃n/k̃ is steep and small where the slope is shallow. As

a result of the larger differences between K̃6 and k̃, in the hydrostatic non-

rotating limit, the errors in the 6-2 scheme are larger than the errors in the

4-2 scheme. As evident in Fig. 2.9, the 6-4 scheme gives a more consistent

representation of K̃6 and k̃ over a wide range of horizontal resolutions.

1For the 6-4 and 4-4 schemes k̃ =
(

9
8 k̃1 − 1

8 k̃3

)
.
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dash-dot), 4-2 scheme (thick solid), 6-2 scheme (thick dashed), 4-4 scheme (thin
solid), and 6-4 scheme (thin dashed).

2.2.4 Unstaggered Meshes

In light of Fig. 2.9 and (2.22) one could conceivably improve the discrete group

velocity by using unstaggered meshes. Figure 2.10 shows θ computed on an

unstaggered mesh for second and fourth-order finite differences. At hydro-

static wavelengths (λ′x > 10) the θ contours extend horizontally over a wider

range of resolution compared to the 2-2 and 4-4 schemes on the staggered mesh

(Figs 2.7ab). Additionally, no wave energy propagates upstream for λx/∆x > 4.

The most notable improvement occurs with the 2-2 scheme; for the previously

considered 8∆x-wide wave associated with the hydrostatic mountain-wave case

(λ′x = 8.63), θ = 82◦, which may be compared to 142◦ on the staggered mesh and

80◦ in the continuous system.



33

(a) (b)

λ
′ x

λ
x
/∆xλ

x
/∆x

30
◦

30◦

30◦

30◦

60
◦

60
◦

60
◦

60◦

9
0
◦

9
0
◦

1
2
0
◦

1
2
0 ◦

1
5
0
◦

44 55 66 88 1212 2020 4040
1

3

3

3

10

30

Figure 2.10: The group-velocity-vector angle on an unstaggered mesh for (a)
second- and (b) fourth-order finite differences.

2.3 Case study with the COAMPS model

In this section an example of the tendency for poorly resolved, non-hydrostatic

modes to over-amplify mountain waves will be given in the context of a 70

member, fully non-linear, mesoscale NWP ensemble system.

2.3.1 Non-linear numerical model

Numerical simulations of a mountain wave event were computed using the

atmospheric portion of the Coupled Ocean-Atmosphere Mesoscale Prediction

System (COAMPSTM; Hodur, 1997). COAMPS solves a finite difference ap-

proximation to the fully compressible, non-linear, non-hydrostatic equations

of motion on a terrain-following vertical coordinate system. As with the lin-

ear Boussinesq system presented above, the model variables are staggered on

an “C-grid”. The metric terms are computed in an internally consistent man-
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ner as discussed in Klemp et al. (2003). With the exception of the horizon-

tal advective terms, the spatial derivatives are approximated with centered

second-order finite-differences. An option exists within COAMPS to compute

the horizontal advective terms with either second-order or fourth-order cen-

tered finite-differences. One-way nests are used for all experiments described

below. A more detailed description of the COAMPS numerical setup can be

found in appendix A.

2.3.2 Experimental Setup

The model is used to create a 70 member ensemble hindcast of the flow over the

Sierra-Nevada mountains on 16-17 April, 2006, a period when strong mountain

waves were forecast operationally during IOP-13 in the Terrain-Induced Rotor

Experiment (TREX; Grubišić et al., 2008). In order to explicitly resolve the

scales of motion associated with mountain waves, three one-way nests with in-

creasing horizontal resolution are used. Figure 2.11a shows the location and

topography on the three nests. The outer-most domain has a horizontal res-

olution of 27 km and covers a large region of the Western North American

Continent and Eastern Pacific Ocean. An intermediate size domain with 9

km resolution encompasses the entire north-south extent of the Sierra-Nevada

Mountain range. A smaller domain with 3 km horizontal resolution is placed

over the highest portion of the Sierra-Nevada Mountains as well as regions

immediately upstream and downstream of the mountain range. In the exper-

iments described below the large time step is 3.3 s on the 3 km domain and

increases by a factor of 3 for each larger domain. The topography on the 3 km

domain is shown in Fig. 2.11b. The vertical relief between the mean crest of the

Sierra-Nevada and the Owens Valley directly to the east is greater than 2 km.

Initial conditions on 00 UTC, 17 April, 2006 for the 70-member ensemble

are provided by an ensemble Kalman filter (EnKF). Unless otherwise noted,
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Figure 2.11: Location and topography of the (a) 27, 9, and 3 km COAMPS
domains as well as the (b) topography and cross-section location on the 3 km
domain. The solid and dashed white lines in (b) indicate the spatial extent over
which the respective downslope wind metric and minimum flow aloft metric
are computed.

all times are given in reference to this initial time. The EnKF approach was

adopted for two reasons. First, data assimilation using an EnKF provides

an optimal combination of observations and model background states (Hamill,

2006, appendix B). Second, an EnKF provides a natural way to generate en-

semble forecasts which can be used to ascertain probabilistic forecast informa-

tion.

On the 27-km domain, the EnKF is cycled over the duration of the entire

TREX field campaign as described in appendix C. The 9- and 3-km domains

are initialized several assimilation cycles prior to the 00 UTC forecast. During

the spin-up time, data assimilation is performed on the the higher resolution

domains every 6-hrs. The same set of observations used for assimilation on the

27-km domain are used for the 9- and 3-km domains. The boundaries of the

9- and 3-km domains are updated every time step from the parent ensemble
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member. Prior to the 00 UTC forecast, second-order horizontal advection is

used on all three domains. For the 00 UTC forecast the horizontal advection

on the two outer domains remains second-order, however, the advection on the

3-km domain is computed with either second-order and fourth-order schemes.

The initial conditions for each experiment, as well as the flow on the 27- and

9-km domains are identical.

2.3.3 Model Simulations

The 00 UTC ensemble mean analysis and 06 UTC ensemble mean forecast of

the 500 hPa geopotential height field and wind speeds on the 27 km domain

are plotted in Fig. 2.12. At the analysis time (Fig. 2.12a) a low-pressure trough

is located just off-shore of the Western United States. Associated with the low-

pressure trough is a jet extending around the base of the trough and into the

central portion of California. The wind speeds within the jet exceed 40 m s−1

at 500 hPa. Six-hours later (Fig. 2.12b) the trough has moved on-shore and the

associated jet-max is interacting with the central and southern portion of the

Sierra-Nevada Mountains. This synoptic-scale flow regime is conductive to the

formation of mountain waves and downslope winds within the Owens Valley.

A vertical cross-section of the six-hour ensemble mean forecast of w and θ

above the transect indicated in Fig. 2.11b is plotted in Fig. 2.13 using data

from the 3-km-resolution mesh. The second-order solution (Fig. 2.13a) shows

a large-amplitude mountain wave anchored to the Sierra crest. The vertical

velocities in the ensemble mean exceed 18 m s−1 through a large depth of the

troposphere. However, the ensemble variability of vertical velocity is very large

within the mountain wave. The maximum upward motions range from 6 m s−1

in the weakest ensemble member to 28 m s−1 in the strongest member. The

large amplitude mountain wave is also apparent in the potential temperature

field. For example, the 320 K isentrope is depressed nearly 2.5 km on the lee-
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Figure 2.12: The (a) 0- and (b) 6-hr ensemble mean forecast of 500 hPa geopo-
tential height and wind speed for the 00 UTC 17 April, 2006 initialized forecast.

side of the orography. In contrast to the second-order solution, the mountain-

wave solution computed with the fourth-order-advection scheme (Fig. 2.13b) is

substantially weaker. The maximum vertical velocities in the ensemble mean

do not exceed 8 m s−1. Additionally, the ensemble variability of vertical velocity

is also considerably reduced. The maximum vertical velocity ranges between

4 m s−1 in the weakest member to 16 m s−1 in the strongest. In this simulation

the 320 K isentrope is only displaced downward about 1 km indicating a much

weaker wave. While non-linear effects are clearly present in this mountain-

wave simulation, the linear analysis presented in the previous section provides

guidance for the sources of the errors in the second-order scheme. The wave

energy in the poorly resolved non-hydrostatic modes present in the simulations

propagates vertically in the second-order solution leading to a significant over-

amplification of the vertically propagating modes.

Associated with the large-amplitude wave in the second-order solution is a

severe downslope wind storm penetrating into the Owens Valley. Figure 2.14



38

A A’

(a)

(b)

km
km

m
s
−

1
m

s
−

1

Figure 2.13: The 6-hr ensemble mean forecast of vertical velocity and potential
temperature using (a) second- and (b) fourth-order horizontal advection. The
location of the cross-section is shown in Fig. 2.11b.

shows the simulated and observed downslope wind speeds 10 m AGL at the

point labeled ‘Trailhead’ in Fig. 2.11b. The observational data has been filtered

with a low-pass filter to remove high-frequency oscillations. At the peak inten-

sity of the second-order solution, the simulated winds are more than 30 m s−1

stronger than observations. In contrast, the relatively weak mountain-wave

in the fourth-order solution leads to much better agreement between the sim-

ulated and observed winds. This is especially true for the second-half of the

12 hour forecast where the errors in the model simulation are generally less

than 5 m s−1. The larger errors during the first half of the forecast could be

associated with adjustments to the mountain-wave structure associated with

the switch from the second to fourth-order schemes.

Probability densities of the simulated downslope wind speed at the ‘Trail-

head’ station at 06 UTC are shown in Fig. 2.15. The probability densities have

been computed by binning each of the 70 ensemble members into 5 m s−1 bins
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Figure 2.14: The observed (dotted) 10-m downslope wind speed at the Univer-
sity of Leeds Trailhead mesonet station (see Fig 2.11b). Also plotted is the
forecasted ensemble mean 10 m wind speed for the second-order (solid) and
fourth-order (dashed) horizontal advection schemes.

and normalizing the resulting distribution so that the area under the curve is

equal to 1. Switching from the second-order scheme to the fourth-order scheme

results in a significant decrease of downslope wind intensity for most ensemble

members, as well as a decrease in the ensemble spread.

The weaker downslope winds present in the fourth-order solution can be un-

derstood as a response to reduced mid-tropospheric wave breaking. Figure 2.16

shows a scatter plot of the downslope winds in the Owens Valley as a function

of the cross-barrier flow aloft at 06 UTC. The downslope winds are computed

for each ensemble member by averaging the zonal wind speed over a 250 m

deep box whose perimeter is depicted by the solid white line in Fig. 2.11b. The

cross-barrier flow is computed as the minimum wind speed perpendicular to

the Sierra-Crest between 5 km and 9 km over the region defined by the dashed

box in Fig. 2.11b. In the second-order solution (Fig. 2.13a), a large number

of ensemble members have reversed flow above the lee-slope, indicating that

the mountain waves are breaking. Strong downslope winds in the Owens Val-
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Figure 2.15: The ensemble derived probability density function for the 6 hr
forecast of 10 m downslope wind speeds at the Trailhead station. Both the the
second- (solid) and fourth-order (dashed) solutions are plotted.

ley are associated with such breaking (Peltier and Clark, 1979). In contrast,

the upper-level flow for most of the ensemble members is not reversed in the

fourth-order solution, indicating that the mountain wave is not breaking, and

as a consequence the downslope winds are much weaker.
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Chapter 3

PREDICTABILITY AND ENSEMBLE VARIABILITY OF
DOWNSLOPE WINDS AND MOUNTAIN-WAVES

In this chapter the predictability of two prototypical types of downslope

winds will be explored with a fully non-linear, non-hydrostatic NWP model.

The first type forms when a large amplitude mountain wave breaks down and

strong downslope winds form beneath the breaking region (Clark and Peltier,

1977; Peltier and Clark, 1979). The second type occurs when a layer of strong

static stability is located underneath weak upper-tropospheric stability (Dur-

ran, 1986a). For this second class of windstorms, wave breaking is not a dom-

inant mechanism. The predictability of mountain-wave breaking and clear-air

turbulence will also be discussed.

3.1 Experimental setup

As mentioned previously, the TREX special observing period (SOP; Grubišić

et al., 2008) was a two-month long field campaign centered over the Sierra-

Nevada mountains and Owens Valley in California (Fig. 3.1). The SOP ex-

tended from 1 March - 30 April, 2006 and provided several opportunities to

study the predictability of mountain-wave breaking and associated downslope

winds as well as the layered-type downslope wind storm.

The COAMPS model (Hodur, 1997, appendix A) is used to perform numer-

ical simulations with a 70-member ensemble of two strong downslope wind

events during TREX. The first windstorm, intensive observation period (IOP)

6 (25-26 March, 2006) generated large-amplitude mountain waves which, as
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Figure 3.1: The topography on the (a) 27, (b) 9, and (c) 3 km domains. The solid
black lines in (b) and (c) indicate the locations of the vertical cross sections. The
Owens-Valley metric box is depicted by the solid white lines.

will be shown, contained significant wave-breaking, turbulent kinetic energy

(TKE), and strong downslope winds in the Owens Valley. The second wind-

storm, IOP 13 (16-17 April, 2006), was characterized by upstream layering

of the static-stability profile. Wave breaking was not apparent in the model

simulations for this case, however, strong downslope winds were simulated on

the lee-slope of the Sierra-Nevada mountains. The predictability of each wind-

storm is characterized by examining the sensitivity of the downslope winds to

the model initial conditions. This is done examining the growth of ensemble

variability for short-term forecasts. If the ensemble variability grows rapidly

then the downslope winds are strongly sensitive to the initial conditions and

the predictability is low. Additionally, the extent to which downslope-wind

forecasts can be based solely on the large-scale synoptic conditions will be ad-

dressed by considering the synoptic-scale variability for the range of downslope

wind predictions.
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3.1.1 Numerical Model

The numerical setup consists of three one-way nests with 27-, 9-, and 3-km

horizontal resolution centered over the Sierra-Nevada mountains and Owens

Valley (Fig. 3.1). These domains are identical to the domains used in the previ-

ous chapter. Each nest is configured with 40 vertical levels, typical of real-time

operational NWP models. The time step on the 3-km domain is 3.3 s and in-

creases by a factor of 3 for each larger domain. Unless otherwise noted, the

horizontal advective terms are computed with fourth-order finite differences in

this chapter .

3.1.2 Data Assimilation

The EnKF is a relatively new tool for performing data assimilation and gen-

erating an ensemble of initial conditions for NWP forecasts. The EnKF is an

ensemble-based data assimilation system, which under suitable assumptions,

optimally combines a background-estimate of the atmospheric state with ob-

servations (Hamill, 2006, appendix B). These ensemble members can then be

used as initial conditions for ensemble forecasts. After the data assimilation

step, the the variability of the initial conditions represents the uncertainty of

the observations and background forecasts.

As described in appendix C, the EnKF is cycled on the 27-km domain for

the duration of the TREX SOP. However, due to the high computational costs

of running the high-resolution ensemble, the 9- and 3-km experiments were

limited to several assimilation cycles prior to the IOP-6 and IOP-13 events.

To initialize the nested-domain ensemble, each member is interpolated from

the coarse parent domain to the higher-resolution child domain. The 9- and

3-km-domain initializations are staggered in time so that the resolved motions

on each domain have time to “spin-up.” Table 3.1.2 summarizes the initializa-
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Table 3.1: The initialization times of the 9- and 3-km ensembles for the IOP-6
and IOP-13 simulations.

∆x 9 km 3 km

IOP-6 06 UTC, 24 March 00 UTC, 25 March

IOP-13 12 UTC, 15 April 06 UTC, 16 April

tion times on the nested domains for the IOP-6 and IOP-13 forecasts. After

each nest is initialized, data assimilation is performed independently every six

hours with the same set of observations available for the 27-km domain exper-

iment.

3.2 Synoptic-Scale Flow

The synoptic-scale environment for the IOP-6 and IOP-13 events are described

in this section. The IOP-6, 500-hPa ensemble mean analysis of the geopoten-

tial heights and wind speed is shown in Fig. 3.2. At 18 UTC, 25 March, 2006

(Fig. 3.2a), a relatively sharp negatively tilted trough is situated directly over

the Northern-California coastline. Associated with the trough is 45 m s−1 jet

maximum located directly west of the San Francisco and strong southwesterly

flow extends northeastward over the northern portion of the Sierra-Nevada

mountains. The ensemble mean analysis at 00 UTC, 26 March 2006 (Fig. 3.2b)

shows that the trough has progressed eastward, however, the intensity of the

jet maximum has decreased below 45 m s−1 as well as decreasing its spatial

coverage. The strongest winds are located directly upstream of the Owens Val-

ley and oriented nearly perpendicular to the barrier. As will be shown, the

ensemble mean downslope-wind response is very strong at this time.

The synoptic-scale evolution for IOP-13 case is shown in Fig. 3.3. At 00 UTC,

17 April, 2006 (Fig. 3.3a) a broad, positively titled, trough is situated nearly
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Figure 3.2: The EnKF mean analysis of the 500 hPa geopotential heights and
wind speed on the 27-km domain for IOP-6 at (a) 18 UTC, 25 March and (b) 00
UTC, 26 March.
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wind speeds on the 27-km domain for IOP-13 at (a) 00 UTC, 17 April and (b)
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47

400-km west of San Francisco. A region of strong westerly flow extends from

the base of the trough, eastward across the central and southern Sierra-Nevada

mountains. For this case, the wind speeds in the jet max exceed 45 m s−1.

Compared to the IOP-6 case, the horizontal scale of the trough is considerably

broader and the strong winds extend across a larger area. Six-hours later, at

06 UTC, 17 April, 2006 (Fig. 3.3b) the ensemble mean analysis indicates that

the trough has progressed eastward and is located directly upstream of the

Sierra-Nevada mountains, over the Central Valley. Additionally, the 500-hPa-

jet intensity has increased with a broad region of wind exceeding 45 m s−1.

The flow at this time is generally perpendicular to the Sierra-Nevada crest,

which is favorable for downslope winds and mountain waves. As will be shown

below, distinct layers are evident in the static-stability profile upstream of the

Sierra-Nevada with strong static stability in the lower troposphere and weaker

static stability aloft. This layering leads to a significantly different downslope-

wind response as well as different predictability characteristics compared to

the IOP-6 case.

3.3 Downslope Wind Variability

In this section the downslope-wind predictability associated with the wave-

breaking response (IOP 6) and the layered response (IOP 13) is explored by

considering the ensemble variability of the mountain waves and downslope

winds forced by the Sierra-Nevada. For the IOP-6 case, the predictability of

forecasts valid at 00 UTC, 26 March are considered. For the IOP-13 event we

consider the predictability of forecasts which are valid at 06 UTC, 17 April. To

quantify the downslope-wind intensity, an average zonal wind is computed on

the 3-km domain within the white box depicted in Fig. 3.1c. In order to capture

the low-level westerly momentum associated with the downslope winds, the

metric box extends from ground level to 350-m AGL. This metric is referred to



48

      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

(a) (b) (c)

(d) (e) (f)

m s−1 m s−1m s−1

P
ro

ba
bi

lit
y

D
en

si
ty

P
ro

ba
bi

lit
y

D
en

si
ty

IOP 6–18 UTC IOP 13–18 UTCIOP 13–00 UTC

In
iti

al
F

or
ec

as
t

6-hr Forecast–Valid 00 UTC 12-hr Forecast–Valid 06 UTC6-hr Forecast–Valid 06 UTC

0 0010 101020 202030 303040 404050 50500

0

0.04

0.04

0.08

0.08

0.12

0.12

0.16

0.16

0.2

0.2

0.24

0.24

0.28

0.28

Figure 3.4: The ensemble distributions of the Owens-Valley metric for the (a)
IOP-6, 18 UTC, 25 March analysis, (b) IOP-13 00 UTC, 17 April analysis, and
(c) IOP-13, 18 UTC, 16 April analysis. Also plotted are the distributions for the
(d) 6-hr, IOP-6, 18 UTC forecast, (e) 6-hr, IOP-13, 00 UTC forecast, and (f) 12-
hr, IOP-13 18 UTC forecast. The shading shows the fraction of the distribution
represented by the strongest- and weakest-10 ensemble members.

as the “Owens-Valley metric” and is used to characterize the downslope wind

response throughout this chapter.

3.3.1 Ensemble Distributions

To begin evaluating the predictability characteristics of the two windstorm

forecasts, ensemble-derived distributions of the Owens-Valley metric are pre-

sented. Figures 3.4a and b show the ensemble distributions of the Owens-

Valley metric for the respective IOP-6, 18 UTC, 26 March analysis and IOP-13,

00 UTC, 17 April analysis. The distributions are computed by binning the

Owens-Valley metric from each ensemble member into 2.5 m s−1-wide bins and

normalizing so that the area under the curve is unity. Equivalently, these can
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be thought of as ensemble-derived probability density functions (PDFs). These

distributions represent the range of potential downslope wind forecasts given

an expected level of uncertainty in the observations and model background.

As a consequence of the EnKF data assimilation, where observations sys-

tematically reduce the ensemble variance, the variability of the Owens-Valley

metric at the initial time is relatively small. For the 18 UTC, IOP-6 analysis

(Fig. 3.4a) the majority of the ensemble members are between 15 and 22.5 m s−1

with a definitive peak of the distribution in the 20 m s−1 bin. In contrast, the

00 UTC, IOP-13 analysis (Fig. 3.4b) is broader and weaker. The wind speeds at

the initial time range between 5 and 17.5 m s−1 with a maximum in the 12.5

m s−1 bin. The analysis distributions for both the 18 UTC, IOP-6 case and the

00 UTC, IOP-13 case are relatively normally distributed, consistent with the

EnKF assumptions (appendix B).

Looking now at the forecast distributions, the PDF of the Owens-Valley met-

ric of the 06-hr, IOP-6 forecast (valid 00 UTC, 26 March) is shown in Fig. 3.4d.

The forecast is characterized by large uncertainty growth over the short, 6-

hr simulation with a broad region of relatively uniform probabilities between

22.5 and 42.5 m s−1. Assuming that the observed response is sampled from

the same distribution as the ensemble, there is approximately a 15% chance

that the forecasted winds will verify within any 5 m s−1 wide band over this

range. In addition, a long tail extends towards weaker winds, suggesting a rel-

atively high chance for false-positive forecasts. On the strong side, there is a

sharp cut-off of the distribution for wind speeds greater than 42.5 m s−1, how-

ever, one very strong ensemble member is predicting downslope winds close to

50 m s−1. As will be shown below, the synoptic-scale conditions associated with

the strong and weak tails of the distribution are similar. This implies that the

error growth is localized to the domain of interest.

The distribution for the 6-hr, IOP-13 forecast (valid 06 UTC, 17 April) is



50

shown in Fig. 3.4e. While the distribution extends from nearly calm flow to

downslope winds exceeding 25 m s−1, there is a distinct peak centered at 17.5

m s−1 bin. The probabilities within this bin are nearly twice as large as the

probabilities associated with the surrounding bins suggesting that more con-

fidence can be placed in the 6-hr forecast of the IOP-13 downslope-wind event

than in the 6-hr forecast of the IOP-6 event.

The relatively narrow probability distribution for IOP-13 6-hr forecast sug-

gests that it may be worthwhile to examine a 12-hr forecast for the same event.

The distributions for 18 UTC, 16 April analysis and 12-hr forecast valid at 06

UTC, 17 April are shown in Figs. 3.4c and f. Larger uncertainty is associated

with the 12-hr, IOP-13 forecast compared to the 6-hr forecast valid at the same

time. As with the other two simulations, the analysis is characterized by a rela-

tively narrow distribution associated with the data assimilation procedure; the

wind speeds fall between 0 an 10 m s−1 (Fig. 3.4c). However, over the course

of the 12-hr forecast, the downslope wind speeds increase substantially in a

number of the ensemble members. Considerable uncertainty is associated with

the 12-hr downslope-wind forecast (Fig. 3.4f). A relatively large section of the

PDF uniformly distributed with approximately a 20% chance that the actual

wind speeds will fall within any 5 m s−1 band between 2.5 and 17.5 m s−1. In

contrast to the 6-hr forecast, a relatively long tail extends towards the stronger

downslope wind state.

In order to evaluate short-term forecasts with relatively similar ensemble

spreads we only consider the 12-hr, IOP-13 forecast initialized at 18 UTC, 16

April. Unless otherwise noted, the simulation initialized at 18 UTC, 25 March

will be referred to as the IOP-6 forecast and the simulation initialized 18 UTC,

16 April, 2006 will be referred to as the IOP-13 forecast.



51

3.3.2 Strongest and Weakest Members

The predictability of the two events can be further examined by considering the

range over which the forecasted downslope winds vary within the ensemble.

To this end, the members are ranked according to the forecast intensity of the

Owens-Valley metric, and the 10 strongest and 10 weakest ensemble members

are grouped into two subsets. The shaded regions of the ensemble forecast dis-

tributions (Figs. 3.4d-f) shows the fraction of the PDF containing the strongest-

and weakest-10 members. While these subsets are located on the tails of the

distributions, they represent almost 30% of the total probability.

Averages over the subsets are computed to give representative strong and

weak responses which characterize the maximum possible difference of the

downslope-wind forecast given expected levels of initial-condition uncertainty.

The averages can also be thought of as composites of the strong and weak re-

sponse. Compositing the response in this way makes for a simple comparison

between the strong and weak response on both the mesoscale and the synoptic-

scale. Furthermore, using 10 ensemble members to compute the composites

ensures that any large differences are not a consequence of unrepresentative

outlying members.

For the IOP-6 simulation, the members are ranked from the 6-hr forecast

valid 00 UTC, 26 March. As will be shown below, the variation between the

strong and weak subset is large at this time and represents the maximum

variability over the 12-hr simulation. In contrast, for the IOP-13 forecast the

growth rate of the initial uncertainty is slower. We therefore consider differ-

ences between strong and weak subsets ranked from the 12-hr forecast initial-

ized 18 UTC, 16 April and valid 06 UTC, 17 April. It will be demonstrated that

the ensemble variability for the 6-hr IOP-13 forecast initialized 00 UTC, April

and valid 06 UTC, 17 April is considerably smaller than the 12-hr forecast valid
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Figure 3.5: The zonal wind averaged over the Owens-Valley metric box dur-
ing the IOP-6 simulation for the (a) 10-strongest and (b) 10-weakest ensemble
members at t = 6 hrs. The black line shows the mean of the 10-members sub-
sets.

at the same time.

The time dependence of the downslope winds of the strongest- and weakest-

10 members of the 12-hr IOP-6 forecast is shown in Fig. 3.5. The mean evo-

lution of each subset is also plotted. A mean difference of nearly 29 m s−1

between the strong and weak members is readily apparent at hour 6. The

downslope flow exceeds 35 m s−1 for all of the strong members and is generally

less than 15 m s−1 for all of the weak members. Following the strong-member

wind-storm peak, the intensity rapidly decreases. For both the strong and weak

subsets the 6–12 hr forecast is characterized by large variability of the Owens-

Valley metric with the wind speeds ranging from less than 5 m s−1 to stronger

than 30 m s−1. As will be shown below, the large variability is associated with

mountain-wave breaking in the ensemble solutions.

For the IOP-13 simulations, the evolution of the downslope winds are con-

siderably different. Figure 3.6 shows the individual ensemble members as well



53

             

 

 

 

 

 

      

 

 

 

 

 

(a)

(b)
m

s−
1

m
s−

1

hours
0

0

10

10

20

20

30

30

40

40

50

50

0 2 4 6 8 10 12

Figure 3.6: The zonal wind averaged over the Owens-Valley metric box during
the IOP-13 simulation for the (a) 10-strongest and (b) 10-weakest ensemble
members at t = 12 hrs. The black line shows the mean of the 10-members
subsets.

as the ensemble mean from the strong and weak subsets. The ensemble mem-

bers are ranked according to the strength of the Owens-Valley-metric at hour

12, corresponding to 06 UTC, 17 April. While the intensity of both the strong

and weak subsets is lower compared to the IOP-6 simulation, the difference

between the subset means for the 12-hr forecast again exceeds 20 m s−1. Early

in the forecast, around hr 3.5, both the strong and weak subsets predict rela-

tively strong downslope winds; however, the differences between the two sub-

sets grows steadily between hours 5 and 12. It should be noted the the differ-

ence between the strong- and weak-member mean for the 6-hr IOP-13 forecast

initialized at 00 UTC, 17 April and valid 06 UTC, 17 April is approximately 15

m s−1 which is consistent with the narrower forecast distribution (Fig. 3.4e).
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3.3.3 Downslope-Wind and Mountain-Wave Response

Associated with the strong downslope-wind response in the Owens Valley, is a

large amplitude mountain wave forced as the stably-stratified, synoptic-scale

flow interacts with the Sierra-Nevada mountains. Here, the difference in the

mountain-wave structure associated with the strong and weak downslope-wind

response is compared along vertical cross-sections depicted by the solid black

lines in Fig. 3.1c. The orientation of the cross-section is representative of the

ensemble-mean mid-tropospheric synoptic-scale flow for the 6-hr, IOP-6 fore-

cast (AA’ cross-section) and the 12-hr, IOP-13 forecast (BB’ cross-section). Both

the AA’ and BB’ cross-sections pass through the center of the Owens-Valley

metric box.

Wave-Breaking Response

Figures 3.7ab shows the zonal-wind component, as well as the turbulent kinetic

energy (TKE) for the 6-hr, IOP-6 forecast along the AA’ vertical cross-section.

The panels labeled “weak members” and “strong members” are obtained by av-

eraging the fields over the weak and strong ensemble subsets. Consistent with

the evolution of the Owens-Valley metric (Fig. 3.5), the differences between the

strong and weak members have grown very large over the short 6-hr forecast.

For the strong members (Fig. 3.7b), a tongue of high wind extends from the

mid-troposphere, down the lee-slope of the Sierra-Nevada, and into the Owens

Valley. An extensive region of wave breaking is indicated by the strongly de-

celerated flow and large area of turbulent mixing between 8–12 km. The wave

breaking is associated with the generation of the strong downslope flow on the

lee-slope (Clark and Peltier, 1977; Peltier and Clark, 1979). In contrast, the

weak members (Fig. 3.7a) are characterized by high zonal-momentum air that

does not extend below crest level. For this solution set, the upper-level wave
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Figure 3.7: The zonal wind u (shaded) and TKE (heavy contours) along a verti-
cal cross-section across the Sierra-Nevada mountains for the (a) weakest- and
(b) strongest-10 ensemble members for the IOP-6 6-hr forecast as well as the (c)
weakest- and (d) strongest-10 ensemble members for the IOP-13 12-hr forecast.
The contour interval is 10 K for u and 10 m2 s−2 for TKE. The zero u contour is
depicted by the dashed line.
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Figure 3.8: Same as Fig. 3.7 except for the vertical velocity w and potential
temperature θ. The zero contour of vertical velocity is omitted and the negative
contours are dashed.

breaking is less extensive, weaker, and displaced vertically. A small region of

decelerated flow, with zonal winds less than 10 m s−1 is apparent near 12-km

ASL. Furthermore, the spatial extent of the turbulent mixing region is much

smaller with the TKE barely exceeding 10 m2 s−2.

The vertical velocity w and potential temperature θ for the IOP-6, 6-hr fore-

cast are plotted along the same vertical cross-section in Fig. 3.8ab. The strong

downslope-wind solution (Fig. 3.8b) contains a high-amplitude mountain wave,

as indicated by the large perturbations of θ and couplet of intense vertical ve-

locity on the lee-side of the Sierra-Nevada. For example, the 320-K isentrope

is displaced downward nearly 4 km from its nominal upstream height of 8 km.

Furthermore, the maximum vertical velocity is nearly 14 m s−1 in the core of

the updraft. Several of the individual ensemble members have a considerably
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stronger mountain wave with vertical velocity magnitudes greater than 26 m

s−1. Additionally, overturning is more evident for the individual members, how-

ever, the subset average smooths this response. In contrast, the weak solution

(Fig. 3.8a) is characterized by a mountain wave with considerably lower ampli-

tude. For these members the maximum vertical velocity is only 8 m s−1, over

40% less than the strong solution. Furthermore, the downward displacement

of the 320 K isentrope is close to 50% less than the strong solution.

It is important to note that the difference between the strong and weak

downslope wind response is due to major structural differences in the moun-

tain wave as opposed to small contrasts of the downslope extent of the high-

momentum air. These large differences occur even though the upstream con-

ditions are very similar. For example, the zonal momentum upstream of the

Sierra-Nevada crest is nearly indistinguishable between the strong and weak

members (compare the left sides of Figs. 3.7ab). Forward shear is apparent

in both examples with the zonal-wind increasing from 10 m s−1 near crest

level to 40 m s−1 near the tropopause. The stability of the upstream profiles

is also very similar between strong and weak members (Figs. 3.8ab). A layer of

strong crest-level stability is apparent for both solutions and the undisturbed

tropopause height is nearly identical for the two solutions. Despite these simi-

larities, the mountain-wave and downslope-wind forecast between the two sub-

sets is considerably different suggesting very strong sensitivity to the model

initial conditions and a short predictive time scale.

Clear-air turbulence (CAT) commonly affects aircraft over regions of com-

plex terrain (Nastrom and Fritts, 1992). With fine-scale numerical models it

is possible to simulate CAT (Clark et al., 2000), however, the predictability of

these events is not known. The large region of turbulent mixing and strong

vertical velocities associated with the strong subset, suggest that significant

clear-air turbulence is forecast through a deep layer over the Owens Valley. In
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contrast, the weak vertical velocities and absence of TKE indicate that signifi-

cant CAT is not forecasted for the weak members. In this event, the uncertainty

associated with CAT forecasts would make accurate predictions difficult.

Layered Response

Consider now the strong and weak IOP-13 downslope-wind predictions. Fig-

ures 3.7cd shows the zonal wind, as well as the TKE for the 12-hr IOP-13

forecast along the BB’ vertical cross-section. Evident in the strong solution

(Fig. 3.7d) is a region of high westerly-momentum air extending down the lee-

slope of the Sierra-Nevada mountains and into the Owens Valley. The strength

of the downslope flow exceeds 40 m s−1 high on the lee-slope but decreases

sharply towards the base of the Owens Valley. In contrast to the IOP-6 strong

subset, mountain-wave breaking is not present in the upper troposphere along

the BB’ cross-section. The upper-level winds above the Owens Valley are gen-

erally greater than 20 m s−1 and turbulent mixing, as indicated by TKE, is

completely absent. Despite the lack of wave breaking, the difference between

the strong and weak forecast is large. The weak ensemble members (Fig. 3.7c)

show that the strong zonal flow is limited to regions above crest-level. Ad-

ditionally, the weak members exhibit easterly flow within the Owens Valley

which extends nearly half-way up the lee-slope of the Sierra-Nevada.

The structure of the mountain-wave for the 12-hr IOP-13 forecast, as re-

vealed by θ and w, are plotted along the BB’ vertical cross-section in Figs. 3.8cd.

In the strong cases (Fig. 3.8d), the mountain wave is characterized by large θ

perturbations and a vertical-velocity maximum greater than 12 m s−1. Up-

stream of the Sierra-Nevada, the static-stability profile is composed of two dis-

tinct layers within the troposphere: a layer of strong static-stability below 6-km

ASL and layer of weak static-stability between 6- and 11-km ASL. The layered

structure leads to an amplification of the shorter wavelengths through non-
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linear processes (Durran, 1986a, 1992) and a short wavelength hydraulic-jump

like response on the lee-slope. In fact, the horizontal wavelength is nearly half

that of the strong IOP-6 solution (Fig. 3.8b) suggesting that the shorter wave-

lengths are being amplified.

In contrast, the weak solution contains a mountain wave with considerably

lower amplitude (Fig. 3.8c). The vertical-velocity maximum is roughly 66% less

than the strong solution and the vertical displacement of the isentropes is gen-

erally less than 0.5 km. Upstream of the Sierra-Nevada, the static-stability

profile is considerably different. While a layered structure is still evident, the

vertical distribution of the Brunt-Väisälä frequency and wind speed varies.

Relative to the strong case, the stability is weaker near crest level and stronger

in the middle to upper troposphere and the wind speeds are stronger in the up-

per troposphere. The differences of the static-stability and wind speed between

Figs. 3.8c and d are presumably responsible for the differences in the mountain-

wave and downslope-wind amplitude, however, the fact that such a large dif-

ference between the subsets develops over the 12-hr forecast suggests that this

layered-type wind storm experiences a strong dependence on the model initial

conditions.

3.4 Synoptic-Scale Variability

In this section, the synoptic-scale variability associated with the wide range

of downslope-wind predictions will be considered. Emphasis will be placed on

the synoptic-scale structure of the ensemble members with the strongest and

weakest wind storms both at the time of the simulated storm as well as the

upstream conditions several hours prior to the storm.
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3.4.1 Strong and Weak Synoptic-Scale members

Mean synoptic-scale flow structures for the strong and weak downslope-wind

response are obtained by averaging the ensemble members on the 9-km domain

over the strong and weak subsets. Figure 3.9ab shows the mean 500 hPa wind

speed and geopotential heights for the strong and weak IOP-6, 6-hr forecasts

(the same time that the ensemble members are ranked). Visual inspection

reveals that the location of the 500 hPa trough and jet is very similar between

the two subsets. The trough axis for both solutions is located directly over the

crest and the wind-speed magnitude upstream of the crest is between 35-40 m

s−1 with wind speeds slightly larger for the strong subset.

Further evidence of the similarity between the strong and weak IOP-6 solu-

tion is revealed by considering the forecast along the CC’ vertical cross-section,

which as indicated in Fig. 3.1b, is located along the Sierra-Nevada crest. Fig-

ures 3.10ab show the 6-hr, IOP-6 forecast of the wind speed U and the poten-

tial temperature θ along the cross section for the strong and weak members.

Given the large differences between the downslope winds predicted to occur

at this time in the strong and weak subsets, the similarities in the flow above

the crest are remarkable. Both show a stable layer extending from crest-level

to approximately 5-km ASL and both contain a strong jet between 6 and 10

km. Additionally, the tropopause is located at approximately 10 km ASL for

both subsets. While the intensity of the cross-barrier flow is slightly larger for

the strong members north of the Owens-Valley metric box (indicated by the

heavy line at the bottom of the panels), directly upstream of the metric box

the velocities are very similar. The similarities can be quantified by consid-

ering the RMS differences in the plane of the cross-section between the two

subsets. For the wind speed the RMS difference is 2.1 m s−1 and for θ it is 0.8

K. These differences are generally within the error bounds typically associated
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Figure 3.9: The 500 hPa wind speed and geopotential heights for the (a) weak
and (b) strong members of the IOP-6 6-hr forecast as well as the (c) weak and
(d) strong members for the IOP-13 12-hr forecast.
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Figure 3.10: The composite total wind speed and potential temperature along a
vertical cross-section for the 10 weakest and strongest ensemble members from
the (a,b) IOP-6 6-hr forecast and (c,d) IOP-13 12-hr forecast. The cross-section
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shown in Fig. 3.1b. Wind speed is contoured ever 10 m s−1 while potential
temperature is contoured every 10 K.



63

with radiosonde observations which suggest that differentiating between the

wave-breaking and the non-wave-breaking events would be nearly impossible

for either a human forecast or a numerical model.

The mean 500-hPa geopotential height and wind speed for the strong and

weak members is plotted Figs. 3.9cd. In contrast to the IOP-6 case, relatively

large differences are apparent between the strong and weak subsets. For the

strong subset, the jet maximum is located over the San-Francisco Bay, while for

the weak subset, the jet maximum is displaced approximately 150 km to the

south. Additionally, the intensity of the jet is slightly stronger for the strong

subset. It should be noted, however, that the differences between the two sub-

sets is not a consequence of a timing error, since the eastward propagation of

the 500-hPa trough is almost identical between the two subsets.

The differences of θ and U along the CC’ cross-section at the time a max-

imum winds are also relatively large between the strong and weak subsets

(Fig. 3.10cd). For example, north of the Owens-Valley metric box, the winds

are considerably stronger for the strong-member subset. However, directly up-

stream of the metric box the wind speed is actually stronger for the weak-

member subset. The RMS wind-speed differences in the plane of the CC’ cross-

section is 7.5 m s−1 which is considerably larger than radiosonde observational

errors.

Relatively large differences are are also apparent between the θ fields where

the RMS difference is 4.1 K. In the strong-member subset, a region of high

static stability is located just above the mountain crest with weaker stabili-

ties further aloft. In contrast, the region of high static-stability in the weak-

member subset is displaced upward into the middle troposphere. This ver-

tical displacement of the strong-static-stability layer is associated with the

north-south shift of the jet and the associated upper-level front apparent in

Fig. 3.9. For the strong solutions, where the jet-stream is further north, the
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sloping surface of the upper-level front intersects the Sierra-Nevada crest di-

rectly upstream of the Owens-Valley metric box. On the other hand, for the

weak members, the sloping surface of the upper-level front is displaced further

southward and is therefore located above the mountain crest upstream of the

Owens-Valley metric box.

3.4.2 Upstream Soundings

A single sounding profile upstream of a mountain barrier is sometimes used

for downslope-wind prediction (e.g. Klemp and Lilly, 1975; Nance and Cole-

man, 2000). In this section, upstream profiles corresponding to the strong-

and weak-member forecasts will be compared. Upstream profiles of the cross-

barrier component of the flow U , the potential temperature θ, and the Brunt-

Väisälä frequency N for the IOP-6 and IOP-13 forecasts are considered. The

cross-barrier wind U is defined as the component of the flow perpendicular to

the Sierra-Nevada crest (25◦ south of westerly).

Figure 3.11 shows the 5-hr IOP-6 forecasted soundings of U , θ, and N up-

stream of the Sierra-Nevada range for the strong and weak subsets. The loca-

tion of the soundings corresponds to the termination point of 1-hr back trajec-

tories launched from the 6-hr forecast at 5-km ASL along the Sierra-Nevada

crest directly upstream of the Owens-Valley metric box. In this way the pro-

files represent the air that will, one hour later, interact with the Sierra-Nevada

at the time when the ensemble members exhibit their largest variability. The

differences between the U profiles are generally less than 3 m s−1 through the

depth of the troposphere, while the θ and N profiles are nearly indistinguish-

able. Both the strong- and weak-member soundings contain a well-defined sta-

ble layer near crest-level, weaker static-stability in the upper troposphere, and

a tropopause height close to 9.5 km. For the IOP-6 wave breaking case it would

be hard to imagine that a forecaster could differentiate between the strong
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Figure 3.11: Model soundings for the ensemble members with the strongest
(solid) and weakest (dashed) weakest downslope-wind responses at t = 6 hrs
of the IOP-6 simulation. The soundings are valid at t = 5-hrs at the up-
stream edge of the AA’ cross-sections depicted in Fig. 3.1c. Plotted is the (a)
cross-barrier component of the wind, (b) potential temperature θ, and (c) Brunt-
Väisälä frequency N .
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Figure 3.12: Model soundings for the ensemble members with the strongest
(solid) and weakest (dashed) weakest downslope-wind responses at t = 12 hrs
of the IOP-13 simulation. The soundings are valid at t = 11-hrs at the up-
stream edge of the BB’ cross-sections depicted in Fig. 3.1c. Plotted is the (a)
cross-barrier component of the wind, (b) potential temperature θ, and (c) Brunt-
Väisälä frequency N .

response and the weak response based on a single upstream profile. Further-

more, assimilating radiosonde data at this location would do little to improve a

NWP downslope wind forecast because the differences between the weak and

strong members are within the error bounds associated with radiosonde obser-

vations.

The upstream profile of U , θ, and N for the strong- and weak member IOP-

13 subset is shown in Fig. 3.12. As with the IOP-6 case, the location of the

sounding corresponds to the location of 1-hr back trajectories launched from

the 12-hr forecast at the Sierra-Nevada crest 5-km ASL directly upstream of

the Owens-Valley metric box. In contrast to the IOP-6 case, however, substan-

tial differences between the strong- and weak-member soundings are appar-

ent in Fig. 3.12. For example, the cross-barrier flow above 6-km is nearly 10
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m s−1 stronger in the weak members. Additionally, significant differences of

the static-stability exist between the strong and weak profiles. For the strong

members, a classic layered structure with high static-stability in the lower at-

mosphere and low static-stability aloft is apparent. This layering is favorable

for strong downslope winds on the lee-side of the barrier (Durran, 1986a). In

contrast, the weak-member profile has relatively weaker static-stability in the

2.5–4 km layer and a stronger static-stability layer above 5 km. In contrast to

the IOP-6 wave-breaking event, signatures potentially capable of distinguish-

ing between the strong and weak subsets are available at short lead times in

IOP 13 suggesting a slightly longer predictive time scale for this case.

3.5 Ensemble Sensitivity Analysis

One potential method that could be used to quantify downslope-wind predict-

ability is ensemble sensitivity analysis (ESA). First proposed by Hakim and

Torn (2006), ESA computes the sensitivity of a forecast metric with respect to

the model initial conditions by utilizing the statistics of the ensemble members

and linear regression. If J is defined as a vector, where each element contains

an estimate of the forecast metric from each ensemble member, and Xi contains

the ensemble analysis of a given variable (e. g. wind speed, static-stability) at

the ith grid point, then the sensitivity of the forecast metric to the analysis

variable can be approximated as

∂J

∂Xi

≈ cov(J,Xi)

var(Xi)
, (3.1)

where cov and var are the covariance and variance calculated over the ensem-

ble. In other words, the gradient of the forecast metric with respect to an ini-

tial condition is approximated as the linear regression between the ensemble of

the forecast metric and the ensemble of the initial variable at each grid point.

This sensitivity gradient can then be multiplied by an expected change in Xi
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(e. g. the ensemble standard deviation σ) to give an expected change in J.

ESA has been applied in several synoptic-scale situations with general suc-

cess. Hakim and Torn (2006) used ESA to diagnose relationships between the

minimum central pressure of a mid-latitude cyclone and fields such as geopo-

tential height and wind speed. Ancell and Hakim (2007) compared the sensi-

tivity fields derived from the ESA method to adjoint sensitivities. They also

derived a linear relation between ensemble sensitivities and adjoint sensitiv-

ities. Torn and Hakim (2008a) showed that ESA could be used to determine

climatological patterns of initial conditions sensitivity for synoptic-scale fore-

casts. They demonstrated that forecasts of sea-level pressure and rainfall over

Western Washington were sensitive to the upstream mass and temperature

variables. While ESA has been successfully applied to synoptic-scale motions,

its ability to capture mesoscale sensitivity is unknown and will therefore be

tested for downslope winds.

We discuss ESA for the IOP-6 and the IOP-13 simulations. The COAMPS

model is initialized with the EnKF analysis at 18 UTC, 25 March for the IOP-

6 case and 00 UTC, 17 April for the IOP-13 case. As with the simulations

described above, a 27-, 9-, and 3-km configuration is used. The sensitivity of

the downslope-wind response on the 3-km domain, as measured by the Owens-

Valley metric box, to the wind speed and Brunt-Väisälä frequency analysis on

the 27-km domain is presented. Wind speed and static-stability are used be-

cause of their theoretical connection to downslope winds. In particular strong

crest-level stability and strong cross-barrier flow are commonly associated with

strong downslope wind (e.g. Brinkmann, 1974; Bower and Durran, 1986).

The experiments in this section differ from the simulations performed ear-

lier in the chapter in two ways. First, the Owens-Valley metric box has a

greater horizontal extent and is defined according to the box in Fig. 2.11b.

Second, the horizontal advective terms are computed with second-order finite
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differences. While it was shown in chapter 2 that second-order advection can

lead to a significant over-amplification of the mountain-wave, it is not unrea-

sonable to test ESA with this advection scheme given that the sensitivities are

computed with consistent numerics and dynamics.

Figure 3.13 shows the ensemble sensitivity of the 7-hr, IOP-13 downslope

wind forecast on the 3-km domain to the 00 UTC, 17 April EnKF analysis on

the 27-km domain. This time is chosen because the downslope wind sensitiv-

ities to low-level static stability are maximized. Slightly weaker sensitivities

occur at adjacent times. The sensitivity is plotted with respect to the 7-km

wind speed and 4-km Brunt-Väisälä frequency. The sensitivities have been

multiplied by an ensemble standard deviation in order to give the expected

sensitivity response of the downslope winds. The statistical significance of the

linear-regression calculation is computed at the 95% level (Wilks, 2006) and

regions that do not pass the test are masked. Additionally, regions where the

magnitude of the sensitivity response is less than 2 m s−1 are masked.

The sensitivity response to the 7-km initial wind-speed field (Fig. 3.13a) is

concentrated along a east-west line extending from the Sierra-Nevada moun-

tains, north of the San-Francisco Bay, and westward over the Pacific Ocean.

This sensitive region is focused around the zonal jet (contours) and has a max-

imum directly north of San Francisco. The positive correlations indicate that a

stronger mid-tropospheric jet will lead to stronger downslope winds. Quantita-

tively, the sensitivities predict that a±σ change of the initial wind speed in this

region will result in approximately a ±7 m s−1 change of the 7-hr downslope-

wind forecast. Northwest and southeast of the jet are regions of negative sen-

sitivity that predict a ±σ change will result in up to a ∓5 m s−1 change of the

7-hr downslope-wind forecast.

The downslope-wind sensitivity response to the 4-km Brunt-Väisälä fre-

quency at the analysis time (Fig. 3.13b) is concentrated along a thin band ex-
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Figure 3.13: The ensemble sensitivity of the IOP-13, 7-hr forecast of the wind
speed in the Owens-Valley metric box to the 27-km domain analysis of (a) wind
speed at z = 7 km and (b) Brunt-Väisälä frequency at z = 4 km. The time of
the analysis is 00 UTC, 17 April. The sensitivities have been multiplied by an
ensemble standard deviation so that the dimensions are m s−1 for each plot.
Also plotted are the analyzed (a) 7 km wind speeds and the (b) 4 km potential
temperature. The location of the metric box is indicated by the green lines. The
dots in (b) represent the Brunt-Väisälä perturbation locations.
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tending from the San-Francisco Bay westward over the Pacific Ocean. This sen-

sitivity is focused along a strong meridional gradient of θ (contours) which is as-

sociated with an upper-level front. North-south oriented vertical cross-sections

through the sensitive area shows that the sensitive region tilts upward to the

north (not shown). The maximum region of positive sensitivity predicts that a

±σ change of N will lead to over a ±7 m s−1 change of the 7-hr downslope-wind

forecast. An area of negative sensitivity is located to the north of the strong θ

gradient. In this region a ±σ change in the N is expected to produce a ∓6 m

s−1 change of the 7-hr downslope wind forecast. In between the two points is a

region in which ESA predicts no statistically significant sensitivity.

In order to test the sensitivity-analysis predictions, a set of experiments are

performed in which the ensemble is perturbed and integrated forward to give

an evolved downslope-wind perturbation. In order to develop balanced initial

perturbation, the ensemble statistics are used to spread information around

the model domain for a ±σ perturbation at a single point. If x̄a is the N×1

ensemble mean analysis state vector, Pa is the N×N analysis-error covariance

matrix, and h is a 1×N vector which maps the the state vector onto the single

perturbation location, then the ensemble-mean perturbation can be written as

x̄p = x̄a + PahT
(
hPahT

)−1
. (3.2)

In other words, the initial perturbation of the mean field is a linear regression

of a single point perturbation onto the model field using the ensemble anal-

ysis statistics. The analysis ensemble is then re-centered around this mean

according to

xp
n = x̄p + x′

a
n, (3.3)

where x′an is the nth ensemble perturbation of the original analysis. This per-

turbation method ensures the ensemble variability is left unchanged while the

mean is shifted. The perturbation is constructed on the 3 nests and the 70
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members are integrated forward to give an evolved perturbation.

Figure 3.14a shows x̄p− x̄a of the Brunt-Väisälä frequency at 4-km ASL due

to a ±σ perturbation of N at the southern black dot in Fig. 3.13b. This loca-

tion corresponds to an area of large positively correlated sensitivity associated

with the upper-level front. The linear regression spreads the perturbation of

N anisotropically with large concentrations located north of the initial pertur-

bation and small negative perturbations to the south. Note that the linearity

leads to a symmetric positive and negative initial perturbation. In addition,

the covariance perturbs other fields in a manner consistent with the N pertur-

bation. For example, Fig. 3.14b shows the initial perturbation of the U field

at 7-km ASL associated with this change in static-stability. Note that the N

perturbation projects onto the regions U sensitivity.

The evolution of the N and U fields for the ±σ perturbation is shown for

the 7-hr forecast in Figs. 3.14cd. These are computed by integrating the 70

positively and negatively perturbed ensemble members, computing the ensem-

ble mean, and calculating the perturbation from the control run. Apparent is

the coherent structure of the perturbation that has remained intact over the

course of the integration. Additionally, the positive and negative perturbations

are relatively symmetric which suggests that the error growth dynamics for

the synoptic-scale flow are linear.

Figure 3.15a shows the evolution of the ensemble mean Owens-Valley met-

ric for the positive- (thick blue) and negative-perturbation (thick red) forecasts

as well as the control forecast (black). Due to the distance of the perturbations

from the Sierra-Nevada, the first 4-hrs of the forecast are characterized by dif-

ferences between the control and perturbed runs less than 1 m s−1. As the

forecast continues the perturbations grow but are generally less than 5 m s−1.

The ESA predicted downslope-wind response due to perturbing the N field

at the southern black dot is also plotted in Fig. 3.15a (thin lines). Forecast
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Figure 3.15: The evolution of ESA predicted response (thin-lines) for±σ pertur-
bation of the 4-km Brunt-Väisälä frequency at the (a) southern, (b) northern,
and (c) central black dots in Fig. 3.13b. Also plotted is the actual downslope-
wind response (thick lines) associated with perturbing the 4-km Brunt-Väisälä
frequency ±σ at the three dots and integrating the ensemble. The unperturbed
control run is shown with the black line.

times at which the ESA prediction is not statistically significant at the 95%

confidence level are not plotted. While the ESA predicted response is able to

capture the sign of the actual response, it substantially over estimates its mag-

nitude. For example, ESA predicts that a positive σ perturbation of N at the

initial time will lead to a 7 m s−1 increase of the downslope winds for the 7-

hr forecast. In actuality, perturbing the ensemble analysis leads to a 3–4 m

s−1 increase of the downslope wind response. Similarly, ESA prediction over

estimates the magnitude of negative perturbation.

To further test ESA downslope-wind-sensitivity predictions, several addi-

tional tests are performed in which the 4-km Brunt-Väisälä frequency is per-

turbed at the northern and the central black dots shown in Fig. 3.13b. As appar-

ent in Fig. 3.13b, according to ESA, the northern black dot is negatively corre-

lated with the 7-hr downslope wind forecast and the central dot is a nodal point
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with no statistically significant sensitivity. Figures 3.15b and c show the actual

response associated with perturbing the 4-km Brunt-Väisälä frequency by ±σ

at the northern and central points, as well as ESA predicted response. The

ESA significantly over-estimates the sensitivities associated with the northern

black dot (Fig. 3.15b). Almost no sensitivity is associated with actually per-

turbing the ensemble, whereas, ESA predicts up to a 7 m s−1 sensitivity. For

the central dot (Fig. 3.15c), ESA predicts no statistically-significant sensitivity

for the first 10-hrs of the forecast, the actual response is weakly sensitive to

the initial perturbation, especially for the negative perturbation and after 7

hrs. Contrary to the prediction of ESA, the overall character of the sensitiv-

ity associated with perturbing the ensemble is somewhat greater at the central

point than at the northern suggesting that ESA is unable to capture the correct

spatial structure of the downslope wind sensitivity.

One additional experiment is performed for a second event: the 18 UTC, 25

March forecast associated with IOP-6. Figure 3.16 shows the ensemble derived

4-hr downslope-wind sensitivities to the 7-km ASL wind speed and the 4-km

ASL Brunt-Väisälä frequency. While the qualitative structure of the sensitiv-

ity pattern is similar to the IOP-13 case, several key differences are apparent.

The region of 7-km-wind-speed sensitivity (Fig. 3.16a) is located on either side

of the jet, as opposed to directly over the jet, suggesting that stronger/weaker

downslope winds would occur if the jet translates to the north/south. Simi-

larly, the 4-km N sensitivities are displaced from the strong θ gradient with

the largest sensitivities located north of the upper-level front.

The initial N field is perturbed ±σ, 4-km ASL at the black dot in Fig. 3.16b.

This perturbation is regressed onto the model variables according to (3.2) and

the new sets of initial conditions are integrated forward in time in an identical

manner to the IOP-13 case. The actual evolution of the downslope-wind re-

sponse for the perturbed members and the response predicted by ESA is shown
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Figure 3.16: Same as Fig. 3.13 except that the sensitivity of the the IOP-6, 4-hr
forecast that was initialized 18 UTC, 25 March. Note that the contour interval
is half that of Fig. 3.13.

as a function of model forecast time in Fig. 3.17. While the differences between

ESA-perturbation prediction and the actual perturbation is smaller than the

IOP-13 case, ESA perturbation prediction is roughly 50% stronger than the

actual perturbation.

The ESA method appears to significantly over estimate the magnitude of

the downslope wind sensitivities. In addition, a non-trivial response is found

at a nodal point, implying the shortcomings of ESA are not only quantitative

over-estimates of the degree of sensitivity but that it also fails to represent

the correct spatial pattern. One possible explanation for the poor performance

of ESA is that sampling errors associated with the finite ensemble result in

inaccurate statistical relationships between the metric and the synoptic-scale

variables. However, the statistical significance tests performed indicate that

sampling error is not an issue. Another possibility is the non-linear nature

of the downslope wind response. This can, in part, be understood by consid-
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ering the ensemble distributions associated with the downslope windstorms.

Figure 2.15a shows the ensemble distribution for the 6-hr, IOP-13 forecast con-

sidered in this section. The non-linear nature of the downslope wind response

leads to a non-Gaussian distribution of the lee-side winds. This non-Gaussian

distribution clearly violates the assumption of the ESA method. While ESA has

been shown to be beneficial for synoptic-scale motions, the highly non-linear na-

ture associated with the severe downslope windstorms limits its usefulness for

this particular application. We therefore do not consider ESA for the remainder

of the thesis.
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Chapter 4

DATA ASSIMILATION IN COMPLEX TERRAIN

One of the primary benefits of using ensemble based data assimilation is the

ability to estimate the background-error statistics with the time-dependent en-

semble members. As a result, the way in which observational information is

spread around the numerical domain is both flow dependent and consistent

with the model dynamics. In this chapter the ability of the flow-dependent

background-error statistics to capture physically meaningful mesoscale covari-

ance relationships associated with flow interacting with complex terrain will

be explored.

4.1 Experimental Setup

As with the previous two chapters, the numerical model is COAMPS (Hodur,

1997, appendix A). In this chapter the horizontal advective terms are computed

with a fourth-order finite difference approximation. The numerical-domain

setup is identical to that in the previous two chapters with one exception, a

1-km domain is centered over the Owens Valley and High-Sierra to further re-

solve the motions associated with the mountain wave and downslope winds.

The location of the four domains is indicated schematically in Fig. 4.1.

A deterministic square-root version of the EnKF, described in Whitaker and

Hamill (2002) is used for data assimilation. Several high resolution experi-

ments were performed during the TREX (Grubišić et al., 2008) in which obser-

vations of ACARS, ASOS, cloud-track winds, and radiosonde data were assimi-

lated by the EnKF every 6 hrs. Due to the high computational costs of running
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Figure 4.1: The topography on the (a) 27-, (b) 3-, and (c) 1-km domain. The
locations of the 9-, 3-, and 1-km domains are shown by the solid lines in (a). The
dots in (b) and (c) indicate the locations of the hypothetical surface observations
used to calculate the Kalman gain. The solid line in (c) shows the location of
the AA’ vertical cross-section.

the full ensemble on the high-resolution domains, the 9-, 3-, and 1-km experi-

ments were limited to periods of strong mountain-wave activity. In this chapter

we examine the analysis increments that would be associated assimilating sur-

face wind observations adjacent to the Sierra-Nevada mountains for one such

period: IOP 6 which occurred 25-26 March, 2006.

In order to avoid initializing the ensemble multiple times during the TREX

SOP, the 27-km experiment (described in appendix C) is used to initialize the

higher resolution forecasts during periods of interest. For the high-resolution

experiments, the ensemble is initialized in sequence from the 9-km mesh to

the 1-km mesh by interpolating the members from the next-higher-resolution

domain. Data assimilation is then performed by the EnKF independently on

each numerical mesh every 6 hrs. For the IOP-6 experiment described in this

study, the 9-km mesh is initialized from the 27-km mesh at 06 UTC, 24 March,

2006, the 3-km mesh is initialized from the 9-km mesh at 00 UTC, 25 March,

2006, and the 1-km mesh is initialized from the 3-km mesh at 06 UTC, 25

March 2006.
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4.2 Analysis Increments

In this section, the ensemble mean analysis increment due to hypothetical sur-

face zonal-wind observations is explored. If x̄b is the ensemble mean model

forecast of a state vector containing all the model variables at every grid point,

yo is a vector containing observations, and H is a matrix which maps the the

state vector onto the observational space (e.g. linear interpolation), then the

EnKF update equation for the ensemble mean analysis increment is

∆x̄ = x̄a − x̄b = K(yo −Hx̄b) (4.1)

where x̄a is the mean posterior model state associated with assimilating the

observations yo, and

K = PbHT
(
HPbHT + R

)−1
(4.2)

is the Kalman gain matrix. The flow-dependent background-error covariances

are specified with Pb and the observational-error covariance is specified with R.

The innovation is the differences between the observations yo and the ensem-

ble mean estimate of the observations Hx̄b and is defined to be (yo −Hx̄b). In

principal, if the error distributions are normally distributed, any data assim-

ilation system which utilizes (4.1) with the weight matrix (4.2) will optimally

combine the model background state x̄b with the observations yo and minimize

the analysis-error covariance (appendix B). However, in practice, Pb can be

highly flow dependent and is not easily specified a priori. This may be espe-

cially true for mesoscale flows in complex terrain where Pb can vary rapidly

with time and be extremely anisotropic. The advantage of using ensembles

for data assimilation is that the background-error covariance are estimated as

Pb =
〈
xbxbT

〉
, where the angled brackets indicate an expected value over the

ensemble members. In this way the model updates are both flow dependent

and consistent with the model dynamics.
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In the following, the structure of ∆x̄ in regions adjacent to the Sierra-

Nevada is explored for individual hypothetical near-surface zonal-wind obser-

vations. The hypothetical observations are constructed so that |yo −Hx̄b| = 1

m s−1. In other words, the zonal-wind innovation for the single surface obser-

vation is 1 m s−1 stronger in either the easterly or westerly direction. Equiva-

lently, we could interpret this as the structure of a segment of the K matrix for a

single observation. For a single observation, R and HPbHT are scalars allowing

(4.2) to be easily be evaluated. The observational error variance for the single

observation is assumed to be R = 6.25 m2 s−2. This choice controls the impact

of the observation compared to the background forecast. If the background-

forecast variance HPbHT is large compared to R then the analysis increment

will weight more of the observation. If, on the other hand, R is small compared

to HPbHT then the analysis increment will weight less of the observation. For

each observation below we will compare HPbHT to R. We limit our focus to the

mean increment on the high-resolution domains (3- and 1-km).

4.2.1 Increments at t = 6 hrs

Consistent with the length of the assimilation cycle, we consider analysis incre-

ments for the 6-hr forecast initialized 12 UTC, 25 March, 2006. This period is

chosen because a number of interesting orographically induced mesoscale phe-

nomenon occur throughout the simulation period, including: upstream block-

ing in San Joaquin Valley, downslope winds in the Owens Valley, and mountain

waves forced by the Sierra-Nevada mountains. The purpose here is to demon-

strate that assimilating surface wind observations with the EnKF can provide

realistic analysis increments that are consistent with the theoretical under-

standing of orographic flows.
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Figure 4.2: (a) The ensemble mean wind speed and wind vectors 250 m ASL
at t = 6 hrs on the 3-km domain. The contour interval is 2.5 m s−1. (b) The
analysis increment of the wind field (vectors) due to a 1 m s−1 decrease of the
zonal wind at t = 6 hrs, 10-m AGL at the black dot. The magnitude of the
increment is indicated by the shading.

Upstream Blocking

We begin by examining the analysis increment ∆x̄ in the presence of orographic

blocking. The ensemble mean, 6-hr forecast of the 500 m wind speed and direc-

tion is shown from the 3-km domain in Fig. 4.2a. In the western portions of the

San Joaquin Valley the low-level flow is perpendicular to the Sierra-Nevada

mountains. However, as the air-stream approaches the barrier it is diverted to

the north in a direction parallel to the terrain. Forward trajectories launched at

t = 5 hrs throughout the San Joaquin Valley (not shown) indicate that the low-

level flow is diverted northward before passing over the crest near Mammoth,

CA.

While terrain parallel jets associated with flow blocking can be a balanced

phenomenon, it is not likely that static-covariances designed for large-scale
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flows would be able to capture the appropriate mesoscale structures related

to the fine details of the topography. The flow dependence of the EnKF is,

however, able to capture a physically meaningful increment associated with

a surface wind speed observation. Figure 4.2b shows ∆x̄ of the 500 m wind

field that would occur if a zonal wind observation, 1 m s−1 weaker than the

ensemble mean, was taken 10 m AGL at the black dot in Fig. 4.2. For this

location HPbHT ≈ 1.6 m2 s −1 suggesting that the observation will be weighted

less than the background forecast. Apparent in Fig. 4.2b is that weaker terrain

perpendicular flow at the surface station leads to analysis increments which

broaden the upstream extent of the decelerated region. Additionally, the wind

speed increments decay with height and are negligible above crest-level (not

shown), which would be expected for a low-level response of blocked flow.

Downslope winds and mountain waves

We turn our attention now to the analysis increments ∆x̄ associated with wind

observations in the Owens Valley. As mentioned previously, downslope winds

and mountain waves were present in the 6-hr COAMPS forecast so the focus

will be limited to the structure of the increments associated with these fea-

tures. Figure 4.3 shows the zonal-wind increment from the 1-km domain along

the AA’ vertical cross-section indicated in Fig. 4.1c. The increments are due to

the assimilation of two hypothetical zonal-wind observations separated by 8.5

km: one on the lee-slope of the Sierra-Nevada and one at the base of the Owens

Valley. The observation locations are coincident with two mesonet stations in

place for the TREX SOP and depicted in Fig. 4.1c: Desert Research Institute

(DRI) station 7 (on the lee-slope) and DRI station 10 (on the Valley floor). Since

we are only interested in the spatial structure of the individual analysis in-

crements, the impact of the each observation is is considered separately. For

both stations we consider an observation of zonal wind that is 1 m s−1 stronger
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Figure 4.3: The analysis increment (color filled) at t = 6 hrs of the zonal wind
along the AA’ vertical cross-section on the 1-km domain due to a 1 m s−1 in-
crease of the zonal wind, 10-m AGL at the black dot in (a) and (b). The ensem-
ble mean zonal wind is also plotted with a contour interval of 5 m s−1.
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than the ensemble mean. For the DRI-7 station HPbHT ≈ 25 m2 s −1 and for

the DRI-10 station HPbHT ≈ 3.5 m2 s −1. This suggests that the observation

will be weighted more at the DRI-7 station compared to the DRI-10 station.

The higher-resolution domain is used because discretization errors associated

with poorly resolved waves can result in significant over-amplification of the

mountain-wave and downslope-wind response leading to large model error and

non-representative increments (chapter 2).

In addition to the analysis increments, the ensemble mean zonal wind along

the cross-section is plotted in Fig. 4.3. A tongue of strong downslope flow ex-

tends down the lee-slope of the Sierra-Nevada and into the Owens Valley with

the strongest winds directly upstream of the DRI-7 station. East of the DRI-7

station the zonal winds are considerably weaker. The zonal-wind analysis in-

crement associated with the DRI-7 station tilts downstream with height and

is concentrated along the strong gradient of zonal flow (Fig. 4.3a). This incre-

ment shifts the entire stream of strong downslope flow further down the lee-

slope. Moreover, the small analysis increment located in the upper troposphere

suggests that stronger cross-barrier flow is associated with the more intense

downslope wind response. In contrast, assimilation of the DRI-10 observation

has very little impact on the structure of the downslope flow (Fig. 4.3b). The

zonal-wind increment is small and localized to regions immediately adjacent

to the observation. The large variation of ∆x̄ between the two observations

demonstrates that flow dependent covariances can be crucially important in

regions of complex terrain.

Associated with the strong downslope flow is a moderately strong mountain

wave propagating away from the Sierra-Nevada crest. Figure 4.4 shows the en-

semble mean vertical velocity and the analysis increment in w due to the same

two zonal-wind-speed observations. As evident in the figure, the mountain

wave is oriented downstream with alternating regions of positive and negative
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vertical velocity with the maximum intensity close to 6 m s−1. Assimilation

of the DRI-7 zonal-wind observation (Fig. 4.4a) leads to a vertical-velocity in-

crement which alternates between between positive and negative phases and is

shifted approximately 90◦ from the up-down motions of the mountain wave. Ad-

ditionally, the increments decay with height and are localized to regions where

there is an appreciable mountain-wave signature. This increment represents

a downstream shift of the mountain wave which result in the region of strong

flow underneath the first downward phase of the wave extending further down

the lee slope. In contrast, the vertical-velocity analysis increment for the DRI-

10 station is less than 0.05 m s−1, which is smaller than the contour interval.

Apparently, surface wind speed observations at t = 6 hrs along the bottom of

the Owens Valley have a minimal effect on the mountain-wave structure.

The anisotropic nature of the background-error covariance is also evident

in the horizontal. Figure 4.5 shows the zonal-wind increment at 250 m AGL

for the same two surface observations. The increment for the DRI-7 obser-

vation extends along the lee-slope over the entire north-south extent of the

Owens Valley (Fig. 4.5a). This is not completely unexpected since the Sierra-

Nevada are a quasi two-dimensional mountain range and the structure of the

mountain-wave should be only slowly varying along a direction parallel to the

ridge line. Nevertheless, it is interesting that the EnKF is able to detect this

extremely anisotropic covariance relationships along the lee-slope. The DRI-10

observation, further down the slope, has little impact on the 250 m zonal wind

(Fig. 4.5b). This implies that the correlation length scale for this observation is

very short.

4.2.2 Increments at t = 9 hrs

One of the main advantages of using the EnKF is the flow-dependent nature of

the background-error covariances. In the previous section it was demonstrated



89

3000

3000

3000

3000

3000

3000

3000

3000

3000

30
00

3000

3000

3000

3000

3000

3000

3000

3000

3000

3000

30
00

3000

(a)

(b) DRI 10

DRI 7

Figure 4.5: The 6-hr analysis increment on the 1-km domain of the zonal wind
250 m AGL due to a 1 m s−1 increase of the zonal wind, 10-m AGL at the black
dots in (a) and (b).



90

5

10

15

15

20

20

25

25

25

30

30

30

35

35

35

4040

.25

.25

.2
5

.25

5

10

15

15

20

20

25

25

25

30

30

30

35

35

35

4040

A A’

(a)

(b)

km
km

DRI 10

DRI 7

Figure 4.6: Same as Fig. 4.3, except for t = 9 hrs.

that large variations in the background-error covariance structure could occur

over very short distances. In this section, the time-dependent nature of the

background-error covariance is explored by considering how the analysis incre-

ments change over a short 3-hr interval.

The zonal-wind increment associated with the DRI-7 and DRI-10 hypothet-

ical zonal-wind-speed observations for the 9-hr COAMPS forecast is shown

along the AA’ vertical cross section in Fig. 4.6. Also plotted in both panels of

Fig. 4.6 is the ensemble mean zonal wind along the cross section. A strong jet

extends down the lee slope with the wind speeds exceeding 15 m s−1 deep into

the Owens Valley. Compared to the 6-hr forecast (Fig. 4.3), the strong wind

extending further down the slope, however, at the base of the Valley, the en-
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semble mean zonal winds remain relatively calm. Additionally, the ensemble

variance at the DRI-10 has increased drastically and is now HPbHT ≈ 25 m2 s
−1 which implies that the observation will be heavily weighted.

For the observation associated with the DRI-7 station (Fig. 4.6a) the ampli-

tude of the analysis increment is similar to that of the previous time (Fig. 4.3a),

however, the structure varies considerably. For the 9-hr forecast the analysis

increment remains attached to the lee-slope but extends laterally up and down

the lee slope. Further aloft directly above DRI-7, the wind speed increments

are negative, consistent with an increase in wave amplitude associated with

stronger downslope winds. Further down the slope, the analysis increment as-

sociated with the DRI-10 observation (Fig. 4.6b) is considerably different than

the analysis increment for the 6-hr forecast (Fig. 4.3a). A large positive in-

crement covers a broad portion of the Owens Valley below the Sierra-Nevada

crest. Furthermore, relatively large increments are apparent above 6 km in-

dicating that the stronger downslope winds at the base of the Owens Valley

are positively correlated with stronger zonal flow aloft. The correlation length

scale has increased substantially for the DRI-10 observation compared to the

6-hr forecast.

Associated with the stronger downslope wind storm at hour 9 is a strong

mountain wave. Figure 4.7 shows the ensemble mean vertical velocity, as well

as the vertical-velocity increment along the same AA’ vertical cross-section.

The positive phase of the lee-wave extends over the central portion of the

Owens Valley, resulting in a longer horizontal wavelength when compared to

the 6-hr forecast. Furthermore, the maximum vertical velocity is less than 4 m

s−1, which is somewhat weaker than 6-hr forecast. For both stations the 9-hr

vertical-velocity increment differs considerably from the 6-hr forecast. The ver-

tical velocity increment for the DRI-7 observation is shown in Fig. 4.7a. As with

the 6-hr forecast, the increment is nearly 90◦ out of phase, suggesting that the
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stronger wind observation shifts the lee-wave downstream, however, the hor-

izontal scale of the increment is broader. The largest differences between the

6- and 9-hr analysis increments are associated with the DRI-10 observation

(Fig. 4.7b) where a positive-negative couplet is located directly over the sta-

tion. The increment is nearly 180◦ out-of-phase with the vertical-velocity field

which decreases the positive vertical velocity component over the central por-

tion of the Owens Valley. This reduces the tendency of the high-speed flow to

separate from the surface and allows these winds to extend further down the

lee slope. In the horizontal plane, the 250 m AGL analysis increment associ-

ated with DRI-10 at hour 9 has a similar crest parallel structure to the DRI-7

increment at hour 6 as shown in Fig. 4.5 (not shown). This implies that the

correlation length scale is much larger at DRI-10 for the 9-hr forecast than for

the 6-hr forecast. Such rapid variations in the correlation length scale may

make distance dependent covariance localization difficult when assimilating

observations in complex terrain.
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Chapter 5

CONCLUSIONS

This thesis considers several factors relating to the prediction and predict-

ability of mountain waves and downslope winds and represents one of the first

attempts to systematically document the variability of downslope-wind fore-

casts associated with expected levels of synoptic-scale uncertainty in a fully

non-linear, three-dimensional NWP mesoscale model. Throughout the thesis

the focus is on real-world situations which represent typical forecasting chal-

lenges in regions of complex terrain.

The predictability of downslope-wind and mountain-wave forecasts is ex-

plored with a fully non-linear, non-hydrostatic, high-resolution NWP model.

The model is used to generate an ensemble of 70 different initial conditions

for two prototypical downslope-wind events from the TREX SOP: IOP 6 (25-26

March, 2006) and IOP 13 (16-17 April, 2006). The IOP-6 event was character-

ized by a large-amplitude mountain wave with upper-level tropospheric wave

breaking and severe downslope winds. In contrast, wave breaking was not

present for the IOP-13 simulations, instead, the strong winds were generated

by a layer of high static stability beneath an upper-tropospheric layer of low

stability.

An EnKF data assimilation system is used to generate the initial ensem-

ble perturbations for the IOP-6 and the IOP-13 forecasts. In this way the en-

semble of initial conditions represents uncertainty that would be present in

operational NWP forecasting systems given an imprecise specification of both

the observations and the background estimate of the atmosphere. The growth
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of the ensemble variance during each forecast represents the degree to which

the downslope wind event is sensitive to the expected uncertainty of the initial

conditions.

For the wave-breaking simulations (IOP-6), initial-condition errors grow

rapidly leading to large variability of the downslope-wind forecast. Quantifying

the variability as the difference of the 6-hr downslope-wind forecast between

the strongest and weakest-10 subset means shows that differences as large as

28 m s−1 are possible on the lee-slope. For the strong subset, an extensive re-

gion of decelerated flow and turbulent mixing extends through a deep layer of

the troposphere suggesting that wave breaking is a dominant mechanism for

the formation of the strong downslope winds. The majority of the error growth

occurs between the 3 and 6-hr forecast demonstrating that the predictive time

scale for this wave-breaking event is shorter than 3-hrs. A representative up-

stream sounding, 1-hr prior to the strongest downslope winds, shows that the

difference of the cross-barrier wind speed, potential temperature, and Brunt-

Väisälä frequency between the mean profiles for the strong and weak subsets

is generally less than radiosonde observational errors. This demonstrates that

very small differences in the upstream conditions can be responsible for large

forecast uncertainty. The uncertainty can potentially limit the ability of deter-

ministic NWP models to accurately predict downslope winds associated with

mountain-wave breaking.

For the case with strong low-level static stability (IOP-13), in which wave

breaking was not a large contributing factor, the predictability time-scale is

somewhat longer. For the forecast initialized 18 UTC, 16 April, 2006, (and valid

06 UTC, 17 April), the differences between the strong and weak subsets grows

to 23 m s−1 over the 12-hr forecast. In contrast, for the 6-hr forecast valid at the

same time (and initialized 00 UTC, 17 April), the differences only reach 15 m

s−1. Additionally, the ensemble distributions of the downslope wind speed are
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considerably different between the two forecasts. The 12-hr forecast is char-

acterized by relatively low, uniformly distributed probabilities, whereas the 6-

hr forecast contains a substantial peak in the distribution at 17.5 m s−1 with

over twice the probability of the surrounding wind-speed bins. The slower er-

ror growth rates and decreased ensemble variability suggests that the IOP-13

layered-type downslope windstorm attains a longer predictive time-scale than

the IOP-6 wave-breaking wind storm. Furthermore, a representative upstream

sounding, 1-hr prior to the forecast time, shows that significant differences are

readily apparent between the mean profiles for strong and weak subsets. For

example, a 2-km deep layer of strong static-stability is present directly above

crest level for the strong members, whereas, the crest-level static-stability is

considerably weaker for the weak members. These differences are associated

with the meridional displacement of an upper-level front and associated jet

stream and suggest that an accurate prediction of these synoptic-scale features

is necessary for accurate predictions of downslope winds.

Downslope-wind predictability limitations appear to be a function of the

character of the mountain-wave response. On one hand, for the IOP-6 wave-

breaking event, the strong sensitivity of the downslope wind response to the

upstream conditions 1-hr prior to the event suggests that data would never be

available to allow for the determination between the weak or strong storm. The

predictability limitations for the clear-air turbulence simulated in this case are

just as short. These limited predictive time scales are consistent with the two-

dimensional limitations associated with the wave-breaking regime presented

in Doyle and Reynolds (2008). On the other hand, for the IOP-13 event where

the upstream profile was characterized by static-stability layering, forecasting

the downslope-wind response may be difficult 12-hrs in advance, however, suffi-

cient differences existed in the upstream sounding to allow for a determination

between the strong and weak storm 1-hr in advance.
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The large forecast uncertainty can be accurately captured with an ensemble

and ensemble data assimilation. The potential of the EnKF to assimilate meso-

scale observations into high-resolution simulations was explored. It was shown

that the flow-dependent background-error covariances were able to capture

physically meaningful analysis increments both upstream and downstream of

the Sierra-Nevada. For example, two hypothetical zonal-wind observations

separated by 8.5 km produced significantly different analysis increments in

both the zonal wind field and the vertical velocity field. One observation was

located on the lee-slope of the Sierra-Nevada while the other was located at the

base of the Owens-Valley. When the lee-slope observation was set to be 1 m s−1

stronger than the ensemble mean, the zonal-wind analysis increment was rel-

atively large and concentrated along a narrow band extending along the length

of the Sierra-Nevada lee slope. Additionally, the lee-slope observation produced

a large analysis increment in the vertical velocity field, shifting the phase of the

mountain-wave downstream. At the same time, a similar 1 m s−1 innovation

at the base of the Owens-Valley had no appreciable impact on either the down-

slope wind speed, or the vertical velocity field. The analysis increment at this

station varied strongly with time. This suggests that the correlation length

scale is very short at the base of the Owens Valley. The same 1 m s−1 innova-

tion 3-hrs later produced a large increment with a broader correlation length

scale. The magnitude of the increment was similar to the magnitude of the

increment at the lee-slope station.

The role of discretization errors in numerical solutions to flow over topog-

raphy is explored with linear theory and non-linear NWP model simulations.

Steady gravity waves are considered for scales ranging from non-hydrostatic,

where errors are most likely to be found in high-resolution mesoscale NWP

models, to inertial waves, that may be in error in coarser resolution global mod-

els. Analytic solutions to the discrete linear two-dimensional mountain-wave
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problem are computed with the horizontal advective term approximated with

first- through sixth-order finite differences. Surprisingly, for a non-hydrostatic

mountain-wave (δ = 1.8) forced by a 8∆x-wide mountain, the vertical velocity

in the second-order solution is 30% stronger than in the continuous solution. In

contrast, for hydrostatic mountain waves (δ = 10) forced by an 8∆x-wide moun-

tain, the the vertical velocities in the second-order solution are 7% weaker than

those in the continuous solution. Decreasing the horizontal resolution further,

so the mountain is resolved by 4 grid points, results in a 39% decrease in the

amplitude of the hydrostatic wave.

The errors in mountain-wave amplitude are associated with errors in the

discrete representation of the group velocity. In the non-hydrostatic solution,

the group-velocity vector for the dominant wave forced by the coarsely resolved

topography does not point sufficiently downstream. Instead, wave energy accu-

mulates over the mountain peak, over-amplifying the mountain wave. Higher-

order schemes are able to more accurately capture the downstream orientation

of the group-velocity vector; the fourth- and sixth-order solutions for the 8∆x-

wide non-hydrostatic mountain are only 11% and 4% stronger than the contin-

uous solution. In contrast, the amplitude of the discrete hydrostatic mountain

wave is reduced because the group-velocity vector for the dominant wave forced

by the coarsely resolved topography points erroneously upstream.

The practical implications of over-amplification on the structure and pre-

dictability of mountain waves and downslope winds is demonstrated in the con-

text of a 70-member COAMPS ensemble simulation of a mountain-wave event

over the Sierra-Nevada mountains of California. Here, an experiment is per-

formed in which the horizontal advective scheme on a 3-km resolution mesh

is switched from second- to fourth-order. In the second-order solution a very

strong mountain-wave with vertical velocities in the ensemble mean exceeding

16 m s−1 is forced by the topography. Associated with the simulated mountain
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wave is a severe downslope windstorm with ensemble mean winds close to 45

m s−1. Switching to fourth-order-accurate advection, the mountain-wave am-

plitude decreases such that the ensemble mean vertical velocities do not exceed

8 m s−1, and the downslope winds are reduced to approximately 15 m s−1, which

is close to the 12 m s−1 wind speed that was observed during the event. Addi-

tionally, the ensemble variability decreases substantially when switching from

the second-order scheme to the fourth-order scheme. This is because many of

the second-order solutions contain regions of substantial wave breaking which

leads to strong downslope winds. In contrast, most of the fourth-order solutions

do not contain wave-breaking and the downslope winds are much weaker.

Regardless of the mechanism responsible for strong downslope winds, the

limited predictive time scales for the IOP-6 and IOP-13 events are considerably

shorter than the optimistic view of mountain-wave predictability presented in

Klemp and Lilly (1975). Although the predictability results for these two events

may not generalize to all mountain-wave and downslope-wind scenarios, they

demonstrate that the predictive limits of these features may be much shorter

than previously thought. Future work should be directed towards sampling

a larger set of downslope wind and mountain wave events. Furthermore, the

difficulties that other downslope-wind forecasting attempts have experienced

(e.g. Nance and Coleman, 2000), are possibly due, in part, to the large initial

condition sensitivities demonstrated in this thesis. Specifying an ensemble of

initial conditions with the EnKF is a way in which this uncertainty can be

accounted for. Future high-resolution operational models will most likely need

to use ensemble forecasting techniques to predict not only downslope wind, but

the uncertainty associated with downslope-wind forecasts.
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Appendix A

NON-LINEAR NUMERICAL MODEL

The numerical integrations in this thesis are performed with the atmo-

spheric portion of the Coupled Ocean/Atmosphere Mesoscale Prediction System

(COAMPS; Hodur, 1997). A brief description of the numerical model is given

in this section.

COAMPS solves a finite difference approximation to the fully non-linear,

non-hydrostatic, compressible equations of motion on a terrain-following

Arakawa-C grid. Prognostic equations for the zonal, meridional, and vertical

velocities (u, v, and w), as well as potential temperature, θ, and perturbation

Exner function, π are marched in time with a semi-implicit, split time-level

second-order accurate integration (Klemp and Wilhelmson, 1978). Addition-

ally, the grid-scale evolution of micro-physical variables for water vapor, qv,

cloud-water, qc, rain water, qr, ice, qi, and snow qs are accounted for.

Consistent with the C-grid staggering, the u and v variables are displaced

one-half grid point in the zonal and meridional direction, respectively, while w

is staggered one-half grid point in the vertical direction. The micro-physical

variables are co-located with θ and π. Following Gal-Chen and Somerville

(1975), the model utilizes a terrain-following height-based-σ coordinate defined

by

σ = zt

(
z − zs

zt − zs

)
(A.1)

where zt is the model top, zs is terrain height, and z is the physical height. In

all experiments the model top is set to zt = 34.08 km. Forty vertical levels are

unevenly distributed with the highest resolution near the surface and coarse
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resolution in the upper-most 10 km of the domains.

A.1 Model Equations

The set of dynamical equations on the transformed σ-height coordinate system

can be written as

Du

Dt
− fv + cpθv

(
∂π

∂x
+Gx

∂π

∂σ

)
= Du +KH∇4u, (A.2)

Dv

Dt
+ fu+ cpθv

(
∂π

∂y
+Gy

∂π

∂σ

)
= Dv +KH∇4v, (A.3)

Dw

Dt
+ cpθvGz

∂π

∂z
= g

(
θ′

θ̄
+ 0.608q′v − qc − qr − qs − qi − qg

)
+KH∇4w, (A.4)

Dπ

Dt
+ σ̇

∂Π̄

∂σ
+
Rd

cv

(
Π̄ + π

)(∂u
∂x

+
∂v

∂y
+ G · ∂u

∂σ

)
− Rd

cv

(
Π̄ + π

θv

)
Dθv

Dt
= 0, (A.5)

DS(i)

Dt
= M (i) +Ds(i) +KH∇4

(
S(i) − S̄(i)

)
. (A.6)

In the preceding,
D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ σ̇

∂

∂z
(A.7)

is the total derivative operator,

Π̄ + π =

(
Rd

p0

ρθv

)Rd
cv

(A.8)

is the Exner function,

θv = θ (1 + 0.608qv) (A.9)

is the virtual potential temperature, and

G = (Gx, Gy, Gz) = ∇ · σ, and σ̇ = G · u (A.10)

are related to the terrain transform. Equation (A.6) represents the scalar ad-

vection of potential temperature θ (S(1) = θ) as well as the mixing ratios of
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water vapor (S(2) = qv), cloud water (S(3) = qc), rain water (S(4) = qr), ice crys-

tals (S(5) = qi), and snow (S(6) = qs). For θ, M (1) represents the sources and sinks

of heat, while M (2−4) represent the sources and sinks of the micro-physical vari-

ables. In (A.2) - (A.8), ρ is the density; p0 is a reference pressure; cp and cv are

the specific heat at constant pressure and volume, respectively; Rd is the dry-

air gas constant; g is the gravitational force; and f is the Coriolis force. In the

preceding equations, over-bars represent background variables.

A.2 Parameterizations

The Rutledge and Hobbs (1983) microphysical parameterization is used to ex-

plicitly treat convective and non-convective moist processes in the numerical

model. However, for the 27-km domain, convective motions are treated with

the Kain and Fritsch (1990, 1993) cumulus parameterizations. Following the

methods of Harshavardhan et al. (1987), the shortwave and longwave radiative

transfer is computed every 1-hr during the model integrations. Turbulent mix-

ing for momentum, heat, and the scalar quantities is represented through Du,

Dv, Dw, and Ds(i) with a 1.5 order, level 2.5 scheme (Mellor and Yamada, 1974).

With this method a prognostic equation for the turbulent kinetic energy (TKE)

is solved explicitly and then used to set the turbulent fluxes of heat, moisture

and momentum. Surface fluxes of momentum and heat are represented with

the Louis (1979) scheme.

A.3 Boundary Conditions

One-way nested lateral boundary conditions are used for all of experiments in

this thesis. The lateral boundaries on the 27-km domain are specified from

the Naval Operational Global Atmospheric Prediction System (NOGAPS) op-

erational forecast according to the method of Davies (1976). The NOGAPS
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fields are interpolated to the 7 outer-most COAMPS grid points with a bi-cubic

spline and are then interpolated to the COAMPS vertical levels. A linear com-

bination of the NOGAPS and COAMPS fields is computed at each of the 7 grid

points with the NOGAPS field being fully weighted at the outer grid point and

the COAMPS field being fully weighted at the 7th grid point. The NOGAPS

boundaries are updated every 6-hrs and the linear time tendency between two

updates is used to specify the boundaries at the intermediate times. The bound-

aries for the nested domains are specified in the same way as the outer domains

except that the COAMPS forecast is used to update the boundary at every time

step.

The upper-boundary condition is specified by setting σ̇ = 0 at the top model

level. In order to prevent spurious gravity-wave reflection from the top bound-

ary, u, v, w, and θ are damped to smoothed values over the top 7 grid points of

the model.

Topography on the lower boundary is specified from the 1-km resolution

GLOBE DEM dataset and interpolated to the model grid points. A 25-point

filter is applied to the interpolated topography field to remove the 2∆x signal.

The lower boundary conditions is specified by setting σ̇ = 0 at the bottom model

level.

A.4 Numerical Integration

The prognostic equations (A.2)–(A.6) are marched forward in time with a semi-

implicit, split time-level second-order accurate integration (Klemp and Wil-

helmson, 1978). A small time step is used to integrate the sound wave modes

while a large time step is used to integrate the gravity- and Rossby-modes. The

large time step is ∆t = 30 s for the 27-km domain and reduced by a factor of 3

for each nested domain. The small time step is ∆τ = 0.5∆t. The large time step

integration is computed with the second-order leapfrog method. To control the
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computational mode associated with the leapfrog integration, a Robert-Asselin

time filter (Robert, 1966; Asselin, 1972) is applied at each large time step with

a coefficient of 0.2.

With the exception of the horizontal advective terms in (A.2)–(A.6), the spa-

tial derivatives are computed with second-order finite differences. An option

exists within COAMPS to compute the horizontal advective terms with ei-

ther second-order or fourth-order finite differences. Both the second-order and

fourth-order horizontal advective schemes are used throughout the thesis.

The maximum stable time step of the fourth-order advection scheme for the

linear advection equation should be approximately 71% of the maximum sta-

ble time step for the second-order advection scheme (Durran, 1999). Tests with

COAMPS revealed that the fourth-order scheme required a time-step approx-

imately 30% of the second-order-scheme time step, which is considerably less

than theory predicts. This excessive time-step reduction required for the inte-

gration to remain stable was linked to the way in which the u∂u
∂x

and v ∂v
∂y

terms

were calculated in (A.2) and (A.3), respectively. If the terms were calculated in

the advective form, shown above, then the stringent time step was required to

maintain stability. However, if the terms were calculated as ∂u2

∂x
and ∂v2

∂y
, then

the time step constraint was more consistent with linear theory. The cause of

this sensitivity was not fully explored, however, it is suspected to be associ-

ated with the non-linear instability present in Burgers’s Equation. Flux-form

numerical integrations of Burgers’s Equation are less susceptible to non-linear

instabilities than advective form integrations (Durran, 1999).

Artificial numerical diffusion is required in non-linear numerical models

to prevent the spurious build-up of energy at the shortest resolvable wave-

lengths. COAMPS uses a fourth-order diffusion operator which effectively

removes the shortest wavelengths while leaving the longer wavelengths rel-

atively unchanged. This operation is controlled by the parameter KH in (A.2)–
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(A.6). For the simulations in this thesis KH = −0.0025∆t/ (∆x2∆y2) which com-

pletely removes the 2∆ wave in one time step.
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Appendix B

ENSEMBLE KALMAN FILTER

In this appendix, the Kalman Filter is derived from a general non-linear

probability distribution of the model state and the observational information.

The derivations in this section closely follows Lorenc (1986).

B.1 Bayesian Statement of Data Assimilation

The problem of sequential data assimilation can be concisely stated as on of

trying to determine the probability density function (PDF) of the current atmo-

spheric state1 xt given observations Yt at the current time and at all previous

times, or mathematically

P (xt|Yt). (B.1)

Here, xt is a state vector representing the atmosphere at time t, Yt = [yt,Yt−1]

is a vector containing every observation up to time t, yt are the observations

available at t, and P is the probability distribution.

Using Bayes theorem, (B.1) can be rewritten as

P (xt|Yt) ∝ P (Yt|xt)P (xt). (B.2)

If the observational errors are assumed to be temporally uncorrelated then they

are independent from each other. Using the definition of independence the first

term on the RHS of (B.2) can be rewritten as

P (Yt|xt) = P (yt|xt)P (Yt−1|xt). (B.3)

1While the context in this thesis is limited to the atmosphere, the Kalman filter is applicable
to any dynamical system.
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Substituting (B.3) into (B.2) and once again using Bayes Rule gives the proba-

bilistic update for data assimilation

P (xt|Yt) ∝ P (yt|xt)P (xt|Yt−1). (B.4)

The term on the left hand side (LHS) is the posterior PDF and is what we are

seeking. This term is the probability of the current atmospheric state given

all current and past observations. The first term on the RHS is the observa-

tional likelihood function which accounts for observational uncertainty associ-

ated with instrument errors and representativeness errors. The second term

on the RHS is the prior PDF and represents the probability of the current state

given all the observations prior to the current time. Equation (B.4) can re-

peated recursively every time a new observation is available, assuming that

there is a method to generate a new prior.

B.2 Gaussian Approximation

In principal one could solve (B.4) by using the Liouville equation to update

the new prior (Ehrendorfer, 1994), however; in practice this problem becomes

computationally intractable for even small systems, let alone complex NWP

models. It is therefore advantageous to assume that the distributions in (B.4)

are normally distributed with a specified expected value and covariance. The

normally distributed prior estimate can be written as

P (xt|Yt−1) ≈ N(xt|xb,Pb) ∝ e−(xt−xb)
T P−1

b
(xt−xb). (B.5)

In the preceding, N is a normal distribution with mean xb and covariance Pb.

In the context of (B.4), xb is the background estimate given all previous ob-

servations is and Pb is the first moment of the distribution. The Pb matrix is

square and positive definite. The normally distributed observation likelihood
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can be written as

P (yt|xt) ≈ N (yo|H(xt),R) ∝ e−[yo−H(xb)]
T R−1[yo−H(xb)] (B.6)

Above, the observations at time t are written as yo, H(xt) is a non-linear vector

valued function that maps the model state onto the observational space, and

R is the observation-error covariance matrix. Substituting (B.5) and (B.6) into

(B.4) and dropping the time index for simplicity gives

P (x|Y) ∝ e−J(x) (B.7)

where

J(x) = (x− xb)
TP−1

b (x− xb) + [yo −H(x)]T R−1 [yo −H(x)] . (B.8)

Equation (B.7) is the Gaussian approximation to the data assimilation problem.

B.3 The Most Likely State

The maximum likelihood state can be determined by finding the state xa that

maximizes (B.7), or equivalently; minimizes (B.8). This is done by setting the

derivative of (B.8) with respect to x equal to 0;

∂J

∂x

∣∣∣∣∣
xa

∝ HR−1 [yo −H(xa)]−P−1
b (xa − xb) = 0. (B.9)

In the preceding H = ∂H
∂x

is the Jacobian of H and represents a linear operator

between the model space and observation space.

In general H(xa) is a non-linear function between the model space and ob-

servational space. For example, the radiative transfer equation for satellite ob-

served radiance’s or the power equation for observed radar reflectivities. This

complexity makes solving (B.9) for xa difficult. It is therefore necessary to lin-

earize H(xa) about the background state xb:

H(xa) = H(xb) + H (xa − xb) . (B.10)
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Substituting (B.10) into (B.9) and rearranging gives

xa = xb +
(
HTR−1H + P−1

b

)−1
HTR−1 [yo −H(xb)] . (B.11)

Using the fact that Pb and R are symmetric matrices (B.11) can be simplified

by substituting the identity relationship

(
HTR−1H + P−1

b

)
= HTR−1

(
R + HPbH

T
) (

PbH
T
)−1

and using standard matrix operations. This substitution yields that Kalman

Filter update equation

xa = xb + K [yo −H(xb)] (B.12)

where

K = PbH
T
(
HPbH

T + R
)−1

. (B.13)

Equation (B.12) states that the analysis that maximizes the Gaussian approx-

imation to the data assimilation problem can be expressed as a linear combi-

nation between the background model state xb and the innovation, yo −H(xb).

The innovation is weighted by the Kalman Gain K.

B.3.1 Minimizing the Analysis-Error Covariance

If the background state and the observations are assumed to be unbiased and

uncorrelated with each other and the forward operator H (x) is linear (or ap-

proximated to be linear with (B.10)), then the analysis-error covariance can be

written as

Pa = (I−KH)Pb (I−KH)T + KRKT . (B.14)

The preceding can be further simplified by substituting (B.13) into (B.14) to

give

Pa = (I−KH)Pb. (B.15)
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The analysis-error covariances given in (B.14) is general in the sense that

it does not depend on the particular form of K. We will show in this section

that if K is given by (B.13) then the total variance of Pa is minimized. Using a

general weight matrix W in place of K, (B.13) can be rewritten as

Pa = Pb − (WHPb)
T −WHPb + W

(
HPbH

T + R
)
WT . (B.16)

To minimize the total variance, we must minimize the trace of Pa with respect

to W. Using properties of the matrix trace and the fact that Pb and R are

symmetric
∂

∂W
trace (Pa) = −2

[
PbH

T −W
(
HPbH

T + R
)]
. (B.17)

Setting the preceding equation equal to zero and solving for W yields

Wmin = PbH
T
(
HPbH

T + R
)−1

. (B.18)

It is simple to see that this is a minimum by taking the second-derivative of

(B.17) with respect to W and noting that
(
HPbH

T + R
)

is positive definite.

Comparing (B.18) to (B.13) reveals that Wmin = K, in other words, the Kalman

Gain K minimizes the total variance of the analysis error covariance matrix.

B.4 The Kalman Filter

In the previous section the most likely analysis state and analysis-error covari-

ance were derived in terms of the background state and the background-error

covariance, respectively. The key to the Kalman filter is that it provides a

method to update the background-error covariances.

If Mt,t0 is a linear model which evolves the state vector x(t) from time t0 to

time t then the new background state can be written in terms of the analysis

state as

xb = Mxa + ε (B.19)
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where ε represents a model error term with zero mean and covariance matrix

PQ. The new background-error covariance can then be written as

Pb =
{
xbxb

T
}

=
{
Mxaxa

TMT
}

+
{
εxa

TMT
}

+
{
Mxaε

T
}

+
{
εεT

}
(B.20)

where the curly brackets represent the expected value. If it is assumed that the

model error is uncorrelated with the analysis then the second and third terms

on the RHS of the preceding equation vanish and the updated background-

error covariance can be simplified to

Pb = MPAMT + PQ. (B.21)

The Kalman filter can thus be summarized as using using (B.19) and (B.21)

to evolve the analysis state and analysis-error covariances to a new background

state and background-error covariance. These flow dependent statistics are

used to assimilate new observations according to (B.12), (B.13), and (B.15).

This process can be repeated to continuously assimilate new observations and

produce new background states.

B.4.1 Putting the “En” in the “KF”: The ensemble Kalman filter

In general, (B.19) and (B.21) are not applicable for data assimilation problems

in geophysical fluid dynamics such as NWP. The dynamics are sufficiently non-

linear so (B.19) is not directly applicable. It may be possible to use a tangent

linear model to approximate (B.19), however, the state-space of NWP is still to

large to compute (B.21) directly. Evensen (1994) proposed a method in which

Monte Carlo simulations are used to estimate Pb. In this way a fully non-

linear model can be used to evolve the analysis state Xa to a new background

state Xb. Here the upper-case X represents a matrix in which each column

represents an individual ensemble member in the Monte-Carlo simulation. The
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new background-error covariance can then be estimated as

Pb ≈
1

N − 1
X′

bXb
′T (B.22)

where N is the number of ensemble members and the prime indicates a per-

turbation about the ensemble mean. Using a non-linear numerical model to

evolve Pb is completely flow dependent and consistent with the model dynam-

ics. Observations can be assimilated according to (B.12) using (B.13). In im-

plementing the EnKF the full covariances usually do not need to be stored in

computer memory and efficient algorithms have been developed to perform the

data assimilation (e.g. Whitaker and Hamill, 2002).
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Appendix C

TWO-MONTH-LONG EXPERIMENT

For several reasons, it was beneficial to cycle the EnKF data assimilation

system on 27-km synoptic-scale COAMPS domain for the entire two-month

TREX SOP. For one, the two-month long experiment generated a reasonably

large set of statistics in which the EnKF could be evaluated. Additionally, per-

forming the long-term experiment allowed the ensemble to be appropriately

calibrated by determining several parameters experimentally. Finally, because

of the high computational cost of the high-resolution ensemble simulations,

they could only be run during specific periods of interest. The 27-km domain

ensemble was able to provide an initial ensemble for the higher resolution ex-

periments. This appendix describes the setup two-month-long experiment on

the 27-km domain.

The geographic location as well as the topography on the 27-km domain is

shown in Fig. C.1. The domain extends from approximately 150◦ W in the Pa-

cific Ocean to 105◦ W along the Rocky Mountains and from approximately 25◦ N

near the southern most point of Baja California to 55◦ N near the southern most

point of Alaska. The large domain is necessary so the eastward propagating

disturbances will take several assimilation cycles to reach the Sierra-Nevada

mountains from the western domain boundary. The domain is place on Lam-

bert Conformal projection with two standard latitudes of 60◦ N and 30◦ N and

a standard longitude of 119.4◦ W which is directly over the southern Sierra-

Nevada mountains. The horizontal grid spacing is 27-km with maximum and

minimum map scale factors of 1.036 and 0.942, respectively.
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Figure C.1: The topography on the 27-km domain. The geographic locations of
the upper-air soundings used for assimilation are shown with red dots.

C.1 Initial Ensemble

The 70-member ensemble is initialized 12 UTC, 02 March 2006 by interpolat-

ing a 36-hr forecast of the Naval Operational Global Prediction System (NO-

GAPS) to the 27-km domain and adding random perturbation drawn from the

WRF-VAR static-covariances (Barker et al., 2004). Following Torn and Hakim

(2008b), the initial perturbations are scaled by a factor of 1.75 so that the initial

ensemble variance is slightly larger than the RMS error between the ensemble

mean and radiosonde observations. The ensemble size was limited to 70 mem-

bers by the computational resources available. Several studies have indicated

that ensembles with O(100) members are sufficient to perform data assimila-

tion on the synoptic scale (e.g. Whitaker et al., 2004; Mitchell and Houtekamer,

2002; Dirren et al., 2007).
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C.2 Observations Assimilated

The EnKF is used to assimilate several types of observations that are available

at the 6-hr cycling interval. Surface observations of wind speed, wind direc-

tion, temperature and pressure data are assimilated from fixed off-shore buoys

and on-shore automated surface observing system (ASOS) stations. Addition-

ally, pressure data from off-shore drifting buoys and on-shore meso-networks

are assimilated. Surface stations that are displaced more than 100 m from the

model topography are not assimilated because of potential biases. Radiosonde

observations of wind speed, wind direction, temperature, and relative humidity

are assimilated at mandatory levels when available. The upper-air radiosonde

network is indicated in Fig. C.1 for reference. The aircraft communication ad-

dressing and reporting system (ACARS) is used to assimilate observations of

wind speed, wind direction, temperature, and relative humidity. These ob-

servations are mostly concentrated surrounding major airports and along rou-

tinely used flight corridors. Finally, satellite observations of cloud-drift winds

are assimilated (Velden et al., 2005).

C.3 Boundary Conditions

In order to avoid an artificial loss of ensemble variance associated with the

prescribed deterministic NOGAPS boundary conditions, perturbations are ap-

plied at the boundaries according the the fixed-covariance method of Torn et al.

(2006). With this method boundary perturbations evolve in time as an autore-

gressive process with a specified autocorrelation coefficient of 0.5. The static

background-error covariances from the WRF-VAR system (Barker et al., 2004)

are used to perturb the boundaries for each ensemble member. In order to

maintain an adequate amount of ensemble variance, the boundary perturba-

tions are scaled by a factor of 1.75.
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C.4 Filter Divergence

As a consequence of using a relatively small ensemble to sample the

background-error statistics, the covariance estimates can generate spurious

long-distance relationships (Houtekamer and Mitchell, 2001; Hamill et al.,

2001). Additionally, rank-deficient ensembles will tend to underestimate the

covariance magnitude (Whitaker and Hamill, 2002). If left unaccounted for,

these two issues can lead to “filter divergence”, a condition where the ensem-

ble becomes over-confident in its estimate of the background state and subse-

quently rejects new observations (Hamill, 2006). To deal with filter divergence

two standard practices are employed: covariance inflation and covariance lo-

calization.

C.4.1 Covariance Inflation

We use the covariance relaxation procedure described by (Zhang et al., 2004) to

inflate the analysis-error covariances. With this method, the prior and poste-

rior covariances are combined with a weighted average to give a new posterior

covariance. We use weights of 0.775 and 0.225 for the prior and posterior co-

variances, respectively. These values were determined experimentally so that

the ensemble variance is similar to the mean RMS errors. These values are

similar to those used by Torn and Hakim (2008b) who cycled a similar meso-

scale EnKF data assimilation system.

C.4.2 Covariance Localization

The long-distance correlation issue is handled with the localization function

which is unity at the observation location and decreases monotonically to zero

3000 km from the observation (Gaspari and Cohn, 1999, Eq. (4.10)). The local-

ization is isotropic and is limited to the horizontal. It has a half-width scale of
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approximately 1000 km.

C.5 Evaluating the Ensemble

In this section the performance of the ensemble is briefly demonstrated by

considering several rank-histograms computed over the two-month long data-

assimilation experiment. This performance assessment is in no-way a complete

evaluation of the synoptic-scale ensemble, but is instead intended to demon-

strate that the ensemble variance is properly calibrated. Attention is limited

to the mid-tropospheric wind speed and temperature, as these synoptic-scale

variables are most closely related to the variables controlling mountain-waves

and downslope winds.

The rank histogram is a tool to verify the appropriateness of the ensem-

ble calibration (Hamill, 2001). To compute the rank histogram the ensemble

estimate of an observation is first ordered from lowest to highest. The actual

observation is then ranked within that ordering and placed into a bin for that

ranking. For example, if 15 out of 70 ensemble members had weaker winds

than an observation, then that observation would be placed into the 15th bin. If

this process is repeated for all available observations then the statistical char-

acteristics of the ensemble can be systematically evaluated.

Several canonical structures of the rank histogram have been described and

analyzed in Hamill (2001). For example, a well calibrated ensemble in which

the observation is likely to occur in any rank will have a rank histogram that

is uniformly distributed. On the other hand, observations that routinely fall

outside of the span of the ensemble will be characterized by a u-shaped rank

histogram. This is often a sign that the ensemble is under-dispersive. Simi-

larly, the rank histogram for and over-dispersive ensemble is characterized by

a hump in the middle of the distribution. Consistent model biases can also

be identified with rank histograms. A rank histogram that slopes up (down)
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Figure C.2: Rank histograms for the two-month-long experiment of the 500-
hPa (a) wind speed and (b) temperature.

towards higher (lower) ranks can signify that the model as a low (high) bias.

Figure C.2 shows the rank histogram of 500 hPa wind speed and tempera-

ture computed from 6-hr forecasts using radiosonde data. The 6-hr forecast is

used instead of the analysis because the radiosonde observational data would

be included into the analysis. A slight warm bias is apparent from the temper-

ature rank histogram (Fig. C.2b) as evident from the right to left upward slope

of the distribution. However, the variance for both wind speed and temperature

appears to be well calibrated.

The 700 hPa rank histograms for wind speed and temperature are plotted

in Fig. C.3. At this level the wind speed histogram indicates a slightly over-

dispersive ensemble. However, this is not very alarming because filter diver-

gence is not a large concern with an over-dispersive ensemble. The temperature

at 700 hPa is fairly well calibrated, however, a slight increase in the rank from

right to left indicates a small warm bias in the temperature. The warm tem-
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Figure C.3: The same as Fig. C.2 except for 700 hPa.

perature bias at 700-hPa and 500-hPa is in part responsible for a high height

bias at 500 hPa (not shown).
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