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Abstract

Using Ensemble Data Assimilation for
Predictability and Dynamics

Ryan D. Torn

Chair of the Supervisory Committee:

Professor Gregory J. Hakim

Atmospheric Sciences

Atmospheric predictability depends in part on the sources and evolution of errors in

numerical weather prediction models. As a consequence, it is important to initialize

a model with the best estimate of the atmosphere and understand how errors in this

initial condition will affect the forecast. The ensemble Kalman filter (EnKF) is an

attractive method of initializing a forecast model because this technique uses state-

dependent error statistics to spread observation information to model grid points.

In addition, output from an EnKF system can be used to quantify how changes to

the initial conditions and observation assimilation affect scalar functions of forecast

variables.

A pseudo-operational EnKF system is implemented for a limited-area domain

that includes the eastern Pacific Ocean to test the benefit of ensemble analyses and

forecasts in a region characterized by sparse in-situ data and complex topography.

Comparisons against rawinsondes indicate that ensemble forecasts from this system

have comparable skill to other major global NWP forecasts, even though it does not

consider satellite radiance data. Forecasts of average pressure over western Washing-

ton state from this EnKF system show a region of maximum sensitivity to the west of

this region. The accuracy of ensemble predictions of observation impact is verified by





comparing forecasts where observations are assimilated with the control case where

no observations are used. These experiments indicate that the impact of thousands

of observations can be estimated by a subset of O(100) most-significant observations.

These ensemble techniques are applied to understand the initial condition sensi-

tivity and observation impact during forecasts of western Pacific extratropical tran-

sition (ET) events, which are often characterized by large short-term forecast er-

rors. ET forecasts are most sensitive to the position of the tropical cyclone (TC)

and to upstream mid-latitude troughs that interact with the transitioning storm and

other downstream features. Observation impact calculations indicate that assimilat-

ing O(50) observations near the TC and upstream troughs can have nearly the same

impact as all 12 000 available observations. Furthermore, the amount of downstream

ridging that occurs during these events depends on the lower-tropospheric moisture

flux east of the TC.
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Chapter 1

INTRODUCTION

Although there have been significant improvements to modern numerical weather

prediction (NWP) models over the past 20 years, large short-term forecast errors

still exist for many high impact weather events in the mid-latitudes. These events

include North Pacific cyclones (e.g., McMurdie and Mass 2004), east coast cyclones

(e.g., Langland et al. 2002), and the extratropical transition of tropical cyclones (e.g.,

Jones et al. 2003). Numerical model output with large errors can lead to inadequate

preparation for these events and loss of life and property.

Understanding the sources and evolution of errors in NWP models is critical to

improving forecasts of various atmospheric phenomenon. Errors can originate from

two primary sources: the model initial conditions (i.e., the analysis), or errors in the

formulation of the model (i.e., model error); this dissertation focuses on exploring

how the former affects the ability of a NWP model to forecast the evolution of the

atmosphere. Lorenz (1963) and subsequent papers showed that for chaotic systems,

such as the atmosphere, small differences in the model’s initial conditions can lead to

the exponential divergence of forecast solutions over time. As a consequence, several

tools have been independently developed to overcome and understand the challenges

presented by chaotic systems. Ensemble forecasting acknowledges the forecast errors

that result from initial condition deficiencies by providing a probabilistic estimate

of the forecast. Data assimilation, the process by which a short-term forecast is

combined with observations to produce a best estimate of the atmospheric state,

is used to generate initial conditions for a model. Finally, sensitivity analysis is
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a method of quantifying how changes to the initial conditions affect the subsequent

forecast and suggests where additional observations could improve a forecast. In order

to gain maximum utility, each of the aforementioned techniques should consider how

the others will impact the forecast. For example, the initial conditions for ensemble

forecasting should account for the density of the assimilated observations. This thesis

describes a consistent framework for understanding atmospheric predictability and

dynamics.

The remainder of this chapter proceeds as follows. An overview of previous appli-

cations of ensemble forecasting is given in section 1.1. A short description of various

data assimilation techniques is discussed in section 1.2. In section 1.3, a summary

of previous research on quantifying how initial condition changes affect a forecast is

given. Finally, section 1.4 describes the extratropical transition of tropical cyclones,

which is often characterized by large forecast errors resulting from initial condition

deficiencies.

1.1 Ensemble Forecasting

For chaotic system such as the atmosphere, a single deterministic forecast can be mis-

leading because arbitrary small errors in the initial conditions can lead to exponen-

tially divergent solutions at some later time. As a consequence, numerical forecasting

models must take into account the stochastic nature of the atmosphere by solving for

a probability density function (PDF) of the forecast, rather than for a single deter-

ministic solution. In addition, probabilistic forecasting also gives an a priori estimate

of the error in the forecast; if many ensemble members are predicting the same event

to occur, it lends confidence to the forecast.

The most accurate method of obtaining the forecast PDF is through stochastic-

dynamic prediction whereby an analysis PDF is integrated forward using the prob-

ability continuity equation (e.g., Epstein 1969). Even for a simple low-order model,

the integration of the probability continuity equations is computationally intractable,
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thus a Monte Carlo approximation is made whereby a small number of ensemble mem-

bers are used to approximate the full forecast PDF. In the limit as the number of

ensemble members approaches infinity, the PDF estimated from the ensemble should

approach the stochastic-dynamic prediction.

Several different techniques have emerged for generating an ensemble of initial

conditions from a deterministic global analysis. Hoffman and Kalnay (1983) pro-

posed generating an initial condition ensemble using lagged forecasts verifying at the

same time. This idea was extended by Toth and Kalnay (1993) who constructed

an ensemble of initial conditions by subtracting a control deterministic forecast from

a short-term forecast ensemble verifying at the analysis time, scaling the perturba-

tions to reflect the initial condition uncertainty, and adding these perturbations to

the deterministic analysis. These perturbations, known as “bred vectors”, represent

the fastest growing modes during the previous forecast cycle, thus Toth and Kalnay

(1993) have argued that analysis errors should project strongly onto the bred vectors.

Breeding has been used to produce ensemble forecasts by the National Centers for

Environmental Prediction (NCEP) since 1993 (Toth et al. 1997), though recent im-

provements to this system have included using ensemble transform methods to scale

the initial-time bred vectors (Wei et al. 2006).

Other operational forecasting centers, such as the European Center for Medium

Range Weather Forecasting (ECMWF), have developed ensemble forecasting systems

based on linear combinations of initial-time singular vectors (Molteni and Palmer

1993, Molteni et al. 1996). Singular vectors are a set of orthogonal structures that

have different growth rates for a given forecast interval and forecast metric, where

leading singular vectors represent the directions of fastest error growth in the model.

For ensemble forecasting, it is desirable to have initial perturbations that grow with

the current atmospheric flow; these growing perturbations can be determined by

integrating the leading forecast singular vectors backward in time using a linearized

version of the model and adding a linear combination of the initial time singular
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vectors to the deterministic analysis. The choice of forecast metric, which is a function

of the forecast state variables, can result in very different singular vector structures.

Palmer et al. (1998) have argued that initial time singular vectors based on the total

energy norm grossly represent the analysis-error variance, thus making it the norm

of choice for ensemble forecasting. The initial condition ensemble constructed by

Barkmeijer et al. (1998), based on the analysis-error covariance norm, lead to initial

time singular vectors whose amplitude varies with the density of the observation

network.

Several authors have also investigated methods of producing mesoscale ensemble

forecasts. Stensrud et al. (1999) applied the breeding technique to the Meso-eta

model to create a short-range ensemble prediction system. Although this system

produced a significant amount of ensemble spread, their results showed little corre-

lation between the error in the ensemble-mean and the ensemble spread. Eckel and

Mass (2005) found that ensemble forecasts with the fifth-generation Pennsylvania

State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale

Model (MM5) initialized from eight different operational analyses were dominated by

model error, which must be accounted for to maximize the utility of the ensemble. In

fact, multi-model ensemble forecasts based on the same initial conditions, but differ-

ent physics parameterizations, performed better than the initial condition ensemble

because it considered the impact of model errors. Wandishin et al. (2001) showed

that a multi-model ensemble system that includes members from NCEP’s short-range

ensemble forecasting system contained a lack of mesoscale error growth in fields such

as precipitation and convective indices. In contrast, Stensrud and Yussouf (2003)

found that a multi-model ensemble system based on different physics packages is able

to predict the skill in surface air and dew-point temperature forecasts.

All of the aforementioned ensemble techniques are meant to obtain accurate en-

semble forecasts; however, they do not contain the actual analysis uncertainty at the

appropriate scales. Having a state-dependent estimate of the analysis variance can
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then describe where the analysis has potentially large errors. The following section

contains an alternative method of generating ensemble forecasts based on analysis-

error statistics estimated from data assimilation.

1.2 Data Assimilation

It is impossible to know the true state of the atmosphere at any one instant in time,

thus we generate a best estimate of the state by combining all information on the

atmospheric state via data assimilation. This information usually comes from ob-

servations of the atmosphere, such as from surface stations, rawinsonde profiles, or

satellite radiances, and from the physical laws that govern the evolution of the flow,

which are usually in the form of a numerical model. This analysis is produced by

combining these two pieces of information together in a manner that takes the error

in each into account. Observation errors result from instrument error and how well

an observation represents the surrounding area (i.e., representativeness error), which

is often difficult to define. For example, a surface wind observation over the ocean

has smaller representativeness error than a surface wind observation near a forest

because the trees will shelter the observation platform. Forecast-error statistics are

typically not as well known as observation error statistics, but are the key compo-

nent to any data assimilation system because they determine the relative weighting

of the background forecast, and how to distribute the information from observations

onto a model grid. Systems that use a flow-dependent estimate of the error statistics

are more likely to use the observation information in an optimal way. Two different

classes of data assimilation schemes based on statistical estimation theory are used

in the atmospheric sciences: direct solve methods which determine the analysis that

minimizes the error variance, and the variational methods which find the most likely

analysis.

Whereas early techniques of incorporating observations into models involved em-

pirical procedures such as nudging, optimum interpolation (OI) was one of the first
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operational data assimilation methods based on statistical estimation theory (e.g.,

Lorenc 1981, Mitchell 1990). OI computes an analysis via a weighted linear combi-

nation of a short-term forecast and the available observations at a single time (i.e.,

sequential). The weights for the background forecast and the observation data are

determined from a set of fixed error statistics, thus the observation information is

spread in a sub-optimal manner. Forecast-error statistics are based on horizontal and

vertical correlations between forecast errors, determined from the difference between

a short-term forecast and rawinsonde observations (e.g., Hollingsworth and Lonnberg

1986). Furthermore, OI requires a number of additional approximations which in-

clude determining a “radius of influence” for observations. Restricting the effect of

observations in this way can lead to horizontal shocks for grid points influenced by

different observations.

The various approximations and associated errors with OI prompted many op-

erational NWP centers to adopt variational data assimilation schemes (e.g., Parrish

and Derber 1992, Rabier et al. 1998). Variational methods find the best analysis of

the state by minimizing a cost function that includes the forecast and observation

error statistics. Moreover, these techniques generate an analysis by considering all

data simultaneously, thus it avoids many of the practical approximations needed to

implement OI, such as limiting the influence of observations. Forecast-error statistics

are computed by taking the time-average difference between short-range model fore-

casts verifying at the same time, which compared to OI, will give a better estimate

of the forecast-error covariance; however, these statistics are still not flow-dependent.

In three dimensional variational assimilation (3D-Var), the cost function includes in-

formation about the forecast and observations at a single time. An extension of this

technique, four dimensional variational assimilation (4D-Var) uses the model as a

strong constraint to find an initial condition that best fits observations over a given

time interval (e.g., Courtier and Talagrand 1987, Rabier et al. 2000). ECMWF fore-

casts initialized from an analysis created by 4D-Var had greater skill than forecasts
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initialized from the operational 3D-Var analyses, especially for baroclinic cyclones

and in the tropics (Klinker et al. 2000). Lorenc (2005) hypothesizes that 4D-Var is

superior to 3D-Var because observations can be considered over a window, and are

assimilated with time-evolved covariances. 4D-Var requires the adjoint of a tangent-

linear model to find the trajectory that best fits the observations. Adjoints suffer from

a number of limitations including the difficulty of coding the adjoint of a tangent lin-

ear model, especially for irreversible on-off processes contained in boundary layer or

microphysical parameterizations. Moreover, adjoint models are also constrained by

having to be updated every time the model formulation is changed and the inherent

linearity assumptions, and thus may not work as well in situations that are governed

by highly non-linear dynamics (e.g., Ancell and Mass 2006).

The Kalman filter (Kalman and Bucy 1961) is a sequential method of producing

an analysis state that is the most likely estimate and has the minimum error variance.

Unlike OI and variational methods, the forecast error statistics are flow-dependent

because they are advanced using the model itself, rather than being estimated from

a constant matrix. Similar to OI, the analysis is computed via a linear combina-

tion of the short-term forecast and observation data, weighted by the observation

and forecast-error statistics. For NWP applications, advancing the forecast-error

covariance with a model is computationally prohibitive, thus Evensen (1994) pro-

posed the ensemble Kalman filter (EnKF), which is a Monte Carlo approximation

to the Kalman filter. Rather than integrating the forecast-error covariance matrix,

this method approximates the forecast-error statistics using an ensemble of short-

term forecasts. Moreover, the EnKF produces an ensemble of analyses by performing

parallel data assimilation cycles on the short-term forecast ensemble. The resulting

analysis ensemble is consistent with the analysis-error statistics and thus provides a

natural combination of ensemble forecasting and data assimilation.

Several authors have demonstrated the benefit of using flow-dependent error statis-

tics to assimilate observations in regions of sparse observations. Snyder and Hamill
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(2000) compared analyses and forecasts for a hybrid 3D-Var EnKF system that uses

a combination of fixed and flow-dependent error statistics. Their results show that

the analysis system performs the best when flow-dependent error statistics are pri-

marily used, especially in regions of reduced observation density. Whitaker et al.

(2004) explored the feasibility of performing a reanalysis prior to the rawinsonde era

using only surface pressure observations. Their experiments assimilate a sub-sampled

version of the 2001 surface pressure observation network using both an EnKF and

3D-Var scheme. Analysis errors for the EnKF system are 50% lower than the analysis

errors for the 3D-Var system, especially in regions of fewer observations.

Given the attractive properties of the EnKF, several groups are actively working

on applying this technique to operational global forecast models. Whitaker et al.

(2007) implemented an EnKF data assimilation system with the NCEP Global Fore-

casting System (GFS) and compared the resulting EnKF forecasts to those initialized

with 3D-Var. These two data assimilation systems only assimilate conventional ob-

servations and are verified against operational analyses, which includes satellite data.

Over a six-week period, forecasts from the EnKF data assimilation system outper-

formed the 3D-Var initialized forecast, especially in the data sparse regions such as

the Southern Hemisphere. In contrast, Houtekamer et al. (2005) found that for the

Canadian Meteorological Center’s global model, EnKF-initialized forecasts have er-

rors that are comparable to forecasts initialized using 3D-Var. The similarity of the

errors in 3D-Var and EnKF forecasts most likely results from the large number of

observations assimilated and their parameterization of model error, which includes

the 3D-Var forecast-error statistics.

The EnKF has been shown to be particularly useful on the convective scale, where

relationships between variables and error statistics are continuously evolving and not

well known. Snyder and Zhang (2003) investigated the potential of using an EnKF to

assimilate radar observations on the convective scale in a perfect model context. Their

experiments demonstrate that simulated Doppler radar observations assimilated with
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flow-dependent error statistics constrain the error in both observed and unobserved

variables. In a followup study, Zhang et al. (2004) showed that assimilating data

from a hypothetical mesonet with an EnKF can also simulate the storm properly.

Caya et al. (2005) compared the analyses generated by using 4D-Var and an EnKF

to assimilate radar observations in a perfect model scenario. For a limited period of

time, the 4D-Var analyses are better than the EnKF; however, at longer times, the

EnKF is superior because it uses continuously evolved background-error statistics.

Dowell et al. (2004) explored the feasibility of retrieving temperature and wind fields

for an isolated convective storm by using an EnKF to combine actual radar reflectivity

and wind data with an anelastic model. Although the location of the main updraft

and meso-cyclone are determined rather accurately, the low-level temperature field

contains large errors due to the lack of observations near the surface and model biases.

Whereas most of the previous implementations of the EnKF have focused on plan-

etary to synoptic and convective scales, relatively few studies have explored the EnKF

at the synoptic scale to mesoscale, which are of practical importance for both fore-

casting and analysis purposes. One reason for the lack of studies at these scales is the

need for a properly posed ensemble of lateral boundary conditions. Convective-scale

case studies avoid the use of an ensemble of lateral boundary conditions because they

are performed over short periods of time and global models do not require boundary

conditions. Torn et al. (2006) proposed and tested several methods of generating

an ensemble of lateral boundary conditions even when a global ensemble does not

exist or is of the wrong size. Dirren et al. (2007) performed EnKF data assimilation

experiments on a limited-area domain over the Pacific Northwest region of the United

States, using the Weather Research and Forecasting (WRF) model in a perfect model

context. Their results show that observations systematically reduce the error in both

observed and unobserved variables, especially along the North American coast. One of

the goals of this dissertation is to demonstrate the benefit of assimilating observations

with flow-dependent error statistics in a region characterized by sparse in situ data



10

and complex topography by evaluating two years of output from a pseudo-operational

EnKF system on the domain used by Dirren et al. (2007).

1.3 Sensitivity Analysis

One method of improving forecasts is to identify where small changes to the initial

conditions can have a significant impact on the subsequent forecast and to assimilate

supplementary observations in that area. Several objective procedures, such as sin-

gular vectors and adjoint sensitivity, have been used to quantify how small changes

to the initial conditions will affect a forecast metric. As discussed previously, singular

vectors are a set of orthogonal perturbation structures that, for a given metric and

time interval, represent the fastest growing modes of the model. Adjoint-based sen-

sitivity methods compute the gradient of a forecast metric with respect to the initial

state using the adjoint of the linearized forecast model. Both of these techniques are

based on linear perturbations about a non-linear forecast trajectory, and thus are only

useful when non-linearities are small.

Several authors have applied adjoint and singular vector techniques to determine

the initial condition sensitivity of mid-latitude cyclogenesis. Errico and Vukicevic

(1992) used the adjoint of the MM4 mesoscale model to determine the sensitivity of

the 36-hour forecasts of several mid-latitude cyclones. The largest sensitivities were

associated with sub-synoptic scale structures that tilted upstream with height and are

maximized in the middle troposphere. Zou et al. (1998) showed that five-day forecasts

of an eastern United States cyclone were most sensitive to the lower-tropospheric

temperature over the Rocky Mountains and an upper-level PV anomaly in the Gulf

of Alaska, though the distribution was quite complicated. Langland et al. (2002)

found that for an explosively deepening cyclone along the east coast of the United

States, the vertically integrated sensitivities for a 72-hour Navy Operational Global

Analysis and Prediction System (NOGAPS) forecast are largest in a broad region well

upstream in a zonally-propagating wave packet. Rabier et al. (1996), Palmer et al.
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(1998), and Gelaro et al. (1998) applied singular vectors to explore initial condition

sensitivity for cyclones. Their results indicate that the fastest growing modes are also

associated with sub-synoptic scale, upshear tilted structures that are maximized in

the lower troposphere. Over the course of the forecast, these structures subsequently

grow to synoptic-scale size.

Regions of high sensitivity indicate where small initial condition errors can rapidly

grow during the forecast; therefore, they can be used to apply a posteriori diagnostic

corrections to the initial conditions that will decrease the forecast error. Over a one

month period, Rabier et al. (1996) obtained a 10% reduction in the 72-hour forecast

error when corrections consistent with the leading singular vectors are applied to the

initial conditions. Their results also indicate that longer-term forecasts (> 72 hours)

also have greater skill than forecasts where corrections are not made to the initial

conditions. Zou et al. (1998) and Klinker et al. (1998) introduced perturbations to

the analysis based on minimizing the error in 12-hour forecasts. In both studies, the

perturbed initial conditions correct key analysis errors, and thus the resulting forecast

significantly outperforms the control forecast. In the case studied by Langland et al.

(2002), diagnostic corrections to the initial conditions yielded a 75% improvement in

the 72-hour forecast of cyclone track and intensity.

Given that diagnostic corrections to the initial conditions based on objective sen-

sitivity analysis can improve forecasts, several field campaigns have been undertaken

to determine how additional “targeted” observations in regions of high initial con-

dition sensitivity could reduce the error in forecasts. The 1997 Fronts and Atlantic

Storm-Track Experiment (FASTEX) was conducted to improve short-range forecasts

of cyclones making landfall in England and Ireland by deploying dropsondes in regions

of large forecast sensitivity (Joly et al. 1999). Bergot (2001) evaluated the impact

of targeted dropsonde data in 20 FASTEX cases using a 4D-Var data assimilation

system. On average, there was a 10% reduction in 24-hour forecast errors when drop-

sondes are included, although there were cases where observations had no impact on
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the forecast because the sensitive region was inadequately sampled. The North Pacific

Experiment (NORPEX), conducted during January-February 1998, used total energy

singular vectors as guidance for where to deploy dropsondes to improve cyclone fore-

casts in the Northeast Pacific. Langland et al. (1999) obtained a 10% improvement

in 2 day forecasts when dropsonde data is included in the NOGAPS analysis; how-

ever, Cardinali and Buizza (2003) showed this data yielded minimal improvement to

ECMWF forecasts. The 2003 North Atlantic THORPEX Regional Campaign (NA-

TReC) was used to test many of the objective targeting methods described above

in the context of the current observational network. Although the targeted drop-

sonde data during NA-TReC has about three times more impact per observation

than regular rawinsonde data (Langland 2005a), the total impact of dropsondes was

smaller than the FASTEX experiment, probably because of substantial increases in

the amount of regular observations (Langland 2005b). Furthermore, Aberson (2003)

and Wu et al. (2005) describe improvement in tropical cyclone guidance when tar-

geted dropsondes are deployed in the synoptic environment surrounding the tropical

cyclone. The interested reader is directed to Langland (2005b) for a more extensive

review of observation targeting to date.

Since 1999, the United States National Oceanographic and Atmospheric Adminis-

tration (NOAA) has conduced the Winter Storm Reconnaissance Program (WSRP),

whose goal is to “reduce uncertainty in 24-96 hour forecasts for synoptic-scale weather

events associated with potentially large societal impact over the continental United

States and Alaska” (Toth et al. 2002). Guidance for where to deploy aircraft-based

targeted observations is obtained from the ensemble transform Kalman filter (ETKF,

Bishop et al. 2001). The ETKF determines a transformation matrix that maps a

short-term forecast ensemble into an analysis ensemble based on the observations

that would be assimilated. Rather then describing how the forecast metric value

responds to initial condition errors, this technique shows how the forecast-error co-

variance matrix responds to assimilating observations. Regions where large variance
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reduction could be achieved by assimilating additional data suggest where additional

targeted observations should be deployed. Majumdar et al. (2001) found significant

overlap between the ETKF and total energy singular vector guidance during NOR-

PEX; however, Leutbecher et al. (2004) and Majumdar et al. (2006) showed notable

differences between these two techniques for NA-TReC and tropical cyclone targeting,

respectively. Szunyogh et al. (2000, 2002) and Toth et al. (2002) report that in 70%

of the WSRP cases, the forecast errors are reduced, though the average improvement

in forecasts is about 10%, or a 12 hour gain in forecast skill.

An ensemble approach to sensitivity analysis has been proposed by Hakim and

Torn (2007) and further refined by Ancell and Hakim (2007). Ensemble sensitiv-

ity analysis uses analysis and forecast ensemble data from an EnKF system, and

thus combines ensemble forecasting, data assimilation and sensitivity analysis. Initial

condition sensitivity is computed via linear regression of the ensemble estimate of

a forecast metric and each element of the analysis state vector, thus unlike adjoint

and singular vector methods, the computation is trivial. Their derivation showed

that ensemble sensitivity is related to the adjoint sensitivity by the analysis-error

covariance matrix. Furthermore, ensemble sensitivity can be used to compute the

impact of observations, and the optimal observation locations for an EnKF system.

Unlike singular vectors and adjoint sensitivity, this technique may provide an optimal

strategy for observation targeting because it incorporates information on the analysis

error, observation error, dynamical error growth and data assimilation (Berliner et

al. 1999).

Ancell and Hakim (2007) compared ensemble and adjoint-based sensitivity for a

wintertime flow pattern near the west coast of North America. Adjoint-based sen-

sitivity is characterized by mesoscale lower-tropospheric structures that tilt strongly

upshear with height. In contrast, ensemble sensitivities emphasize synoptic-scale fea-

tures that have modest tilt and correspond to the significant weather features at

the analysis time. Whereas Ancell and Hakim (2007) explored ensemble sensitivities
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for one case, this dissertation will apply this technique to output from a pseudo-

operational EnKF system over a long period of time to illustrate how ensemble sen-

sitivities can be used to compute climatological sensitivities and estimate the impact

of observations on a forecast.

1.4 Extratropical Transition

Although the extratropical transition (ET) of a warm core tropical cyclone (TC)

into a cold-core baroclinic system is often characterized by large forecast errors due

to initial condition deficiencies, there have been few studies that have attempted

to quantify the sensitivity of these forecasts to the initial conditions. The process

of ET occurs in every ocean basin with tropical cyclones, although they are most

frequent in the western North Pacific Ocean (≈ 6 per year), and have a great deal

of interannual variability (Hart and Evans 2001, Klein et al. 2000, Sinclair 2002).

During the first stage of ET, increased vertical wind shear, lower ocean heat content

and larger baroclinicity cause the TC to weaken and lose its tropical characteristics

(Klein et al. 2000). The reintensification of the TC remnants into a baroclinic system

depends on the relative positioning of the TC and dominant mid-latitude features.

When an upper-level trough is directly upstream of the TC, the TC remnants can

explosively deepen into a strong cyclone via a Petterssen type B process (Petterssen

and Smebye 1971). The resulting baroclinic storms are a major hazard for marine

interests because they move faster than TC, and are characterized by large regions

of storm force winds (> 25 m s−1) and waves heights greater than 10 m (Jones et al.

2003). In contrast, when the upper trough is downstream of the TC, the cyclone does

not reintensify and is sheared apart by the mid-latitude flow (Harr et al. 2000).

Previous research on these storms indicate that errors in ET forecasts are depen-

dent on how the tropical cyclone phases with mid-latitude features. Jones et al. (2003)

computed anomaly correlation scores for NOGAPS forecasts of 500 hPa geopotential

heights over the North Pacific during August of 1996, when three western Pacific TC



15

underwent transition. The skill of NOGAPS forecasts initialized while the tropical

cyclones were undergoing transition was significantly lower than the skill of NOGAPS

forecasts during the remainder of the month. During all three transitions, 72-hour

forecasts were no more skillful than climatology, thus forecast errors associated with

ET can impact forecasts across an ocean basin on relatively short timescales. By

comparing the forecast and verifying analysis, Jones et al. (2003) found that the

loss of predictability is related to misplacing the significant circulation features in the

basin.

Errors in ET forecasts may also result from how these hybrid systems are repre-

sented in the model analysis. Using the cyclone phase space of Hart (2003), Evans

et al. (2006) evaluated errors in GFS and NOGAPS forecasts of cyclone structure

initialized when a storm was a tropical cyclone, hybrid transitioning cyclone, and a

baroclinic system. Their results indicate that the largest errors in cyclone structure

occur when the forecast is initialized during the transition of the tropical cyclone,

and are lower when the storm is a tropical cyclone or mid-latitude system. They

attributed the increased error to how the TC is represented in the model analyses.

Operational models require techniques such as vortex bogusing (e.g., Kurihara 1995)

to initialize a TC. These schemes assume an axi-symmetric vortex; however, transi-

tioning TC are quite asymmetric, thus the current TC initialization methods are not

valid for ET.

Klein and Harr (2002) investigated how displacing the TC vortex within the initial

conditions changes the evolution of three different western Pacific ET events. Vortex

displacement is achieved by computing the potential vorticity (PV) of the TC, remov-

ing the wind and temperature anomaly associated with the storm PV, and placing

the anomaly in the desired location. The forecast from the initial conditions with

the displaced vortex are then compared to the control forecast where the TC is in

the correct location. While two of the events showed minimal sensitivity to shifting

the TC position, displacing Typhoon Ginger (1997) 250 km to the southwest in the
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initial conditions lead to a forecast cyclone that was 1000 km to the west and 30 hPa

deeper than the control after 54 hours. These large differences were attributed to a

more favorable interaction between the TC and an upstream upper-level trough.

Several papers have further demonstrated the importance of the upper-level trough

on the evolution of ET. McTaggert-Cowan et al. (2001) and McTaggert-Cowan et al.

(2003) performed several simulations of Hurricane Earl’s transition where the tropical

cyclone and upper-level trough are removed from the initial conditions. The value

of each of these features is determined by comparing the modified initial condition

simulations to the control forecast where no changes are made. Their results indicate

that the upstream trough is the most important factor; when the tropical cyclone is

removed, a baroclinic cyclone still develops, but when the trough is removed, the rein-

tensification of the TC does not occur until several days later when another upper-level

trough phases with the TC remnants. Ritchie and Elsberry (2003) further demon-

strated the relative role of the trough and TC during ET in an idealized framework.

Their results show that whereas the TC contributes only to the rate of reintensifica-

tion, the upper-level trough is a necessary condition for baroclinic cyclogenesis during

ET. Furthermore, the amplitude of the trough does not limit the reintensification;

forecasts initialized with a weak trough had a similar baroclinic cyclone to forecasts

with a moderate or strong trough.

Two different groups have shown that forecasts of baroclinic cyclones that result

from ET are most sensitive to the initial conditions near the upper-level troughs that

phase with the TC remnants. Browning et al. (2000) computed initial condition sin-

gular vectors for a poorly forecast mid-latitude cyclone that originated as Hurricane

Lili (1996). They determined that the fastest growing singular vectors were maxi-

mized near two tropopause-based disturbances that subsequently phase with the TC

remnants. Shifting the initial position of the upper-level trough to the south, in a

manner consistent with the initial-time singular vectors, leads to improved track and

intensity forecasts for this cyclone. Rabier et al. (1996) explored forecast sensitivities
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for several high impact weather events in Europe, which included a major cyclone

that resulted from the remnants of Hurricane Floyd (1993). Much like the Lili case,

the largest sensitivities are associated with the upstream flow and precursor low-level

circulation in the Atlantic. Moreover, forecasts of this cyclone were improved by ad-

justing the initial conditions based in the magnitude of the forecast error and the

initial time singular vectors.

The high sensitivity of ET forecasts to the initial conditions and large errors in

deterministic forecasts suggest that ensemble forecasting may be particularly bene-

ficial. Ma et al. (2003) evaluated Canadian Meteorological Center (CMC) global

model ensemble forecasts of Hurricane Earl’s transition for three different initializa-

tion times. At each time, some of the ensemble members erroneously weaken the

storm before it became a baroclinic system, while others showed the TC remnants

becoming a strong extratropical system. Ensemble members that accurately resolve

the initial TC circulation and upper-level features were more likely to have a good

forecast of ET. However, the initial ensemble perturbations produced by operational

ensemble prediction systems are typically largest in the mid-latitudes and not near

the TC environment, thus ensemble forecasts of these events may not contain the

appropriate uncertainty (Anwender et al. 2006).

Although there are several studies that describe the initial condition sensitivity

for ET, they do not focus on the period when transition begins, which has been

described as having large errors. Furthermore, these previous experiments do not

consider the impact of observations or the actual analysis error associated with the

key features during ET. Here, ensemble sensitivity analysis will be applied to four

recent ET events that are characterized by various levels of predictability to determine

the initial condition sensitivity and observation impact for forecasts initialized at the

onset of transition.

Rapidly intensifying ET events are often accompanied by the amplification of

the upper-level flow downstream of the cyclone in a manner similar to mid-latitude
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cyclogenesis events (e.g., Jones et al. 2003, Chang and Yu 1999). Previous studies

(Bosart and Lackmann 1995) have demonstrated that this downstream ridge can

aid in the baroclinic development of the TC remnants by sharpening the horizontal

vorticity gradient. This process leads to increased vertical motion directly above the

surface cyclone and larger height falls within the cyclone itself. In addition, the rapid

amplification of the downstream ridge leads to an eastward-propagating Rossby wave

packet that travels faster than individual troughs and ridges in the mid-latitude flow

(e.g., Chang and Orlanski 1993, Hakim 2003) and the development of downstream

baroclinic cyclones (e.g., Orlanski and Sheldon, 1995).

While it is well known that wave packets can be generated by ET in the western

Pacific, the physical mechanism responsible for the downstream ridging is not well

known (Jones et al. 2003). Two different mechanisms have been proposed in the

literature that use “potential vorticity (PV) thinking” to explain this process: the

adiabatic interaction between the PV of a tropical cyclone and the mid-latitude jet,

and the impact of diabatically modified PV on the mid-latitude circulation. Through

action at a distance (Bishop and Thorpe 1994), the circulation associated with a

tropical cyclone is expected to excite Rossby waves on the upper-level PV gradients

associated with the jet, which has been shown to occur in a shallow-water model

by Ferreira and Schubert (1999). This second mechanism involves the modification

of the upper-level potential vorticity by convection and latent heat release in the

tropical cyclone. In regions of large latent heat release, such as the TC core, the

PV is redistributed based on the orientation of the vorticity vector; PV is generated

(destroyed) by a gradient of heating in the direction of the absolute vorticity vector

(Hoskins et al. 1985). Whereas the area around the TC is characterized by positive

relative vorticity, the mid-latitude flow is dominated by large vertical shear in the

zonal wind, and thus a poleward-directed vorticity vector. For latent heating near

the TC, one would then expect PV reduction in the upper-troposphere downstream

of the transitioning cyclone. Recent studies have shown that enhanced downstream
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ridging due to latent heat release is often underestimated in many NWP models

(Henderson et al. 1999, Atallah and Bosart 2003).

Accurate forecasts of the downstream state during ET require a firm understanding

of the features that contribute to the amplification of the downstream flow. Dynamical

relationships between the transitioning TC and the mid-latitude flow are explored here

by applying a series of techniques proposed by Hakim and Torn (2007), which they call

“Ensemble Synoptic Analysis”, to analyze and understand atmospheric phenomenon.

These methods use the information of the probabilistic analysis data that comes

from an EnKF system to determine dynamical relationships between various features.

Hakim and Torn (2007) demonstrated that for an extratropical cyclone, this approach

confirmed linkages between surface cyclones and upper-level disturbances, but also

suggests less obvious relationships. Here the short-term forecast ensemble generated

from the ET predictability experiments will be used to explore how the TC, specifically

the latent heat release associated with precipitation, interacts with the mid-latitude

flow to create the downstream ridge.

The outline of this dissertation is as follows. Chapter 2 derives the EnKF and

ensemble sensitivity from basic principles. The performance of a pseudo-operational

EnKF system over the northeast Pacific is described in Chapter 3, while the output

is used to determine initial condition sensitivities for this region in Chapter 4. The

EnKF and ensemble sensitivities are applied to understand the predictability of four

recent western Pacific ET events in Chapter 5. A concluding summary is given in

Chapter 6.
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Chapter 2

DERIVATION OF THE ENSEMBLE KALMAN FILTER
AND ENSEMBLE SENSITIVITY ANALYSIS

This chapter derives the ensemble Kalman filter and ensemble sensitivity analysis

equations from basic principles and describes the inherent assumptions made in each

using the notation of Ide et al. (1997). The level of detail presented here is not

exhaustive, rather it provides a framework for which the techniques and results in the

following chapters can be described and understood. For a more rigorous derivation,

the interested reader is directed to Kalnay (2002), Hamill (2005), and Ancell and

Hakim (2007).

2.1 Ensemble Kalman Filter

Since the true state of the atmosphere can never be exactly known, the best esti-

mate of the state is determined through Bayesian statistical estimation theory. In a

Bayesian framework, the probability density function (PDF) of the current state of the

atmosphere given all current and past observations can be expressed as the product

of the observation likelihood PDF and a “prior” PDF, which is the model state given

all past observations up to the previous analysis time, under the assumption that the

observation and prior are uncorrelated. In a fully probabilistic framework, the prior,

or background forecast PDF, is obtained by integrating the analysis PDF forward in

time from the previous analysis time using the probability continuity equation. Inte-

gration of the probability continuity equation can be very computationally intensive

for any system with multiple state variables, thus the PDFs are approximated by mul-

tivariate Gaussian distributions, which are described by a mean value and covariance
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matrix. After substituting Gaussian distributions into the Bayesian analysis PDF

equation, a cost function J(x) can be defined that measures the distance between an

arbitrary N × 1 state vector, x and the observations and background forecast. This

cost function has the form

J(x) =
1

2
(x− xb)TPb−1

(x− xb) +
1

2
(y −H(x))TR−1(y −H(x)), (2.1)

where Pb is the background-error covariance matrix (xbxbT), which is of size N ×N

and gives the relationship between state variables. xb is the background forecast state

vector, y is a L×1 vector of observation values,H is an operator that maps from model

state space to observation space. For observations of model state variables, H can

represent bi-linear interpolation; however, in the case of satellite radiance data, this

operator would include complicated radiative transfer code. The quantity y−H(xb)

is the observation innovation and is the new information added by observations. R is

the L× L observation-error covariance matrix, which gives the relationship between

observations, and for simplicity is often assumed to be diagonal, which means that

individual observation errors are uncorrelated. The above equation indicates that

the error in x is given by the linear combination of the difference between x and

background forecast, weighted by the forecast errors, and the difference between the

observation and the model estimate of the observation, weighted by the observation

errors.

Although both direct solve and variational data assimilation techniques both de-

rive from (2.1), they differ in how they determine the analysis. Using a minimization

algorithm such as conjugate gradient or quasi-Newton methods, variational schemes

find an analysis that minimizes the scalar cost function J by computing the gradient

in the cost function with respect to the model state x. Note that in 4D-Var, there

is an extra term in (2.1) that represents fitting the model trajectory to observations

over a period of time, but is omitted here. These variational techniques employ a
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quasi-fixed Pb for (2.1), thus the observation information may be spread to the model

grid points in a sub-optimal manner, though this is less likely to be a problem for

4D-Var since it finds a model trajectory that fits the observations over a period of

time (e.g., Lorenc 2005).

Sequential, direct solve schemes, such as the Kalman filter, compute a maximum

likelihood analysis by evaluating the derivative of (2.1) with respect to x and setting

the resulting equation equal to zero

∂J

∂x
= −2

∂

∂x
[H(x)]R−1[y −H(x)] + 2Pb−1

[x− xb] = 0, (2.2)

where,

∂

∂x
(xTAx) = 2Ax,

if A is symmetric, as is the case for covariance matrices. In general, H is a non-linear

function; however, it is possible to expand this function about xb using a Taylor series.

A truncated Taylor expansion of H(xb) yields the relationship

∂

∂x
H(x)

∣∣∣∣∣
xb

[x− xb] = H[x− xb] = H(x)−H(xb), (2.3)

where H is a matrix of size L × N that represents a linearized map of H about xb

and thus transforms a model state vector into observation space.

The Kalman update equation, which determines the optimal weight that should

be given to a short-term forecast and observations, is found by substituting (2.3)

into (2.2) and performing some algebraic manipulations, which are excluded here for

brevity (Kalman and Bucy 1961). The analysis state is given by

xa = xb + K(y −H(xb)), (2.4)

with
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K = PbHT(HPbHT + R)−1. (2.5)

This equation indicates that the analysis is a linear combination of the background

forecast and observation information, where K is the weight given to the new observa-

tion information and also determines how to spread it to the model grid points. When

the observation (forecast) has comparatively larger errors, K will be larger (smaller),

and thus the new information from observations will be weighted more (less). For

a single observation, R becomes a scalar, the variance in the model estimate of the

observation (HPbHT) reduces to a scalar, and PbHT = xb(Hxb)T is the covariance

between the model estimate of the observation and each model state variable. In these

scenario, K is the linear regression coefficient between the observation and state vari-

ables where the new information from observations is the independent variable and

the analysis is the dependent variable.

In addition to determining the best estimate of the state, data assimilation also

leads to a reduction in the average error. Let E[.] denote the expected value of a

quantity, and ε indicate the error in a state vector x (ε = x− xt). Moreover, assume

that the errors in all fields are unbiased, such that E[ε] = 0, while E[εεT] defines

an error covariance matrix. Although truth is not explicitly known, the analysis

error statistics are found by subtracting the true state from (2.4) and adding and

subtracting H(xt) to the right hand side

εa = εb + K[y −H(xb) +H(xt)−H(xt)]. (2.6)

Substituting xt for x into (2.3) gives

H(xt)−H(xb) = H(xt − xb) = −Hεb.

Combining the above expression with (2.6) gives an expression for the linearized

analysis error
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εa = εb + K[εo −Hεb] = (I−KH)εb + Kεo, (2.7)

where I is the identity matrix (ones along the main diagonal, zeros everywhere else),

and εo = y − H(xt). The analysis error covariance is then found by computing

E[εaεaT], under the assumption that the background and observation errors are uncor-

related (E[εbεoT] = 0). After performing some algebraic manipulations, the analysis-

error covariance matrix is thus given by

Pa = Pb −KHPb. (2.8)

For simplicity, consider a single observation; under this scenario HPbHT and R reduce

to positive scalars σb and σo, which represent the variance in the model-estimate of the

observation and observation error variance respectively. The analysis-error covariance

due to assimilating a single observation is then

Pa = Pb − σb

σb + σo
Pb. (2.9)

The coefficient on the second term on the right-hand side is bounded between zero

and one, thus assimilating an observation reduces the magnitude of each element in

the background-error covariance.

A background forecast for the next time where observations are available, t+δt, is

found by integrating the analysis at time t (xa
t ) forward using a model. The process

of advancing the model forward can be written in the compact form

xb
t+δt =M(xa

t ) + η, (2.10)

where M represents the non-linear forecast model, and η denotes the model error

term, which describes deficiencies in the model’s formulation of atmospheric processes

and is assumed to be Gaussian and uncorrelated in time. The background forecast

error covariance matrix at time t + δt is determined by linearizing M about the
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non-linear trajectory from t to t + δt (M) and computing E[εb
t+δtε

b
t+δt

T
]. Under the

assumption that the model error and analysis state are uncorrelated, the background-

error covariance at time t + δt is

Pb
t+δt = MPa

t M
T + Q, (2.11)

where Q is the model error covariance matrix, given by E[ηηT]. Forecasts can have

a significant model error component and thus should be taken into account. Several

authors have proposed ways to account for the model error (e.g., Dee and DaSilva,

1998); however, this quantity is often difficult to define. This formulation allows

the error covariances to be propagated along with the model itself, and thus will

give a flow-dependent estimate of forecast errors, and optimally spread observation

information during data assimilation. The combination of (2.4), (2.8), (2.10), and

(2.11) provide an iterative procedure for generating an analysis of the atmospheric

state at regular intervals.

For NWP applications, Pb is often O(106) × O(106), thus it is computation-

ally prohibitive to evaluate (2.11). Furthermore, in situations where non-linearity is

strong, the Kalman filter may not provide an accurate analysis because it propagates

the error covariance matrix with a linearized version of the model. Evensen (1994)

proposed a Monte Carlo alternative to the Kalman filter, known as the ensemble

Kalman filter (EnKF), that is meant to partially reduce the computational cost of

the Kalman filter, but retain some of the favorable properties. In the EnKF, the error

covariances are estimated from a finite number of ensemble forecasts generated from

parallel data assimilation and short-range forecast cycles. Assume that an ensemble

of forecasts exists that randomly sample the model background errors. This ensemble

can be denoted by a matrix X, whose columns contain the M ensemble state vectors.

The flow-dependent background error covariance matrix can then be estimated from

the ensemble via
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P̂b =
1

M − 1
X′bX′bT, (2.12)

where X′b is the background forecast ensemble state matrix with the ensemble mean

removed. Note that in the limit as the number of ensemble members goes to infin-

ity, P̂b should approach Pb. Since the error covariances are estimated from a finite

number of ensemble members (typically O(100)), sampling errors can create spurious

correlations between grid points, which need to be accounted for. Each of the ensem-

ble members in the EnKF algorithm are updated independently with observations

using (2.4) and P̂b. The resulting analysis ensemble is then integrated forward to

the next time when observations are available using the non-linear forecast model,

whereby the entire process is repeated.

Several authors have proposed modifications to the algorithm described by Evensen

(1994) that are designed to improve the performance of the EnKF. Burgers et al.

(1998) showed that when each ensemble member is updated with the same obser-

vation value, the ensemble can lose variance with time, thus they suggest updating

each ensemble member with a perturbed version of the observations. Adding random

noise to the observations can produce errors in the analysis statistics because the

perturbations do not fully sample the observation-error distribution (e.g., Whitaker

and Hamill 2002), thus several techniques have been used that generate an analysis

ensemble that is consistent with the analysis-error covariance matrix obtained from

the Kalman filter, but does not require perturbed observations. These methods, such

as the ensemble adjustment filter (Anderson 2001), ensemble transform Kalman filter

(Bishop et al. 2001), and the serial ensemble square-root filter (Whitaker and Hamill

2002) update the ensemble mean via (2.4), but have different algorithms for determin-

ing the ensemble deviations. These three methods are all square-root filters (Bierman

1977) and will produce non-unique analysis ensembles that are consistent with the

analysis-error covariance (Tippett et al. 2003). This dissertation uses the ensemble

square-root filter of Whitaker and Hamill (2002), thus the algorithm is described in
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more detail below.

A few modifications to (2.4) are required to assimilate with unperturbed obser-

vations. Whereas the ensemble mean is updated with (2.4), the deviations from the

ensemble mean are updated with a “reduced” Kalman gain matrix K̃ via

x′a = x′b − K̃Hx′b. (2.13)

If K is used in (2.13), the analysis-error covariance, computed from E[x′ax′aT], will

not match the analysis-error covariance given by (2.8); therefore, a reduced Kalman

gain is required that will give the correct analysis statistics. When uncorrelated

observations are serially assimilated, Potter (1964) noted that

K̃ =

(
1 +

√
R

HPbHT + R

)−1

K. (2.14)

The quantity multiplying K in (2.14) is thus a scalar between 0 and 1. The above

equation states that in order to assimilate observations without perturbed observa-

tions, a reduced magnitude version of the traditional Kalman gain is used to update

the deviations from the ensemble mean. Furthermore, the computation scales linearly

with the number of observations.

2.2 Ensemble Sensitivity

The following section relates ensemble sensitivity analysis to the ensemble Kalman

filter and to adjoint-based sensitivity analysis. In addition, equations for estimating

how observations can change a forecast metric using ensemble sensitivities will also

be described. Consider a small change to the initial conditions at time to, δxo; the

change in the model state vector at time t can be determined by making the tangent

linear approximation

δxt = Rt,toδxo (2.15)
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where Rt,to is the resolvant matrix, which maps the perturbation column vector at the

initial time, xo to the perturbation column vector at a later time xt. Next, consider a

forecast metric J , which is a function of the model state vector x. For small changes

about the control solution trajectory, the forecast metric can be estimated using a

Taylor expansion about the control solution

δJ
.
= J(xt + δxt)− J(x) =

[
∂J

∂xt

]T
δxt. (2.16)

Using (2.15), and the algebraic properties of the transpose, this expression becomes

δJ
.
=
[
RT

t,to

∂J

∂xt

]T
δxo. (2.17)

The expression RT
t,to represents the adjoint of the tangent linear model, which will act

to map the sensitivity gradient at time t backwards to yield a sensitivity gradient at

the initial time

RT
t,to

∂J

∂xt

=
∂J

∂xo

, (2.18)

Substitution of (2.18) into (2.17) yields an equation for how changes to the initial

conditions will affect the forecast metric at a later time

δJ =
[

∂J

∂xo

]T
δxo. (2.19)

Here ∂J
∂xo

is the sensitivity of the forecast metric to the initial conditions; elements

of the state vector for which ∂J
∂xo

is large indicate where initial condition errors can

grow rapidly during the forecast. Adjoint-based sensitivity techniques compute this

quantity using the adjoint of a tangent linear model. Adjoints are often difficult to

code, especially for moist processes, thus an alternative method of determining initial

condition sensitivity is desired.

The focus of this dissertation is using an ensemble of independent samples of the

initial and final state to statistically estimate how initial condition changes affect the
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chosen metric. The relationship between ensemble and adjoint sensitivity is obtained

by right-multiplying (2.19) by δxT
o and taking the expected value (Ancell and Hakim

2007)

E

[
δJδxT

o =
[

∂J

∂xo

]T
δxoδx

T
o

]
. (2.20)

Since [ ∂J
∂xo

]T is a deterministic quantity about a control trajectory, this equation may

be re-written as

cov(δJ, δxo) =
[

∂J

∂xo

]T
Pa, (2.21)

where cov is the covariance between the two arguments. Note that for both δJ and

δxo, it is assumed that these vectors have zero mean. The expectation performed

above is approximated using an ensemble of size M , and thus is subject to sampling

errors. In addition, the above equation gives the relationship between the adjoint

and ensemble sensitivity; the covariance alone does not give the linear relationship

between the initial state and forecast metric. Multivariate linear regression is achieved

by right multiplying (2.21) by Pa−1 yielding

[
∂Je

∂xo

]T
= cov(δJ, δxo)P

a−1, (2.22)

where ∂Je

∂xo
is the ensemble sensitivity vector, which to within sampling error is identical

to the adjoint sensitivity vector ∂J
∂xo

. Implementation of (2.22) has practical problems,

which are related to the rank deficiency of Pa and the ability of computers to store

this matrix in core memory.

Instead of trying to invert Pa, ensemble sensitivity is defined as the univariate

regression of the forecast metric on all degrees of freedom in the initial condition

∂Je

∂x
=

cov(J,Xj)

var(Xj)
= cov(J,Xj)D

−1
j (2.23)
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where Xj is one row of the ensemble state matrix and represents the ensemble estimate

of the state variable x, J is the M × 1 vector of forecast metric values estimated from

the M ensemble members, and Dj is the jth diagonal element of the matrix D,

which is comprised of the diagonal entries of Pa and zeros everywhere else. Here the

independent variable is an analysis state variable and the dependent variable is the

forecast metric. The difference between these two types of regressions is expected to be

small if the covariance matrix is dominated by the diagonal (variance) elements. For

a given metric, this formulation can be rapidly evaluated and is thus computationally

more efficient than adjoint sensitivity. Moreover, it is possible to relate (2.23) to

adjoint sensitivity by combining it with (2.21)

∂Je

∂x
= D−1Pa ∂Ja

∂x
, (2.24)

where Ja is the adjoint sensitivity. This shows that these two sensitivity methods are

thus related by the analysis-error covariance matrix.

Since ensemble sensitivity analysis combines data assimilation and sensitivity anal-

ysis, it is possible to estimate how observation assimilation changes a forecast metric

value. When observations are assimilated, the change in the model state vector is

given by (2.4), thus the change in the forecast metric expected value can be deter-

mined by substituting this equation into (2.19) for xo, (2.22) for ∂J
∂xo

, and expanding

δJ = J(Hxb)T[HPbHT + R]−1[y −H(xb)]. (2.25)

This equation represents linear regression, where the independent variable is the

innovation, y−H(xb), the dependent variable is the forecast metric, and the “slope”

is given by the covariance between the forecast metric and the model estimate of the

observation, J(Hxb)T, divided by the covariance of the independent variables (inno-

vation covariance). For a single observation, the innovation, innovation covariance

and slope are all scalars, and the calculation can be evaluated rapidly. When the
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metric is a function of the forecast state only, δJ represents a change in the metric;

however, when the metric is a function of the forecast and verification, δJ represents

the impact of the observation. Furthermore, comparison of (2.25) and (2.4) shows

that the update in the forecast metric expected value has similar form to the update

in a model state variable.

In addition to predicting how observation assimilation will change the expected

value of a metric, it is also possible to estimate how observation assimilation will

reduce the metric variance. Much like how the analysis and forecast-error covariances

are calculated, the variance in the forecast metric before or after data assimilation is

found by computing E[δJδJT]. Substituting (2.19) for δJ yields

σJ =
[
∂J

∂x

]
P
[
∂J

∂x

]T
. (2.26)

where P is either the background or analysis-error covariance matrix. An expression

for the change in the forecast metric variance associated with observation assimilation

is found by subtracting the forecast metric variance before assimilation from the

forecast metric variance after assimilation

δσ = σJa − σJb =
[
∂J

∂x

]
(Pa −Pb)

[
∂J

∂x

]T
. (2.27)

The difference between the analysis and background error covariance matrix is given

by (2.8), thus substituting it into (2.27) and expanding K gives the expression for the

reduction in metric variance associated with observation assimilation

δσ = −J(Hxb)T(HPbHT + R)−1HxbJT. (2.28)

For a single observation, this expression can be evaluated as a product of two scalars:

the inverse of the innovation variance, (HPbHT + R)−1, and the forecast-metric–

observation-estimate covariance, J(Hxb)T. Furthermore, observe that (2.28) is neg-

ative definite since the righthand-side is proportional to the square of the forecast-
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metric–observation-estimate covariance. Equations (2.23), (2.25), and (2.28) are used

extensively in Chapters 4 and 5.
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Chapter 3

REAL-TIME DATA ASSIMILATION SYSTEM

3.1 Experiment Setup

The following chapter describes the performance of a pseudo real-time ensemble

Kalman filter (EnKF) system from 00 UTC 1 January 2005 to 00 UTC 1 January

2007. The University of Washington EnKF (UW EnKF) system generates a 90 mem-

ber analysis ensemble every 6 hours (00, 06, 12, and 18 UTC) on the domain used

by Dirren et al. (2007), which includes the eastern Pacific Ocean and western North

America and is characterized by sparse in situ data and complex topography. This

system uses version 2.0.3.1 of the Advanced Research version (ARW) of Weather

Research and Forecasting (WRF), a non-hydrostatic primitive equation, mesoscale

model on a numerical grid with 45 km horizontal grid-spacing and 33 vertical lev-

els (Skamarock et al. 2005). The model uses the WRF 3-class microphysics scheme

(Hong et al. 2004), Kain-Fritsch cumulus parameterization (Kain and Fritsch 1990),

Mellor-Jamada-Janjic boundary-layer scheme (Janjic 2002) and the Noah land-surface

model (Ek et al. 2003).

This system assimilates observations from Automated Surface Observing System

(ASOS) stations, ships, fixed and drifting buoys, rawinsondes, Aircraft Communica-

tions Addressing and Reporting System (ACARS) and cloud motion vectors (Velden

et al. 2005) serially using a square-root version of the EnKF (Whitaker and Hamill

2002). These observation types are used here because the model estimate of the ob-

servation can be obtained via a bilinear interpolation of model grid points. Satellite

radiances, which compose a large fraction of the observations assimilated by many

operational forecasting systems, have complex observation operators that are a func-
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Table 3.1: Observation types and average number of observations assimilated during
each forecast cycle by the UW EnKF system.

Analysis Time

Observation type 00 UTC 06 UTC 12 UTC 18 UTC

Surface Alt., u, v 430 420 420 440

Rawinsonde u, v, T, RH 1000 0 1000 0

ACARS u, v, T 1650 1390 740 1860

Cloud Winds u, v 2030 1740 1670 1510

Total 5110 3550 3830 3810

tion of the temperature and moisture profile in a column and are thus not used.

Table 3.1 summarizes the number and type of observations assimilated during each

analysis time and Figure 3.1 shows their horizontal distribution. The largest num-

ber of observations are assimilated at 00 UTC when there are frequent takeoffs and

landings near many of the airports along the west coast of North America and cloud

motion vectors can be estimated from visible satellite images. Observation errors

are assumed to be uncorrelated and are obtained from European Center for Medium

Range Weather Forecasting (ECMWF) statistics. Assimilating erroneous observa-

tions can lead to significant analysis errors, thus observations are quality controlled

prior to being assimilated by comparing the observation innovation (y−H(xb)) with

the standard deviation of the model estimate of the observation; if the innovation is

greater than four times the standard deviation of the model estimate, the observation

is not assimilated.

Observations are pre-processed prior to assimilation to reduce the number of ob-

servations and remove observations that may contain large representativeness errors.

The course horizontal resolution of this domain does not resolve many of the hor-

izontally narrow valleys in this region, thus observations from surface stations are
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Figure 3.1: Distribution of (a) rawinsonde, and (b) fixed surface stations assimilated
by the UW EnKF system. The observations shown in these two panels are also used
to verify the forecasts. Panels c and d show the average density of ACARS and
cloud wind vectors, respectively, at a particular location for each forecast cycle (units
observations/cycle).
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only assimilated if the difference between the station altitude and the model estimate

of the station’s elevation is less than 300 m. For domains with coarse horizontal

spacing, temperature and wind observations from land-based stations often contain

large representativeness errors and are thus not assimilated. ACARS observations1

are thinned by averaging all observations within one horizontal grid point and 25 hPa

of each other. This procedure is performed to reduce the redundant information

in the multiple takeoffs and landing reports in the area surrounding major airports

(Fig. 3.1c). Cloud motion vectors estimated from geostationary visible, infrared and

water vapor imagery are exclusively over the ocean; their density is a function of the

scan angle and the percentage of times that clouds exist. Errors in individual cloud

motion vectors are often quite large; therefore, cloud wind observations are “super-

obed” by averaging all observations within 1◦ of latitude and longitude and 25 hPa

of each other.

For any finite-sized ensemble, there is sampling error in the estimation of the

background-error covariances, which are used to spread the information from observa-

tions to state-variables. These sampling errors can produce spurious noisy corrections

to the state at long distances from the observation and artificially reduce the vari-

ance of the ensemble. One method of diminishing the influence of these long-distance

correlations is to apply a distance dependent weighting function to the ensemble co-

variances that will restrict the influence of observations to nearby grid points (e.g.,

Houtekamer and Mitchell 1998, Hamill et al. 2001). In the UW EnKF system, the

influence of observations is localized using the Gaspari and Cohn (1999) fifth-order

piecewise rational function, given by their equation (4.10), which in this implementa-

tion, reduces to zero 2000 km from the observation location. Through trial-and-error

testing, Dirren et al. (2007) found this radius to be the optimal trade-off between

the desire to have a short enough radius to avoid far-field sampling errors and a long

1Only ACARS reports within one hour of the analysis time are considered.
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enough radius to avoid shocks in the model. Although it has been used in other

EnKF applications (e.g., Whitaker et al. 2007), vertical localization is not employed

because it can produce severe shocks to the model, possibly because of WRF’s vertical

coordinate system (Dirren et al. 2007).

Covariance localization alone cannot completely overcome the effect of undersam-

pling due to using a small ensemble, thus the deviations from the ensemble-mean

are artificially boosted during each assimilation time. Moreover, this “covariance in-

flation” is also meant to be a crude parameterization of model error, which is not

otherwise accounted for. If covariance inflation is not applied, the ensemble can lose

variance with time and become over-confident in its estimate of the state. The ensem-

ble is inflated using the covariance averaging technique of Snyder and Zhang (2003)

where each ensemble member’s deviation from the ensemble-mean analysis is replaced

by a weighted average of the deviations before and after data assimilation using

x′
a = ax′

a + (1− a)x′
b, (3.1)

where x′
a is an analysis member’s deviation from the ensemble mean, x′

b is a back-

ground forecast member’s deviation from the ensemble mean, and a is the weighting

factor for the analysis perturbations (0.2). This weighting factor is empirically de-

termined by cycling a comparable WRF EnKF system on the same domain during

October 20042. For the optimal value of a, the error in the ensemble mean should

match the spread of the ensemble; the following section describes the procedure used

to determine this. The covariance averaging technique is particularly advantageous

in areas of inhomogeneous observations because it will only increase the ensemble

spread in areas where observations are assimilated; if there are no observations in a

particular region, the variance in the analysis ensemble will match the variance in

2This period is characterized by a variety of weather systems moving through the domain, and
thus provides a good a priori test of how the UW EnKF system would perform during various
weather regimes.
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the background ensemble. Previous experiments with EnKF systems (e.g., Ander-

son and Anderson 1999, Whitaker and Hamill 2002) have inflated the ensemble by

multiplying each ensemble member’s deviation from the mean by a small constant

prior to observation assimilation. When a constant inflation factor (1.2) is applied

to the October 2004 period, a majority of the ensemble members crashed after two

weeks of observation cycling. The southwest corner of this domain is characterized

by weak flow due to its proximity to the mean sub-tropical high, and because there

are few observations, the ensemble spread in this region will continuously grow to

unreasonable values solely due to covariance inflation.

Previous research with limited area ensembles (e.g., Nutter 2004, Torn et al. 2006)

has shown that applying the same deterministic lateral boundary conditions to each

ensemble member will cause the ensemble to lose variance over time, thus an ensemble

of lateral boundary conditions is required. As of 1 January 2005, a 90 member global

ensemble did not exist, thus an ensemble of lateral boundary conditions for this system

is generated using the fixed covariance perturbation (FCP) technique of Torn et al.

(2006). This method adds a randomly generated perturbation, consistent with a fixed

error covariance model, to an ensemble-mean lateral boundary condition. Boundary

condition perturbations are obtained by running the WRF VAR system (Barker et

al. 2004) in “randomcv” mode, which generates balanced perturbations from the

National Centers for Environmental Prediction (NCEP) covariance model.

Since these perturbations are randomly selected, they are not likely to have tem-

poral continuity, which could cause shocks to the model. As a consequence, Torn et

al. (2006) model the boundary perturbations as an autoregressive process in time

(their eqn. 4). The autocorrelation coefficient for a six-hour forecast (0.4) is taken

from Torn et al. (2006), who determined this value from a pseudo-global ensemble.

To ensure that the variance of the boundary perturbations is representative of the

error in the ensemble mean, the boundary perturbations are multiplied by 1.6 so that

the standard deviation of the WRF VAR perturbations match the RMS error in 6-
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hour forecasts from the NCEP Global Forecasting System (GFS). The ensemble-mean

6-hour forecast on the lateral boundaries is obtained from the 12-hour NCEP GFS

forecast from the previous forecast cycle; using the forecast from the previous cycle

allows the UW EnKF system to proceed without having to wait for the completion

of the GFS forecast.

At 00 UTC and 12 UTC, 24-hour ensemble forecasts are obtained by advancing

all 90 ensemble members forward in time. The forecasts are limited to 24 hours

because for lead times greater than 24 hours, features that would have an effect the

Pacific Northwest region of the United States moving faster than 35 m s−1 would be

outside of the domain in the analysis3. An ensemble of lateral boundary conditions for

these forecasts are obtained using the FCP technique where the scaling factor linearly

increases from 1.6 for a six hour forecast to 2.4 for a 24-hour forecast. These scaling

factors are also determined by matching the RMS error in 24-hour GFS forecasts

to the standard deviation of the WRF VAR perturbations. Ensemble-mean lateral

boundary conditions are obtained from the GFS forecast from the previous forecast

cycle (i.e., at 12 UTC, the UW EnKF system uses the GFS forecast from 06 UTC).

The ensemble is initialized on 12 UTC 22 December 2004 by adding scaled, fixed

covariance perturbations from the WRF-VAR system to the 36-hour GFS forecast

initialized on 00 UTC 21 December. The perturbations are scaled by 1.9 prior to

being added to this forecast. Initializing an EnKF system with a large amount of error

and spread helps prevent the ensemble from under-weighting observations during the

first few forecast cycles (Dirren et al. 2007). After assimilating observations for three

days, the statistics of the ensemble come into equilibrium and there is little memory

of the initial ensemble.

3This value is the average speed of Northern Hemisphere Rossby wave packets (Hakim 2003).
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3.2 Ensemble Verification

Output from the UW EnKF system is verified against mandatory level wind, air

temperature and dew-point temperature data from the 30 rawinsonde stations and

the wind, temperature, humidity and pressure data from the 300 ASOS stations and

fixed buoys in this domain. Figures 3.1a and b show the distribution of rawinsonde

and surface stations, respectively, used for this verification; most of the stations are

in the northern and eastern part of the domain, which is characterized by complex

terrain. As a consequence, many of the rawinsonde observations are launched from

an elevation well above mean sea-level, thus the number of verification points at 925

and 1000 hPa is smaller than in the middle troposphere. All verification statistics in

this chapter are calculated for the two year period starting 00 UTC 1 January 2005.

Several different metrics are available for determining how well the ensemble spread

matches the error in the ensemble mean. Two of the most popular methods involve

computing the ratio of the RMS error in the ensemble-mean to either the RMS spread

of the ensemble or the average RMS error of each ensemble member (Murphy 1988);

however, when model forecasts are verified against imperfect observations or the model

contains systematic biases, these ratios can give incorrect estimates of how well the

ensemble spread matches the error. As a consequence, verification rank histograms

(Anderson 1996, Hamill and Collucci 1997, Harrison 1995, Talagrand et al. 1997) are

instead used to determine the skill of UW EnKF ensemble forecasts. This technique

is particularly attractive because it accounts for observational errors and will expose

persistent biases in a model forecast. Rank histograms are constructed by sorting the

ensemble member’s estimate of the verification value from low to high value, deter-

mining the rank of the verification value within the sorted ensemble, and repeating

this for many values and times. If the ensemble is unbiased and drawn from the same

distribution as the truth, the population in each of the ranks should be uniform. Ex-

cessive population in the outer (middle) ranks of the histogram indicate that truth



41

falls outside (inside) the ensemble too often, and thus the ensemble has too little

(much) variance. Consistent biases in the ensemble forecasts show up as a sloped

rank histogram; in these diagrams, larger population on the left (right) side of these

figures indicates that the ensemble forecast values are consistently higher (lower) than

truth. Hamill (2001) found that when observation error is not considered when com-

puting the rank, the rank histograms can be misleading. Observation error is thus

accounted for by ranking the observation relative to the sorted ensemble with random

observational noise added to each ensemble member’s estimate of the observation.

Figure 3.2 shows rank histograms for UW EnKF forecast of temperature as a

function of pressure level and forecast hour. These figures are generated by inde-

pendently computing the rank histogram for each pressure level and forecast hour.

Regions of cold (warm) colors indicate that the population of that rank is less than

80% (greater than 120%) the value of a uniform distribution. In general, there are

only small differences, related to sampling, between the rank histograms among the

various forecast hours, thus only the 24-hour forecasts are described. Below 700 hPa,

the rank histogram shows lower (greater) population in the left (right) ranks, thus

the temperature is consistently too cold at those levels. Above 500 hPa the opposite

pattern is observed; the histogram has lower (greater) population in the right (left)

ranks, which indicates the model’s forecast of temperature at these levels is consis-

tently too warm. Although these diagrams are dominated by the model biases, they

do not show excessive population in either the inner or outer ranks.

Rank histograms of 24-hour ensemble forecasts of winds, geopotential height and

dew-point temperature also show that the UW EnKF ensemble forecasts are charac-

terized by model biases (Fig. 3.3); diagrams of other forecast hours are qualitatively

similar and are thus not shown. For zonal wind (Fig 3.3a), the rank histogram has

nearly equal population among all ranks below 500 hPa; however, above this level,

there is lower (higher) population in the left (right) ranks, indicating the model is

consistently underestimating the speed of the upper-tropospheric westerlies. In con-
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Figure 3.2: Rank histograms for UW EnKF (a) 6 hour, (b) 12 hour, and (c) 24-hour
temperature forecasts at various pressure levels from 1 January 2005 to 1 January
2007 verified against the rawinsonde observations shown in Fig. 3.1a (shading). This
figure is created by combining the rank histogram for temperature forecasts at each
mandatory pressure level.
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trast to the zonal winds, the meridional winds show approximately equal population

among all ranks below 250 hPa, thus, at these levels, the forecasts generally con-

tain the appropriate amount of variance (Fig. 3.3b); above 250 hPa, the ensemble’s

meridional winds are generally too high. Geopotential height rank histograms, as

compared to wind and temperature figures, show a more complicated distribution

(Fig. 3.3c). Between 250 and 850 hPa, the left (right) ranks have lower (higher) pop-

ulation than a uniform distribution, thus the ensemble is biased toward low heights;

however, the lower population at middle ranks indicate that the ensemble also does

not have enough variance. In contrast to the other fields, the excessive population

in the middle ranks indicates that dew-point temperature forecasts below 500 hPa

have too much variance (Fig. 3.3d). Above that level, the equal distribution among

all bins shows that the ensemble has the appropriate amount of spread.

Similar to height and dew-point temperature, rank histograms for surface variables

show that UW EnKF forecasts contain strong biases, and for some variables, excessive

ensemble variance (Fig. 3.4). Six-hour altimeter forecasts show excessive population

in the middle and outer ranks, which indicates that, at some locations, the ensemble

contains too much variance and other areas contains too little variance (Fig 3.4a). At

longer forecast hours, the distribution becomes skewed toward high ranks, thus, the

model is more likely to have lower altimeter values than observations with increasing

lead time. This low altimeter bias is consistent with the previously described low

geopotential height bias and suggests that WRF model forecasts could be losing mass

with time. Rank histograms for both components of the wind show that these fields

contain too much variance at all forecast hours (Fig. 3.4b). For 2 meter temperature,

the observations generally fall outside the ensemble too often and the model tends to

be colder than the observations (Fig. 3.4c). This bias is not homogeneous among all

times of the day; rank histograms of temperature forecasts valid at 00 UTC, 06 UTC,

12 UTC, and 18 UTC show that the model temperatures are too cold (warm) during

the day (night), thus the surface parameterization has a weaker diurnal cycle than
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Figure 3.3: As in Fig. 3.2c, but for the UW EnKF 24-hour forecast of (a) zonal wind,
(b) meridional wind, (c) geopotential height, and (d) dew-point temperature.
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what is actually observed (not shown). Two dominate signals are visible in the rank

histograms for 2 meter dew-point temperature forecasts; the ensemble has too much

variance and is biased toward lower values (Fig. 3.4d).

The excessive population in the middle ranks of rank histograms for surface field

forecasts actually results from the observation error rather than the actual spread in

the ensemble; whereas observations of surface wind, air temperature, and dew-point

temperature have assumed errors of 2.5 m s−1, 2.5 K and 2.5 K, the RMS ensemble

standard deviation for six hour forecasts is 1.3 m s−1, 1.1 K and 1.5 K respectively.

Surface parameterizations are a function of the temperature and wind at lower model

levels, for which each ensemble member has a different value, and other parameters,

such as the solar radiation and land use, that are fixed for each ensemble member.

The fixed parameters will apply an equal forcing to each ensemble member and thus

can act to constrain the variance in these fields.

3.3 Forecast Errors

In this section, the RMS errors in ensemble-mean forecasts of various model fields are

computed with respect to rawinsonde and surface observations within the domain and

compared to the RMS error in operational center forecasts in this domain over this

two-year period. Errors are computed for 6, 12 and 24-hour forecasts from the NCEP

GFS model, Canadian Meteorological Center (CMC) General Environmental Model,

United Kingdom Meteorological Office (UKMO) unified model, and the Navy Oper-

ational Global Atmospheric Prediction System (NOGAPS); Table 3.2 gives a brief

description of the resolution, data assimilation system and output used to compute

the errors for each model. With the exception of NOGAPS and CMC, the effective

horizontal resolution of each operational model is similar to the UW EnKF system;

however the output files are often degraded from the native model resolution (1◦).

Figure 3.5 shows that the RMS error in UW EnKF forecasts of temperature are

comparable to the error in other operational forecasting systems. For all models, the



46

Psfc

 a)

U10m

 b)

T2m

 c)

Tdew

 d)

6 hour forecast 12 hour forecast 24 hour forecast

Figure 3.4: Rank histograms for UW EnKF 6, 12, and 24 hour forecast of (a) al-
timeter, (b) 10 meter zonal wind, (c) 2 meter temperature, and (d) 2 meter dew
point temperature from 1 January 2005 to 1 January 2007 verified against the surface
observations shown in Fig. 3.1b.
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Table 3.2: Resolution, data assimilation technique, and output file resolution of the
models used in this study.

Model Resolution Data Assimilation Output Resolution

GFS T382 (≈ 35 km) 3D-VAR 1◦

CMC ≈ 100 km 4D-VAR 1◦

NOGAPS T239 (≈ 55 km) 3D-VAR 1◦

UKMO 0.5625◦ × 0.375◦ (≈ 40 km) 4D-VAR 5/6◦ lon., 5/9◦ lat.

largest errors are below 700 hPa and above 300 hPa, where the planetary boundary

layer scheme and mis-specification of the tropopause, respectively, can lead to signif-

icant errors. In general, the GFS and CMC forecasts yield the smallest errors among

the NWP systems described here. UW EnKF temperature forecasts have RMS errors

that are approximately 0.3 K larger than GFS forecasts at all lead times; however,

below 300 hPa, error in 12 and 24-hour temperature forecasts are nearly identical to

UKMO and NOGAPS. This result is quite remarkable because the UW EnKF system

only assimilates a small fraction of the observations used by these other operational

centers since satellite radiance data are not considered. The potential reasons for why

the errors are comparable include assimilating observations with flow-dependent error

statistics, model dynamics and lateral boundary conditions; the role of each factor

will be explored in the next section.

Throughout much of the troposphere, UW EnKF temperature forecasts have bi-

ases of up to 0.5 K; the model is too cold at lower levels and too warm above 700 hPa.

To determine the skill of 6-hour UW EnKF 850 hPa temperature forecasts at differ-

ent locations in the domain, the RMS error and bias are computed for each station.

These calculations show that the magnitude of error, and especially the bias, is pro-

portional to the elevation of the station. Stations near sea-level have bias values less

than 0.1 K; however, 6-hour UW EnKF temperature forecasts for rawinsonde stations
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above 1000 m elevation, which include Fort Nelson (CYYE) and Edmonton (CWSE),

are on average 1.5 K too cold. Hollingsworth and Lonnberg (1986) showed that the

time-average correlation between the observation innovations (y−H(xb)) at two dif-

ferent locations can indicate systematic errors in the model, since the observations

themselves are not correlated. Whereas the correlation between 850 hPa temperature

innovations between most stations is zero, the correlation for the Fort Nelson and Ed-

monton stations is 0.75, thus the model boundary layer parameterization may contain

problems for high elevation stations downstream of mountain ranges. At 300 hPa,

each station has a negative temperature bias of 0.4 K; however the innovations are un-

correlated at this level. Although observation assimilation acts to remove the model

bias, the use of covariance averaging to inflate the ensemble members can re-introduce

the bias to the model. The extent to which this is true will be explored in the next

section where UW EnKF forecasts are compared to WRF forecasts initialized from

GFS analyses.

Similar to temperature, UW EnKF forecasts of other tropospheric variables have

RMS errors comparable to the other operational centers described here (Fig. 3.6); for

brevity, only the 24-hour forecast errors are presented. Errors in UW EnKF forecasts

of zonal and meridional winds (Fig. 3.6a, b), which increase from 4 m s−1 at 850 hPa

to 6 m s−1 at 300 hPa, are 1 m s−1 greater than GFS forecasts, but identical to

those obtained for UKMO forecasts. Whereas the bias in meridional wind forecasts

is less than 0.7 m s−1, the zonal wind bias is greater than 1 m s−1 above 500 hPa.

Computing the bias for each station shows that UW EnKF zonal wind forecasts

are too slow at all locations; however, the observation innovations are uncorrelated.

For geopotential height, the error in UW EnKF forecasts are larger than any of the

operational centers below 300 hPa; above that level, the errors are comparable to the

UKMO and lower than NOGAPS forecasts (Fig. 3.6c). From 925 hPa to 200 hPa,

the WRF geopotential height forecasts are up to 10 m too low and, in a qualitative

sense, seem to be hydrostatically related to the temperature bias in Fig 3.5d. In
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12 and (c) 24-hour temperature forecasts over the UW EnKF domain from 1 Jan-
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assimilation.
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addition, the 10 m low bias is consistent among all stations and the innovations are

highly correlated, thus the geopotential height bias is a systematic problem in WRF.

UW EnKF dew-point temperature forecast errors increase from 3 K at 1000 hPa to

6 K at 500 hPa (Fig. 3.6d); quite surprisingly, the errors are less than or equal to

all other models, especially in the mid-troposphere. Moreover, 24-hour forecasts of

dew-point temperature from the UW EnKF system show the largest improvement

over GFS forecasts for stations along the North American coast. Potential reasons

for why this occurs will be explored in the next section.

Previous implementations of the EnKF have been characterized by a decrease in

ensemble spread with increasing time, and suggests that the analysis error does not

project onto the unstable modes of the model (Houtekamer et al. 2005, their Fig. 8).

To determine the rate of error growth in UW EnKF forecasts, the RMS error in the

ensemble-mean forecast and the RMS spread in various fields and vertical levels is

computed as a function of forecast hour. Fig. 3.7 shows that for temperature, wind,

and height forecasts, the ensemble spread, and to a lessor extent, the ensemble-mean

error, increase by 50% over the course of 24 hours. Although the ensemble spread

is generally less than the ensemble-mean error, these two quantities are growing at

the same rate. In contrast to the other fields, the increase in the error and spread in

dew-point temperature are more modest; while there is a 15% increase for 500 hPa

forecasts, the 850 hPa and 300 hPa forecasts show an increase of 5-10% (Fig. 3.7d).

Although the growth rate for dew-point temperature is smaller than other fields, it is

consistent with GFS forecasts.

The reason for the difference in error growth between the UW EnKF system and

the Houtekamer et al. (2005) setup may result from how each implementation pa-

rameterizes model error and how that projects onto the growing modes of the model.

Houtekamer et al. (2005) account for model error by adding a random perturbation

drawn from the CMC 3D-VAR background error covariance matrix to each analysis

ensemble member. Observations significantly reduce the variance in the CMC system,
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thus a large fraction of the analysis spread is due the model error parameterization.

They conclude that, during the first 24 hours, the ensemble perturbations are pro-

jecting onto the decaying modes of the model; however, for longer lead times, the

amplitude of the growing modes start to dominate the amplitude of the decaying

modes and the ensemble variance grows. Recall that the UW EnKF system param-

eterizes model error via covariance averaging, where the largest weight is given to

the prior forecast’s deviation from the mean. As a consequence, the analysis pertur-

bations partially project onto the growing modes of the model during the previous

six hours and thus the ensemble variance will increase during the first few time steps.

With the exception of altimeter setting, the bias and error in the various surface

fields do not show much difference among all forecast hours (Fig. 3.8). The error

in UW EnKF altimeter forecasts increases from 2 to 2.7 hPa from the 6 to 24-hour

forecasts, which is 0.6 hPa greater than GFS forecasts, but is still up to 0.5 hPa smaller

than NOGAPS and UKMO forecasts (Fig. 3.8a). In contrast to the other models, the

bias in UW EnKF altimeter forecasts increase from -0.2 hPa for 6-hour forecasts to

-0.7 hPa for 24-hour forecasts, and is consistent with the model losing mass in time.

For 10 m wind, 2 m air temperature, and 2 m dew-point temperature, the RMS error

in UW EnKF forecasts is approximately 2.8 m s−1, 3.7 K and 3.9 K, respectively,

at all forecast hours and is similar to or smaller than what is obtained from CMC,

UKMO and NOGAPS forecasts. Errors in parameterized surface fields can result

from errors in the input dynamical fields and errors in the model formulation. Since

the errors and spread in the input dynamical fields are increasing with time (Fig. 3.7),

the relative constancy of surface field errors is suggestive of a problem in the model

formulation.

3.4 Comparison with Control Forecasts

Several potential reasons exist for why the errors in the UW EnKF forecasts are

comparable to other operational centers. One possibility is that the information
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obtained from the GFS lateral boundary conditions is constraining error growth in

the domain. This hypothesis is tested by running an additional WRF forecast on this

domain over the two year period that uses the same lateral boundary conditions as the

ensemble-mean six-hour forecast, but is not updated with observations. Differences

between this “no assimilation” and the ensemble-mean six-hour forecast are thus

solely attributable to observation assimilation by the UW EnKF system.

Figure 3.9 shows that observation assimilation leads to systematically lower errors

than the case where no data assimilation is performed; RMS errors in the ensemble-

mean forecast are up to 50% smaller than the “no assimilation” forecast, thus the

skill of the UW EnKF system forecasts is not solely due to the information coming

from the GFS lateral boundary conditions. The largest (smallest) differences between

these two forecasts is in the middle and upper (lower) troposphere where UW EnKF

forecasts tend to have errors comparable to other operational centers. Furthermore,

the bias in both UW EnKF and “no assimilation” forecasts are similar, except for

height for which the bias magnitude is 50% of value yielded by the “no assimilation”

forecast. This result shows that the mass bias is due to the model itself and that

observation assimilation tries to overcome this problem.

The results presented above showing limited error reduction, and thus the smallest

impact of observations near the ground extends to surface fields, whose dynamics are

governed by parameterizations of boundary layer processes (Table 3.3). Whereas

the error in 6-hour UW EnKF altimeter forecasts are 43% smaller than the “no

assimilation” forecast, more modest differences of 18%, 15% and 15% are obtained

for 10 meter winds and 2 meter temperature and 2 meter dew-point temperature,

respectively. The difference between these forecasts further suggest that the errors

in UW EnKF surface field forecasts are mostly due to the formulation of the surface

layer parameterization scheme, rather than errors in the input low-level temperature,

wind and moisture fields.

Finally, the benefit of performing data assimilation directly with the WRF model
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Table 3.3: RMS error (bias) in ensemble-mean, “no assimilation”, and the WRF-GFS
forecasts of surface fields verified against fixed surface observations.

6-hour forecast 24-hour forecast

Ens. Mean No assim. Ens. Mean WRF-GFS

Altimeter 2.0 (0.0) hPa 3.5 (0.0) hPa 2.7 (-0.7) hPa 2.6 (-0.7) hPa

10 m u-wind 2.8 (0.1) m s−1 3.4 (0.1) m s−1 2.9 (0.2) m s−1 3.1 (0.2) m s−1

2 m temp. 3.6 (-0.1) K 4.1 (-0.0) K 3.8 (-0.1) K 3.8 (-0.4) K

2 m dew point 3.9 (0.7) K 4.6 (0.7) K 4.0 (0.7) K 4.2 (1.3) K

grid, rather than interpolating a global model’s analysis, is evaluated by compar-

ing UW EnKF forecasts to a deterministic WRF forecast on the same domain. At

00 UTC and 12 UTC, a 24-hour WRF forecast on this domain is generated using the

GFS analysis as initial conditions and the same lateral boundary conditions as the

ensemble-mean forecast (denoted WRF-GFS). All model settings are kept the same,

thus differences between the ensemble-mean and WRF-GFS forecasts are solely due

to initial conditions of the two forecasts.

Although the initial conditions are generated by two different data assimilation

techniques and different observation sets, Fig. 3.10 shows that the RMS error in 24-

hour forecasts from the UW EnKF system are generally within 10% of the error in

WRF-GFS forecasts, except for upper-tropospheric winds and geopotential height.

Furthermore, comparison of Fig. 3.6 and Fig. 3.10 indicates that the difference be-

tween 24-hour WRF-GFS forecast errors and GFS forecast errors is less than 5%,

except for geopotential height. These results seem to indicate that the bias toward

low geopotential heights exists no matter what initial condition is applied, and thus

do not result from covariance averaging or EnKF data assimilation.

One potential reason for why the RMS error in UW EnKF system dew-point tem-

perature forecasts is lower than GFS forecasts relates to WRF’s treatment of micro-
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physical processes; however, Fig. 3.10d shows that even when GFS initial conditions

are used with WRF, forecasts from the UW EnKF system still have lower dew-point

temperature errors, thus the initial conditions are responsible for the higher forecast

skill. In the UW EnKF system, flow-dependent error statistics computed from the

ensemble of short-term forecasts are used to spread the information from all observa-

tions to the water vapor field. In contrast, the fixed error statistics used in the GFS

analysis system only allow observations that directly measure moisture, such as from

rawinsondes or satellite estimates of column total precipitable water, to adjust the

water vapor field (e.g., Parrish and Derber 1992).

To better understand what observation types may be updating the water vapor

mixing ratio, time-average correlations between temperature, wind, and the water-

vapor mixing ratio field for a column at the center of the domain are computed every

six-hours during the two-year period (Fig. 3.11). This figure is generated by comput-

ing the correlation between the six-hour forecast of water-vapor mixing ratio at one

pressure level (e.g., 500 hPa) at a single time to the six-hour forecast of temperature,

wind and water-vapor mixing ratio at another pressure level (e.g., 300 hPa) at the

same time using the ensemble data, and repeating for all possible combinations of

variables and mandatory pressure levels. This calculation is then repeated for all

analysis times during the two year period and averaged. Although there is little cor-

relation between the water-vapor mixing ratio and the zonal component of the wind

(Fig. 3.11a), time-average correlations in excess of 0.12 exist between the meridional

wind and water-vapor field in the upper troposphere (Fig. 3.11b). Moreover, these

levels correspond with places where the error in dew-point temperature forecasts

from the UW EnKF system are 15% lower than GFS forecasts (Fig 3.6d). Recall

that the largest improvement over GFS forecasts are for stations along the North

American coast and that most of the upstream observations are cloud motion vectors

(Fig. 3.1d), thus even though cloud winds have large errors (Bormann 2003), they

could be very beneficial to water vapor forecasts. The average correlation between
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mid-tropospheric temperature field and mid-tropospheric water-vapor mixing ratio is

0.16; however, non-zero correlations also extend above and below that level, thus,

on average, upper-tropospheric temperature observations can impact the water-vapor

mixing ratio throughout the column (Fig. 3.11c). For comparison, Fig. 3.11d shows

the correlation between water-vapor mixing ratio at various pressure levels; by defini-

tion, the correlation between the mixing ratio at the same level is one. In general, the

correlation between water vapor mixing ratio at two different levels is greater than

0.16 for pressure levels that are within 200 hPa of each other; however, in compari-

son to the lower-troposphere, the vertical extent of upper-tropospheric water vapor

observations is more limited.

Comparison of the RMS error in UW EnKF and WRF-GFS surface field fore-

casts indicates that the forecast skill does not depend on the initial conditions (Ta-

ble 3.3). WRF-GFS forecasts of altimeter (surface wind, dew-point) have slightly

smaller (larger) errors than the corresponding UW EnKF forecasts. In contrast, the

bias in UW EnKF temperature and dew-point temperature forecasts is smaller than

WRF-GFS, thus the UW EnKF initial conditions seem to be more compatible with

the surface parameterization schemes.
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Figure 3.11: Mean correlation between the water vapor mixing ratio and (a) zonal
wind, (b) meridional wind, (c), temperature, and (d) water vapor mixing ratio at
each mandatory pressure level (925 hPa-150 hPa) averaged from 1 January 2005 to
1 January 2007.
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Chapter 4

ENSEMBLE-BASED SENSITIVITY ANALYSIS

Ensemble-based initial condition sensitivity for the West Coast of North America

is evaluated using data drawn from the University of Washington ensemble Kalman

filter (UW EnKF) system during 1 January 2005 to 30 June 2005. This period is

chosen because it contains several different weather regimes and samples both the

highly variable winter season and the more tranquil summer season. Throughout this

chapter, initial condition sensitivities will be computed for forecasts of the average

sea-level pressure (SLP) and precipitation within a box that includes the western half

of Washington (WA) state (“western Washington”). Furthermore, the primary focus

of this chapter will be on 24-hour forecasts since that is the longest lead-time forecast

the UW EnKF system generates. In general, the sensitivity technique is not limited

to the metrics and forecast hours described here.

4.1 Climatological results

Data drawn from the UW EnKF system is used to determine the climatological sensi-

tivity of pressure and precipitation averaged in a box over western Washington. Cli-

matological sensitivity is defined here as the percentage of analysis cycles for which

the ensemble sensitivity of the forecast metric with respect to an analysis grid point

is different from zero at a certain level of confidence. Specifically, a state variable will

produce a statistically significant change in the forecast metric if

∣∣∣∣∣∂J

∂x

∣∣∣∣∣ > δs, (4.1)

where δs is the confidence interval on the linear regression coefficient (e.g., Wilks
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2005, section 6.2.5). For example, taking δs to be the 95% confidence interval (the

value used for the climatological results given below), if (4.1) is satisfied, one can

reject the null hypothesis that changes to x have no impact on the forecast metric

with 95% confidence since a slope of zero would not be included in the confidence

bounds. Climatological sensitivities are computed with this form to prevent a few

cycles with large magnitude sensitivities from biasing the distribution. Regions with

a high percentage of sensitive forecast cycles may be regarded as potential locations

for siting new observations.

Figure 4.1 shows results for the sensitivity of the average SLP in the box over

western WA to the SLP analysis as a function of forecast hour. For short-term

forecasts (6, 12 hours), the region with the largest percentage of sensitive cycles is near

the forecast metric box; however, at longer lead times, this region moves further to

the west. Whereas the 6-hour forecast is most often sensitive to the analysis of SLP at

(46◦N and 125◦W) 90% of the time, the 24-hour forecast has a maximum near (45◦N,

132◦W) during 44% of forecasts. This pattern qualitatively reflects the progression

of weather systems from west to east during a forecast at a mean translation speed

of 9 m s−1, which is determined by computing the distance between the center of the

metric box and the point of most frequent sensitivity. This value is roughly consistent

with the phase speed of individual eddies in the Northern Hemisphere mid-latitude

flow (Hakim 2003). In addition to the region of highest sensitivity moving to the west

with lead time, it also becomes more diffuse due to the variety of locations weather

systems can originate from.

Regions of persistent sensitivity in Figure 4.1 predict where additional SLP ob-

servations would have the greatest impact on the SLP forecast metric on average.

Coincidentally, the location of maximum sensitivity for the 24-hour forecast is close

to buoy 46005 (white dot). In fact, this buoy failed on 26 December 2004 and there-

fore observations from this location were not available during the time period of this

experiment. This suggests that the absence of observations from buoy 46005 may
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Figure 4.1: Percentage of forecast cycles with grid point sensitivity values that are
statistically significant at the 95% confidence level for western Washington (a) 6, (b)
12, (c) 18, and (d) 24-hour SLP forecast to the SLP analysis. Forecasts are initialized
at 00 UTC and 12 UTC from 1 January to 30 June. The forecast SLP is averaged
over the region indicated by the smaller box in (a). Dots indicate the position of fixed
buoys, and the larger box denotes the North American Coast (NAC) metric region
used in Figs. 4.10, 4.12, and 4.13.
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Figure 4.2: Percentage of forecast cycles with grid point sensitivity values that are sta-
tistically significant at the 95% confidence level for western Washington 24-hour SLP
forecast to the (a) 850 hPa temperature, and (b) 500 hPa height analysis. Forecasts
are initialized at 00 UTC and 12 UTC from 1 January to 30 June.

have adversely affected forecasts over western WA during these six months. In light

of this possibility, this problem will be revisited later in this chapter where the change

in the 24-hour SLP forecast due to the missing buoy is quantified by withholding a

nearby buoy from the analysis and comparing the predicted and actual changes in

the forecast metric.

The forecast SLP metric is also frequently sensitive to analyses of 850 hPa tem-

perature and 500 hPa geopotential height. Figure 4.2a shows that there are two main

sensitive regions for temperature; one to the south-west of Washington state near

43 ◦N, 130 ◦W, and another to the east of the metric box. For 500 hPa geopotential

height (Fig. 4.2b), the forecast metric is sensitive more than 20% of the time to the

region bounded by 40 ◦N–60 ◦N and 120 ◦W–160 ◦W. This region is located a few hun-

dred kilometers upstream of the region of maximum SLP sensitivity, which reflects

the moderate upstream tilt typical of baroclinic waves in the westerlies.
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The second metric considered is the precipitation averaged in the box over western

WA. Since sensitivity can only be determined when the forecast metric variance is

nonzero, the percentage of sensitive cycles is computed with respect to the total

number of cycles where the ensemble-mean, horizontally-averaged precipitation in the

box exceeds 1 mm for forecast hour 18-24; 58% of all forecasts exceed this threshold.

Sensitivity of this metric to SLP shows a maximum of 40% over the Pacific Ocean

(Fig. 4.3a). Whereas the northern half is relatively well observed by the near-shore

buoy network, the southern half is observed by fewer buoys.

For 850 hPa temperature analyses, the precipitation metric is sensitive more than

20% of the time to the southwest of western WA, with maximum sensitivity near

132 ◦W (Fig. 4.3b). Precipitation forecast sensitivity to 500 hPa geopotential height

is similar to other fields, with maximum values along 132 ◦W (Fig. 4.3c). The main

sensitive region for 500 hPa height is slightly upstream of the region of maximum

SLP sensitivity, thus the sensitivity fields for this metric are also titled westward with

height.

4.2 Most sensitive cases

Whereas the previous section showed how often a forecast metric is sensitive to

changes in a state variable, composite averages are used here to determine the spatial

pattern of sensitivity that occurs for forecasts having the largest sensitivity. These

distributions show locations where small initial condition errors can, on average, lead

to large changes in the metric. The most sensitive western WA SLP and precipitation

forecasts are determined by computing a domain-average forecast sensitivity (DAS)

DAS =
1

Nh

Nh∑
i=1

∣∣∣∣∣ ∂J

∂xSLP,i

∣∣∣∣∣, (4.2)

where xSLP,i is the SLP at a grid point i, and Nh is the number of horizontal grid

points. This norm is used to determine the most sensitive cycles because SLP is

a column integrated quantity, and since the forecast metric is SLP, is expected to
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Figure 4.3: As in Fig. 4.1d and 4.2, but for the 24-hour forecast of precipitation
averaged over the Western Washington region. Here the percentage of forecast cycles
is computed with respect to the number of cycles where the precipitation in the box
exceeds 1 mm for forecast hour 18-24.
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have the largest sensitivity values. Composite patterns of forecast sensitivity for the

30 cycles1 with the largest DAS values are calculated by:

∆J =
1

Nt

Nt∑
t=1

(
∂J

∂x t
σxt

)
, (4.3)

where σxt is the standard deviation of x at time t, and Nt is the number of cycles

used in the composite. In the above equation, the sensitivity of a forecast metric to

an analysis grid point is multiplied by the standard deviation at that grid point and

averaged for all times considered. Multiplying ∂J
∂x

by σxt gives the change in J brought

about by a one standard deviation change in xt, and thus a quantitative comparison of

how various analysis fields change J . Regions of high composite sensitivity indicate

where additional observations could lead to the largest metric changes during the

most sensitive forecasts.

Figure 4.4a shows the composite sensitivity of the 24-hour forecast of average SLP

in the box over western WA to SLP analyses. Increasing (decreasing) x at a single grid

point by one standard deviation within regions of largest sensitivity values implies a

0.9 hPa increase (decrease) in the forecast metric. The region of largest sensitivity

is in an area characterized by few buoys at (47 ◦N 135 ◦W), and is nearly co-located

with the region having the largest percentage of sensitive cycles (Fig. 4.1d).

For 850 hPa temperature, the average sensitivity is less coherent than for SLP,

although sensitivity appears both east and west of the forecast-metric box (Fig 4.4b).

Furthermore, this region of high sensitivity is to the north of the region of consistent

sensitivity in Fig. 4.2a, thus while the minimum SLP is more often sensitive to the

850 hPa temperature to southwest of the metric box, the largest magnitude sensi-

tivities are to the northwest. Increasing (decreasing) the temperature in the regions

with the largest values by one standard deviation only leads to a 0.5 hPa decrease

(increase) in the SLP in the box 24-hours later. For 500 hPa height, the SLP forecast

1This number of cycles is chosen so that a few cycles with large sensitivities do not bias the
horizontal distribution and magnitude of the sensitivity pattern.
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Figure 4.4: Composite sensitivity patterns for western Washington 24-hour SLP fore-
casts (shading, hPa) to analyses of (a) SLP, (b) 850 hPa temperature and (c) 500 hPa
height. Each field represents the sensitivity multiplied by the analysis standard devi-
ation at each analysis grid point for the 30 most sensitive western Washington SLP
forecasts between 1 January and 30 June 2005. Contours denote the composite-
average ensemble-mean analysis for these 30 cases (hPa).
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is sensitive to a meridionally-elongated region near 140 ◦W; a one standard deviation

change in x within the regions of largest sensitivity is associated with a 0.6 hPa change

in the forecast metric (Fig. 4.4c). This region is located a few hundred kilometers

upstream of the region of maximum SLP sensitivity, indicating that the moderate tilt

of the sensitivity field is a common property among these results.

The composite average sensitivities for the 30 most sensitive precipitation fore-

casts are also computed in a manner similar to the 30 most sensitive SLP forecasts

described above. Although one should expect precipitation to have a non-Gaussian

distribution and be bounded below by zero, Gaussian statistics are assumed in these

calculations. Results for the precipitation metric show a more pronounced composite-

average low pressure system in the Gulf of Alaska and maximum sensitivity to SLP

near (44 ◦N, 133 ◦W), just south of the results for the SLP metric (Fig. 4.5a). Sensi-

tivity to 850 hPa temperature (Fig. 4.5b) falls within a relatively small region near a

thermal ridge to the southeast of the composite cyclone. Sensitivity to 500 hPa height

(Fig. 4.5c) exhibits largest sensitivity a few hundred kilometers west of the region of

maximum sensitivity to SLP and downstream of a composite trough in the height

field. For periods when the average precipitation in the box is greater than 2 mm,

a one standard deviation change in the region of largest sensitivity is predicted to

change the precipitation metric by 0.4 mm, and for 850 hPa temperature by 0.3 mm;

thus it can be concluded that, as for SLP forecasts, precipitation forecasts are less

sensitive to 850 hPa temperature than SLP or 500 hPa height.

4.3 Observation Denial Experiments for Single Observations

Recall from section 4.1 that buoy 46005 is located in a region of frequent sensitivity,

but was not functional during the period considered. The change in western WA

24-hour SLP forecasts due to a missing buoy within the persistently sensitive region

is assessed by withholding a nearby reliable buoy (buoy 46036, 42.3 ◦N, 133.8 ◦W)

from the analysis. In addition to providing an estimate of the importance of offshore
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Figure 4.5: As in Fig. 4.4, but for the 24-hour forecast of precipitation (mm) for the
western Washington metric box.
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buoy observations, these data-denial experiments are used to quantify the accuracy

of ensemble-based estimates of the change in a forecast metric due to an observation.

The change in 24-hour western WA SLP forecasts due to buoy 46036’s SLP ob-

servation is assessed for the 30 forecast cycles for which this forecast metric is most

sensitive to this buoy’s observation using the following method. A “control” analysis

is generated by assimilating all observations available to the UW EnKF system using

the procedure described in the previous chapter, with the exception of buoy 46036’s

SLP observation, which is assimilated without applying covariance localization. When

covariance localization is applied, the magnitude of the ensemble estimated change is

consistently larger than the actual change obtained from non-linear forecasts. Assim-

ilating an observation with a localization radius may prevent all of the observation

information from being spread to the model grid points in a manner consistent with

the error statistics. Furthermore, the forecast ensemble does not have knowledge

of localization, thus the observation change may not project onto the analysis grid

points that have an impact on the forecast metric at some later time. Hamill and

Snyder (2002) found that the predicted reduction analysis-error variance reduction

well matched the actual reduction in analysis-error variance even when localization

is used, but this most likely occurred because this metric did not involve running the

forecast model.

A “no-buoy” analysis is generated by the identical procedure as the “control”, but

without buoy 46036’s SLP observation; therefore, the differences between these two

analyses is due solely to the assimilation of buoy 46036. The change in the expected

value and spread of the 24-hour forecast of western WA SLP due to buoy 46036’s

SLP observation is estimated by (2.25) and (2.28), respectively. These ensemble pre-

dictions, computed from the ensemble without the buoy, are verified here against

ensemble forecasts generated from the “control” and “no-buoy” analyses, thus differ-

ences between the two forecasts are also due to buoy 46036. This section proceeds by

describing the change in the forecast metric due to the buoy’s observation during one
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case characterized by an eastern Pacific cyclogenesis event before summarizing all 30

cases.

Fig. 4.6a shows the UW EnKF ensemble-mean SLP analysis and forecast sensitiv-

ities for 12 UTC 5 February 2005. A frontal wave is situated on the eastern edge of

a deeper cyclone near the international dateline; during the next 24 hours, this wave

undergoes cyclogenesis as it moves east toward the North American coast. Forecast

sensitivities are maximized along the eastern edge of the frontal wave near buoy 46036

(dot). Increasing (decreasing) the SLP in this region of the analysis by 1 hPa, which

amounts to shifting the frontal wave to the northwest (southeast), leads to a 1.5 hPa

increase (decrease) in the forecast metric.

The difference between the control and no-buoy analysis and their resulting 24-

hour forecast differences are shown in Figs. 4.6b and c, respectively. For the control

analysis, the SLP is 0.4 hPa lower to the south of the wave and 0.2 hPa higher to

the north of the wave; thus the buoy’s observation shifts the wave to the south. The

largest 24-hour forecast differences are associated with the resulting cyclone along

the Washington Coast; the forecast initialized from the control analysis has SLP

values that are up to 0.8 hPa lower. The ensemble-based prediction of a 0.60 hPa

(0.15 hPa) decrease in the expected value (spread) of the metric compares closely

with the 0.63 hPa (0.18 hPa) reduction obtained from the non-linear forecasts.

Repeating the above process for the remaining 29 forecast cycles indicates that

ensemble-based predictions provide accurate estimates of the changes in both the ex-

pected value and spread of the forecast metric. Figure 4.7 shows that the ensemble-

based prediction of the change in the expected value and spread is in good agree-

ment with the actual change obtained from the non-linear model (R2=0.985); in 90%

of cases considered, the error in the expected value (spread) is less than 0.1 hPa

(0.05 hPa). Moreover, these results indicate that a buoy within the most sensitive

region could produce up to a 0.8 hPa change in the expected value and a 0.5 hPa

reduction in the spread of the 24-hour western WA area-averaged SLP forecasts.
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Figure 4.6: (a) Sensitivity of the western Washington 24-hour SLP forecast to the
SLP analysis (shading, units hPa hPa−1) and the UW EnKF ensemble mean analysis
of SLP (contours, hPa) for the forecast initialized 12 UTC 5 February 2005. (b)
Difference between the no-buoy ensemble mean analysis SLP field and the control
ensemble mean analysis SLP field at 12 UTC 5 February 2005 (shading, hPa). The
no buoy ensemble mean analysis of SLP is given by the solid lines (hPa). (c) as in
(b), but for the 24-hour forecast of SLP valid 12 UTC 6 February 2005.
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Figure 4.7: Change in the (a) expected value (hPa), and (b) spread (hPa) of the
24-hour western WA SLP forecast due to assimilating buoy 46036’s SLP observation.
Ensemble predictions (abscissa) and compared with results for differences between
perturbed WRF forecasts (ordinate) for the 30 most-sensitive forecast cycles during
January-July 2005. The dashed line is the linear least squares fit to the data. The
solid line indicates perfect agreement between the ensemble-based prediction and the
WRF model solutions.
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4.4 Observation Denial Experiments for multiple Observations

The results of the previous section are extended from a single observation to larger

sets. These experiments are performed to quantify the accuracy of ensemble-based

estimates of how an observation changes a forecast metric and to evaluate the value of

various observation platforms in the UW EnKF system. The objective here is similar

to that of Langland and Baker (2004), who use an adjoint-based technique to estimate

the impact of observations on the error in global forecasts.

This section considers 12-hour forecast cycles, and compares forecast metrics for

the test case where observations are assimilated at forecast hour 6, with the control

case where no observations are not assimilated at hour 6. Specifically, the impact

of observations assimilated at 06 UTC and 18 UTC on forecasts valid 6 hours later

is assessed during March 2005. This setup is chosen to utilize the existing 00 UTC

and 12 UTC forecasts from the UW EnKF system during a period of large variability

in weather systems that affected the west coast of North America. Observations are

assimilated one at a time using the procedure described in section 3.1. Furthermore,

rather than solve (2.28), the ensemble forecast metric values are updated in the same

manner as the analysis state variables. The change in ensemble spread may then be

evaluated from the updated ensemble metric values, which reflect the impact of all

prior observations. The procedure used to update the forecast metric is similar to

what Evensen (2003) proposed for EnKF parameter estimation.

Before assessing how all observations change the western WA SLP, the change

due to assimilating select surface observations is estimated. These experiments are

meant to be intermediary between the single observation experiments of the previous

section and the experiments with all observations that will be described later in this

section. For each 06 UTC and 18 UTC analysis time, the sensitivity of the forecast

metric expected value to the model estimate of each surface observation is computed

using (2.23) and tested for statistical significance at the 99% confidence level using
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Figure 4.8: Change in the (a) expected value, and (b) spread of 6-hour forecasts
of western Washington SLP due to assimilating all statistically significant (at the
99% confidence level). Ensemble predictions (abscissa) and compared with results for
differences between perturbed WRF forecasts (ordinate) during March 2005. Dashed
lines give the linear least-squares fit, while the solid line denotes perfect agreement
between the predicted and actual change. Units are hPa.

(4.1). If this sensitivity value is significant, the observation is assimilated and the

change in the forecast metric is evaluated (≈ 20 observations are assimilated during

each cycle). Ensemble-based predictions of δJ and δσ are verified by advancing the

resulting analysis ensemble forward six hours using the WRF model.

Results show good agreement between the ensemble predictions and WRF verifica-

tion of δJ and δσ (Fig. 4.8). The correlation between the predicted and actual δJ and

δσ is 0.82 and 0.87, respectively. Whereas the bias in δJ is small, the ensemble-based

estimate of δσ is consistently larger than the actual value by 0.19 hPa. Differences

between the predicted and actual impact are due to sampling error and nonlinearity;

sampling error will be further discussed later.

The change in the western WA SLP forecast metric due to all observations avail-

able to the UW EnKF system is now assessed. For each analysis time, all obser-
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vations are serially assimilated using the UW EnKF system procedure (≈ 3700 per

cycle); however, the estimated change in the forecast metric is computed only if the

sensitivity to the model estimate of the observation is significant at the 99% confi-

dence interval (≈ 100 per cycle). This confidence interval is determined by repeating

the above procedure with various confidence intervals. Figure 4.9 shows the RMS

difference between the predicted and actual values of δJ and δσ when the statistical

significance value is varied. In these experiments, the state vector is updated with the

same set of observations, but the number of observations used to estimate the change

in the forecast metric varies depending on the statistical confidence level. Whereas

the RMS difference between the predicted and actual change in the expected value

decreases with increasing significance level, the difference between the predicted and

actual spread is minimized at the 99% confidence level. When lower confidence in-

tervals are used, spurious covariances will cause the ensemble sensitivities to adjust

the estimated forecast metric for an observation that actually does not change the

metric. Confidence intervals in excess of 99% can exclude observations that actually

have an impact on the metric. In addition, covariance localization is used in these

experiments, where the influence of observations reduces to zero 5000 km from the

observation. This broad localization function prevents spurious correlations from ad-

justing state variables with observations at long distances. Moreover, for localization

radii greater than 5000 km, there is no change in the agreement between the predicted

and actual change in the metric. For simplicity, covariance inflation is not considered.

Figures 4.10a and b indicate that the predicted impact of observations on western

WA SLP is in good agreement with the actual difference. On average, observa-

tions change the expected value of this metric by 0.86 hPa and reduce the spread by

0.59 hPa. Whereas the correlation between the predicted and actual δJ and δσ is

0.49 and 0.93 respectively, there is more scatter about the line of perfect agreement

when compared to Fig. 4.8. In contrast to the select surface observation results, the

ensemble-based prediction of δσ here exhibits little bias.
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Figure 4.9: RMS difference between the ensemble prediction of the change in the (a)
expected value, and (b) spread (units hPa) of western WA SLP due to observation
assimilation and the actual difference between WRF forecasts as a function of the
statistical significance level used to screen the observations.

A second test is performed to address how the size of the forecast metric box

affects the results obtained above. The change in the forecast of average SLP in a

box over the western North American coast (NAC; region given by the larger box in

Fig. 4.1a) due to observations is determined by repeating the procedure used for the

western WA SLP metric. Ensemble-based predictions of the change in NAC show

comparable skill to the results obtained for western WA SLP (Fig. 4.10c, d). The

correlation between the predicted and actual change in δJ and δσ is 0.42 and 0.71

respectively. Observations produce slightly smaller changes in the expected value

(0.75 hPa) and spread (0.37 hPa) of the NAC SLP metric as compared to the western

WA SLP metric because there is less variability in SLP when averaged over a larger

area.

The ensemble-based estimates of the change in the average SLP within the western

WA box are partitioned by observation type to determine which observations produce

the largest changes in this metric. Figure 4.11 shows probability density functions
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Figure 4.10: Change in the (a) expected value, and (b) spread of 12-hour forecasts
of western Washington SLP due to assimilating all available observations. Ensemble
predictions (abscissa) and compared with results for differences between perturbed
WRF forecasts (ordinate) during March 2005. Dashed lines give the linear least
squares fit. Panels (c) and (d) are similar to (a) and (b), but apply to the average
SLP within the larger NAC box (see Fig. 4.1a). Units are hPa.
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(PDFs) of the change in the expected value and spread of western WA SLP forecasts

due to individual statistically significant observations (99% confidence). The results

for NAC SLP forecasts are qualitatively similar to the western WA results except

that the magnitudes are smaller. For all observation types, the PDFs are sharply

peaked near zero, which indicates that most observations produce small changes to

the average SLP within this region. The long tails in the surface observation PDFs

indicate that, in comparison to ACARS and cloud winds, these observations are more

likely to be associated with a large change. Furthermore, the surface observation

PDF is skewed toward positive changes, thus surface observations are more likely to

increase the average SLP within the box. This tendency toward positive increments

is consistent with the observations trying to correct the negative bias in UW EnKF

altimeter forecasts described in the previous chapter.

4.5 Impact of Observations on Forecast Verification

Forecast metrics that are only a function of the forecast state vector may be well

predicted by this technique; however, this does not guarantee that the observations are

actually improving the forecasts. As a consequence, the experiments in the previous

section are repeated to assess how observations impact the RMS error in SLP within

the western WA and NAC regions. In this case, J is the RMS error in the box and,

unlike the previous calculations, this metric can only be evaluated a posteriori when

an analysis is available for verification. An ensemble of RMS error values within

each box is determined based on each ensemble member’s forecast verified against the

appropriate ensemble-mean analysis; negative values of δJ indicate that observation

assimilation decreases the RMS error.

Fig. 4.12a and b indicate that ensemble-based impact predictions for western WA

SLP error have skill comparable to the western WA average SLP forecast metric; the

correlation between the predicted and actual δJ and δσ is 0.48 and 0.79 respectively.

On average, assimilating observations reduces the RMS error in WA SLP forecasts by
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Figure 4.11: Probability density functions (PDFs) of the impact of individual sta-
tistically significant (99% confidence) surface (top row), ACARS (middle row) and
cloud wind (bottom row) observations assimilated at 06 UTC and 18 UTC on the
expected value (left column) and spread (right column) on the average SLP within
the western WA region valid 6 hours later during March 2005. The value at the top
of each panel indicates the average impact of each observation type during a data
assimilation cycle, which has units of hPa per cycle.
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0.67 hPa. Comparable results are obtained for the RMS error in SLP over the NAC

region. In this case, the correlation between the predicted and actual δJ (0.42) and

δσ (0.71) are similar to the results obtained from the average NAC SLP metric. For

both regional metrics, there are multiple cycles where the ensemble-based estimate

of δJ is off by at least 1 hPa. Each of these forecasts is characterized by a cyclone

undergoing rapid cyclogenesis or cyclolysis near the edge of the respective box (not

shown).

Observation histograms for the RMS error in western WA SLP forecasts are shown

in Fig. 4.13; histograms for the RMS error in NAC SLP forecasts are similar. In

general, some observations improve SLP forecasts in this domain, while others will

make the forecast worse. Similar to Fig. 4.11, surface observation PDFs have larger

tails and thus are more likely to impact the RMS error in SLP. In Figs. 4.13c and

4.13e, the PDFs are symmetric about zero, which implies that ACARS and cloud

wind observations are equally likely to have a positive or negative impact on the

RMS error in SLP. In contrast, the surface observation PDF (Fig. 4.13a) is skewed

toward negative values, indicating that surface observations are more likely to reduce,

rather than increase, the RMS error in SLP. This distribution is qualitatively similar

to histograms of the impact of how adding additional observations impact forecast

errors for a quasi-geostrophic channel model (Morss and Emanuel 2002, their Fig. 8).

The surface observations having the highest impact are given by the buoys located

approximately 500 km offshore, which is consistent with earlier results indicating

this is a region of high sensitivity and that SLP observations can produce the largest

changes in the average SLP. It should be noted that the results obtained in this chapter

will vary depending on the chosen metric, observations assimilated, NWP model and

season. While ACARS and cloud wind observations may not have a significant impact

in the SLP metrics, these observation types may have larger impact on metrics that

measure upper-tropospheric forecast fields.
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Figure 4.12: As in Fig. 4.10, but for the RMS error in SLP forecasts within the
western Washington region (panels a and b) and the NAC region (panels c and d)
valid 6 hours later. Units are hPa.
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Figure 4.13: As in Fig. 4.11, but for the RMS error in SLP forecasts within the
western WA box.
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Chapter 5

APPLICATION OF ENSEMBLE SENSITIVITY TO
EXTRATROPICAL TRANSITION FORECASTS

5.1 Experiment Setup

Here output from a WRF EnKF system is analyzed using the ensemble-based sensi-

tivity techniques described in the previous chapter to understand the predictability

and dynamics of four recent western Pacific extratropical transition events. This

WRF EnKF system is similar to the UW EnKF setup described in Chapter 3 since

the forecasts from the UW EnKF system have comparable skill to guidance gener-

ated by other operational centers. Unlike the UW EnKF system which continuously

cycled with observations and a short-term forecast over a long period of time, this

WRF EnKF setup generates an analysis ensemble each six-hours for a seven-day pe-

riod prior to, and during the transition of Typhoons Lupit (2003), Tokage (2004),

Nabi (2005), and Kirogi (2005). The following section describes each of these storms

in detail and why they were chosen for this study.

Each of the 90 ensemble members is advanced using the ARW WRF (Skamarock

et al. 2005) on a numerical grid with 45 km horizontal grid spacing with 30 vertical

levels over a domain that includes eastern Asia and the western Pacific Ocean. This

particular domain and grid spacing represents a trade-off between ensuring that the

tropical cyclone and important mid-latitude features are well removed from the lat-

eral boundaries during the forecast time of interest, and memory constraints of the

machines used. Furthermore, the horizontal grid spacing used here is similar to the

resolution of global models operational during this period (cf. Table 3.2). Although

this grid spacing does not allow the model to resolve the mesoscale features of the



87

tropical cyclone such as the eyewall or rainbands, which could potentially lead to

additional model error, the goal of these experiments is to understand the synoptic-

scale predictability of ET. For consistency, this implementation of WRF uses the

same parameterizations used in the UW EnKF system: WRF 3-class microphysics

scheme (Hong et al. 2004), Kain-Fritsch convection (Kain and Fritsch 1990) and,

Noah land surface parameterization scheme (Ek et al. 2003). The lateral boundary

conditions are perturbed using the fixed covariance perturbation technique of Torn

et al. (2006) with a scaling factor and autocorrelation coefficient of 1.6 and 0.4, re-

spectively. Ensemble-mean forecasts on the lateral boundaries are obtained from the

6-hour NCEP GFS forecast valid at the appropriate time.

Similar to the UW EnKF system, observations from surface stations, rawinsondes,

ACARS and cloud track winds are assimilated serially using a square-root version

of the EnKF (Whitaker and Hamill 2002) for a 90 member ensemble. When the

tropical cyclone (TC) is classified as such, the Japan Meteorological Agency (JMA)

cyclone best track position (latitude and longitude) data is assimilated in a manner

similar to what Chen and Snyder (2007) used for a 2D barotropic vortex. When

assimilating the best-track data, the model estimate of the best track position is

computed by finding each ensemble member’s latitude of lowest SLP near the TC,

assimilating that observation, and then repeating for the longitude of lowest pressure.

A significant fraction of the western Pacific Ocean is devoid of in situ observations

that could constrain the TC location, thus assimilating the TC best-track position

ensures that the TC is in the correct location in the WRF EnKF analyses. Table 5.1

displays the average number of observations assimilated at each analysis time by this

WRF EnKF system; a large fraction of observations on this domain are in the form

of rawinsondes and cloud motion vectors. The influence of observations is localized

using the Gaspari and Cohn fifth-order piecewise rational function, which for these

simulations, reduces to zero 2500 km from the observation location. Moreover, the

tendency for small ensembles to underestimate covariance magnitude is treated by
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Table 5.1: Observation types and average number of observations assimilated during
each forecast cycle by the WRF EnKF system used for these ET predictability exper-
iments. There are an average of 170 rawinsonde launches at 00 UTC and 12 UTC.

Analysis Time

Observation type 00 UTC 06 UTC 12 UTC 18 UTC

Surface Alt., u, v 330 310 270 250

Rawinsonde u, v, T, RH 6250 200 5950 200

ACARS u, v, T 400 550 500 550

Cloud Winds u, v 5100 4800 5400 5200

Total 12 080 5860 12 120 6200

inflating the deviations from the ensemble mean by replacing the posterior ensemble

perturbations from the mean with a linear combination of the prior and posterior

perturbations where the prior (posterior) is weighted by 0.75 (0.25) (Snyder and Zhang

2003). The weighting factor is empirically determined by cycling over the seven-day

period during Tokage’s transition with various scaling factors and verifying the six-

hour forecasts against rawinsonde data, in a manner similar to what is described for

the UW EnKF system in section 3.2.

For each of the extratropical transition events studied here, 48-hour ensemble

forecasts are initialized at the onset of each TC’s transition; Table 5.2 shows the ini-

tialization time of each 48-hour forecast that will be explored here. Forecasts close

to the onset of transition are explored here because Evans et al. (2006) found that

forecasts initialized during this time are often characterized by large errors in the

structure and position of the storm. The onset of transition is objectively determined

by constructing a cyclone phase-space diagram (Hart 2003) from the WRF EnKF

ensemble-mean analysis data. Extratropical transition is defined to begin when the

average 900-600 hPa thickness to the left of the cyclone track is 10 m less than the
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average thickness to the right of the cyclone track, which is akin to the cyclone going

from the lower-right to upper-right portion of the phase-space diagram. Evans and

Hart (2003) found that no major hurricane (winds greater than 60 m s−1) had a ther-

mal asymmetry that exceeded this value. Lateral boundary conditions for the 48-hour

ensemble forecasts are generated using the Torn et. al (2006) fixed covariance pertur-

bation technique, where the scaling factor increases linearly with time to a maximum

value of 2.8 at hour 48. The scaling factor for the lateral boundary conditions at the

48-hour lead time is determined by computing the ratio of the RMS error in 48-hour

GFS forecasts to the spread of the fixed perturbations generated by the WRF-VAR

system (Barker et al. 2004).

For each ET case described here, the 90 member ensemble is initialized at the

time shown in Table 5.2 (four days prior to the onset of each TC’s transition) by

adding fixed covariance perturbations from the WRF-VAR system to a 36-hour GFS

forecast valid at the initialization time. Prior to being added to the ensemble-mean

forecast, the ensemble perturbations are multiplied by 2.0, so that the spread of the

ensemble is greater than the error in the 36-hour forecast. Recall from Chapter 3 that

Dirren et al. (2007) found that initializing an ensemble data assimilation system with

large error and spread can prevent the ensemble from under-weighting observations

during the first few assimilation times while flow-dependent covariances develop. RMS

errors in six-hour forecasts of wind, temperature, and geopotential height come into

equilibrium 48 hours after the ensemble is initialized, thus the initial ensemble does

not have a large impact on the results here (not shown).

This chapter proceeds by giving a short summary of the ET events explored in sec-

tion 5.2, while section 5.3 describes WRF EnKF forecasts of each storm at the onset

of transition. Section 5.4 displays the initial-condition sensitivity for these forecasts,

followed by section 5.5 where these structures are used to produce diagnostic correc-

tions to the initial conditions that will improve 48-hour cyclone minimum SLP and

SLP forecasts near the TC. In section 5.6, the observations that lead to the largest



90

Table 5.2: List of extratropical transition forecasts studied in this chapter. The text
contains information on how to interpret each category.

Tropical Cyclone Tokage Nabi

Experiment Start 12 UTC 15 October 2004 00 UTC 2 September 2005

Experiment End 12 UTC 22 October 2004 00 UTC 9 September 2005

Forecast of Interest 12 UTC 19 October 2004 00 UTC 6 September 2005

Type of Transition weakening reintensifying

Predictability low high

Downstream Impact high low

Tropical Cyclone Kirogi Lupit

Experiment Start 00 UTC 12 October 2005 12 UTC 26 November 2003

Experiment End 00 UTC 19 October 2005 12 UTC 03 December 2003

Forecast of Interest 00 UTC 17 October 2005 12 UTC 30 November 2003

Type of Transition weakening reintensifying

Predictability low medium

Downstream Impact low high
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changes in the 48-hour minimum SLP forecast will be determined. Finally, section 5.7

uses the statistics from the short-term forecast ensemble in these predictability exper-

iments to understand the dynamical mechanisms responsible for downstream ridging

during ET.

5.2 Overview of Cases

The four western Pacific extratropical transition events explored here are selected

based on whether the TC completes its transition into a baroclinic system, as deter-

mined from GFS analysis data, the skill of the GFS forecast at the onset of transition

and the predicted impact on the downstream state; Table 5.2 summarizes the charac-

teristics of each ET forecasts. A reintensifying system is defined as a tropical cyclone

whose minimum SLP decreases by 10 hPa and transitions into baroclinic system

within 72 hours of the onset of transition, while a weakening storm is a transition

where the minimum SLP continuously rises (Klein et al. 2000). The predictability

of GFS forecasts initialized at the onset of transition is evaluated based on three ob-

jective standards. A storm is deemed to have low predictability if the 48-hour GFS

forecast at the onset of transition meets two of the following are met: the error in mini-

mum SLP is greater than 10 hPa1, the error in cyclone position is larger than 250 km2,

or the RMS error in 500 hPa height in the western Pacific basin (25 ◦N–60 ◦N and

120 ◦E–180 ◦E) exceeds 22 m3. TC track and intensity forecasts are verified against

JMA best-track data, while 500 hPa heights are verified against GFS analyses. The

ET is said to have a large downstream impact in the GFS forecast initialized at the

onset of transition if a Hovmoller diagram of the average 250 hPa meridional winds

1This value was used by McMurdie and Mass (2004) to define a large error in 48-hour SLP
forecasts in the Northeast Pacific.
2Froude et al. (2007) found this to be the average error in 48-hour global model forecasts of

mid-latitude cyclone position.
3The average RMS error in GFS 48-hour forecasts of Northern Hemisphere 500 hPa geopotential

height.
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between 30◦N and 60◦N shows a wave packet originating from where the TC enters

the mid-latitudes. Prior to evaluating the analyses and forecasts of each transition

event, a short summary of each storm’s lifecycle is provided.

5.2.1 Tokage

Typhoon Tokage was first classified a tropical system on 00 UTC 12 October 2004

60 km west of Pohnpei and thereafter moved to the west along the southern side of the

subtropical high (Fig. 5.1a). As Tokage began to move northwest on 16 October, the

storm passed within 40 km of Guam, began a period of intensification, and reached its

lowest SLP (940 hPa) on 00 UTC 17 October. In response to a mid-latitude trough

to its north, Tokage turned to the northeast, accelerated and began to slowly weaken

due to the increased vertical wind shear (Atangan and Preble 2004). GFS forecasts

initialized at the onset of transition (12 UTC 19 October) had Tokage transitioning

into a sub-970 hPa baroclinic cyclone within 48 hours; however, the storm actually

continued to weaken as it moved across Japan on 20 October and back out to sea

on 21 October. Moreover, the rapid intensification of the baroclinic storm in the

GFS forecast lead to a downstream wave packet, thus the RMS error in 48-hour GFS

500 hPa height forecast in the western Pacific box described in the previous paragraph

is 36 m.

5.2.2 Nabi

Similar to Tokage, Typhoon Nabi became a tropical cyclone near the Mariana Islands

on 29 August 2005 (Fig 5.1b). During the next six days, this TC moved to the

northwest, then north toward the southern Japanese coast as it intensified into a

935 hPa TC. By the onset of transition (00 UTC 6 September), the TC cloud field

took on a more asymmetric appearance just prior to making landfall on the Japanese

island of Kyushu (Atangan and Preble 2005). Upon moving into the sea of Japan

on 7 September, the storm accelerated to the north and transitioned into a 970 hPa
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Figure 5.1: Japan Meteorological Agency tropical cyclone best track position and
intensity estimates for Typhoons (a) Tokage, (b) Nabi, (c) Kirogi, and (d) Lupit.
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baroclinic cyclone on 9 September south of the Kamchatka peninsula. Although Nabi

underwent rapid intensification, the GFS forecast initialized on 00 UTC 6 September

accurately captures the storm’s evolution, so the error in 48-hour GFS 500 hPa height

forecast in the western Pacific box is 16 m.

5.2.3 Kirogi

Unlike the previous two cases, Typhoon Kirogi formed in the middle of a subtropical

ridge on 00 UTC 9 October 2005 and remained nearly stationary over the next five

days, whereby it slowly intensified (Fig. 5.1c). This storm reached a maximum inten-

sity of 930 hPa on 12 UTC 12 October. During this period, most global forecasting

systems had difficulty determining the track of the cyclone; GFS forecasts of Kirogi

alternated between moving the storm west or east due to the weak steering winds.

By 00 UTC 15 October, Kirogi began to slowly move to the northeast in response to

an approaching synoptic-scale trough. The tropical cyclone began to rapidly weaken

on 00 UTC 17 October as the storm was influenced significant vertical wind shear

in a mid-latitude jet streak on the eastern side of a synoptic-scale trough (Atangan

and Preble 2005). By 48 hours later, Kirogi was not identifiable in visible or infrared

satellite imagery. Since Kirogi never reintensified as a baroclinic system, it had mini-

mal impact on the mid-latitude flow and the RMS error in this 48-hour GFS western

Pacific 500 hPa height forecast is 22 m.

5.2.4 Lupit

Typhoon Lupit was the most intense TC and resulted in the strongest baroclinic

cyclone among the four cases described here (Fig. 5.1d). During the first five days

of Lupit’s lifetime, the storm slowly strengthened into a 970 hPa TC as it moved to

the southwest toward the Caroline Islands in response to the subtropical ridge to the

north. Beginning 24 November, Lupit underwent a slow strengthening to a 915 hPa

TC as it turned to the northwest. After the storm reached its maximum intensity in
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the Philippine sea, Lupit made a northward turn in response to a weakness in the sub-

tropical ridge. As the environment became more unfavorable to the TC on 12 UTC

30 November, the storm began to undergo extratropical transition and weakened into

a 985 hPa cyclone by 2 December; 36 hours later, Lupit’s remnants had transitioned

into a 970 hPa baroclinic cyclone to the south of the Kamchatka Peninsula (Furze and

Preble 2003). As the TC underwent transition, the mid-latitude flow in the western

Pacific amplified, which lead to a wave packet that was associated with high impact

weather throughout the Northern Hemisphere, including a sub-960 hPa cyclone in the

eastern Pacific on 3 December and a early-season snowstorm on the east coast of the

United States on 6 December. In contrast to the Tokage forecast, the RMS error in

the 48-hour GFS 500 hPa height forecast in the western Pacific box described above

is 25 m, thus Lupit’s forecast has a higher degree of predictability.

5.3 Ensemble Forecasts of Transition

Before describing the WRF EnKF forecasts initialized at the onset of transition,

a verification of the ensemble-mean background forecasts against rawinsonde and

JMA best track data during all transition events is described. Figure 5.2 shows

vertical profiles of the RMS error in six-hour WRF EnKF and GFS forecasts of

temperature and wind over this domain. Similar to the verification performed for

the UW EnKF system (cf., Fig. 3.5a), the RMS error in WRF EnKF background

temperature forecasts on this domain are 0.3 K greater than the corresponding time

GFS background forecasts, except in the upper troposphere, where the RMS error

and bias in UW EnKF forecasts is 0.6 K greater. The magnitude of temperature

errors on this domain are 30% larger than what is observed in the eastern Pacific (cf.,

Fig. 3.5a). For meridional winds, the RMS error in UW EnKF forecasts increases

from 3.5 m s−1 in the lower troposphere to 5 m s−1 at 150 hPa (Fig. 5.2b). The

difference between the error in WRF EnKF and GFS forecasts is less than 1 m s−1

throughout the column, thus one can conclude that six-hour forecasts on this domain
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Figure 5.2: RMS error (solid) and bias (dashed) in six-hour ensemble-mean
WRF EnKF and GFS forecasts of (a) temperature, and (b) meridional wind in the
WRF EnKF domain validated against rawinsonde observations for the duration of
the ET cases explored here.

are only slightly worse than the GFS, and are similar to the UW EnKF system.

Validation of ensemble-mean analyses and forecasts of cyclone position and in-

tensity against best track data indicate that the WRF EnKF captures the evolution

of each cyclone without applying special techniques that use a “bogused” vortex

(e.g., Kurihara 1995) to represent the TC in the analysis (Table 5.3). When the

storm is classified as a tropical cyclone, the verification is performed against JMA

best track data; however, after the cyclone is declared extratropical, the verification

position and intensity are obtained from 1◦ resolution GFS analysis data. For all

cases explored here, the analysis position errors are slightly larger than the distance

between grid points, but are consistently lower than background forecast position

errors, thus observations systematically reduce the error in TC position. Moreover,

the smallest (largest) position errors occur before (after) the cyclone has undergone

transition. Larger errors are obtained subsequent to the onset of transition for two

different reasons. After the tropical cyclone is classified as extratropical, best track



97

Table 5.3: RMS Error in the ensemble-mean analysis and six-hour forecast of trop-
ical cyclone track and intensity averaged over the seven day period where cycling is
performed for each ET event.

TC Track TC Intensity

analysis background analysis background

Tokage 90 km 110 km 18 hPa 18 hPa

Nabi 53 km 77 km 14 hPa 14 hPa

Kirogi 60 km 60 km 25 hPa 24 hPa

Lupit 62 km 81 km 25 hPa 21 hPa

position observations are no longer assimilated, thus there are only a limited number

of observations that can correct errors in the storm’s location. Furthermore, the post-

transition verification position is estimated from 1◦ resolution GFS analysis, thus the

storm’s location is given within +/- 50 km, as compared to +/- 10 km for JMA best

track position.

The coarse horizontal resolution of this model prevents the WRF EnKF analyses

and forecasts from providing an accurate estimate of the TC intensity. For all cases,

the RMS error in analysis TC intensity is between 15-25 hPa and are inversely pro-

portional to the minimum central pressure of the tropical cyclone; when the storm is

stronger (weaker) the intensity errors tend to be larger (smaller). After the onset of

transition, the cyclone’s dynamics are governed by processes the model can resolve,

thus the intensity errors are smaller. With the exception of Lupit, the analyses and

six-hour forecasts have similar intensity errors, thus observations do not have a sys-

tematic impact on storm intensity. Nevertheless, it should be noted that while the

WRF EnKF analyses and forecasts may not yield the exact intensity of each storm,

they do replicate the trend.

The remainder of this chapter focuses on the 48-hour forecasts initialized at the
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onset of each storm’s transition and their initial condition sensitivity. Fig. 5.3 shows

48-hour probabilistic track forecasts of each storm’s transition computed from the

90-member WRF EnKF forecasts. These probabilities are determined by calculating

the percentage of ensemble members where the storm’s center passes within 90 km

of each model grid point. Probabilistic intensity forecasts out to 48-hours from the

WRF EnKF ensemble forecasts are shown in Fig. 5.4. For comparison, Figs. 5.3 and

5.4 also show the operational GFS forecast and the best-track data for the corre-

sponding times, which will be used for verification. In each of the forecasts shown

here, the WRF EnKF forecasts have problems simulating the intensity of the storm.

This could result from the coarse resolution of this model or from initial condition

errors. It should be noted that these WRF EnKF intensity forecasts are similar to

the GFS forecast, thus the large intensity errors do not seem to be specific to the

WRF EnKF system.

The evolution of the SLP and 500 hPa height fields and ensemble spread for 48-

hour WRF EnKF forecasts of Tokage’s (Fig. 5.5), Nabi’s (Fig. 5.6), Kirogi’s (Fig. 5.7)

and Lupit’s (Fig. 5.8) transition are also shown below. These figures display the

ensemble-member closest to the ensemble-mean, rather than the ensemble-mean field,

which often does not contain a great amount of detail in individual features. The

ensemble member closest to the mean is determined by computing the RMS difference

between each ensemble member’s 48-hour forecast of SLP and the ensemble-mean 48-

hour forecast. For a given storm, the member with the smallest difference is shown

in all panels.

5.3.1 Tokage

WRF EnKF forecasts of Tokage’s transition initialized on 12 UTC 19 October con-

tain a great deal of variability in the evolution of the storm and downstream state.

At 12 UTC 19 October (forecast hour 0), Tokage is located 1000 km to the south of

Japan and is associated with a large amount of variance due to the large SLP gradi-
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Figure 5.3: Percentage of WRF EnKF forecast ensemble members where the tropical
cyclone center passes within 90 km of each model grid point during the 48 hour period
initialized on (a) 12 UTC 19 October 2004 (Tokage), (b) 00 UTC 6 September 2005
(Nabi), (c) 00 UTC 17 October 2005 (Kirogi), and (d) 12 UTC 30 November 2003
(Lupit). The thick black line is the JMA best track position and the thin solid line
applies to the GFS forecast.
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Figure 5.4: WRF ensemble-mean forecast of tropical cyclone minimum central pres-
sure (red line) initialized on (a) 12 UTC 19 October 2004 (Tokage), (b) 00 UTC 6
September 2005 (Nabi), (c) 00 UTC 17 October 2005 (Kirogi), and (d) 12 UTC 30
November 2003 (Lupit). The green shading denotes values within one standard devi-
ation of the ensemble-mean, while the yellow shading denotes values that are within
the span of the ensemble. The thick black line is the JMA best track position and
the thin solid line applies to the GFS forecast.
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ents. During the next 48 hours, the WRF forecast shows the tropical cyclone moving

to the northeast over Japan, weakening, and upon re-emerging over the Pacific ocean

east of Japan, reintensifying into a 975 hPa baroclinic cyclone (Fig. 5.5). The baro-

clinic reintensification occurs when an upper-level trough, initially over Mongolia and

moving at 20 m s−1, becomes situated immediately upstream of Tokage’s remnants

in the 48-hour forecast, which results in a favorable interaction between the two fea-

tures similar to a Petterssen type B process (Petterssen and Smeybe 1971). During

the same period, a second 1010 hPa cyclone east of the China-Siberia border slowly

intensifies as a trough initially located over Siberia interacts with it. This cyclone

moves toward the Sea of Okhotsk during the next 24 hours, whereby it combines

with the baroclinic cyclone resulting from Tokage. Coincident with the baroclinic

reintensification is a large increase in the ensemble variance near to and downstream

of the transitioning cyclone; the standard deviation of 48-hour WRF EnKF SLP and

500 hPa height forecasts north of 40◦N exceeds 7 hPa and 40 m, respectively, thus the

WRF EnKF ensemble contains diverging solutions of how the transitioning cyclone

and downstream state will evolve.

The variability in forecasts of Tokage’s evolution is further demonstrated by ex-

amining the ensemble’s cyclone track and intensity forecasts. WRF EnKF ensemble

forecasts are able to replicate the TC track and intensity until the cyclone makes

landfall in Japan on 06 UTC 20 October; beyond hour 24, larger differences between

ensemble members emerge (Fig. 5.3a). Most of the WRF ensemble forecasts have the

TC moving to the left of the best track position; however, the low percentage in track

forecasts at any particular grid point indicate significant variability among members.

A majority of the 90 ensemble members contain an intensifying sub-975 hPa cyclone

after 48 hours, while a few members have a weakening cyclone, but that is still 10 hPa

lower than the best track (Fig. 5.4a). Moreover, the corresponding-time GFS fore-

cast also has a deepening baroclinic cyclone during this period, thus the additional

observations used by the GFS forecast did not lead to a better forecast of this ET.
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Figure 5.5: 00-hour (top row), 24-hour (middle row), and 48-hour (bottom row)
WRF EnKF forecast of sea-level pressure (left column, units hPa) and 500 hPa height
(right column, units m) for the ensemble member whose 48-hour forecast of SLP is
closest to the ensemble-mean field (contours) initialized 12 UTC 19 October 2004
(Tokage). The shading denotes the ensemble standard deviation.
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The diversity of ensemble solutions suggest that Tokage’s transition forecast has high

initial condition sensitivity; therefore, this chapter will mainly focus on this forecast

initialization time.

5.3.2 Nabi

Whereas the forecast of Tokage’s transition contained significant variability among the

ensemble members, WRF EnKF forecasts of Nabi’s transition are characterized by

less uncertainty (Fig. 5.6). WRF EnKF forecasts initialized at 00 UTC 6 September

have Nabi moving poleward into the Sea of Japan and deepening into a 964 hPa

cyclone on 00 UTC 8 September when the TC remnants phase with a slow-moving

500 hPa trough, shown in Fig. 5.6b along the northern border of Siberia. Unlike

the Tokage transition forecast, the region of large ensemble spread in this 48-hour

forecast is confined to the cyclone itself, thus Nabi’s transition does not introduce

as much uncertainty to the downstream forecast. The WRF EnKF forecasts have

the TC moving 200 km to the west of the best track position, with little variability

among the ensemble members (Fig. 5.3b). Furthermore, all 90 ensemble members

show Nabi weakening during the first 12 hours of the forecast while the storm is over

land; however, similar to the corresponding GFS forecast, the ensemble-mean cyclone

intensity decreases by 10 hPa during the final 36 hours of the forecast. The 48-hour

ensemble-mean minimum SLP forecast is 28 hPa lower than the best track intensity

estimate obtained from the GFS analysis on 00 UTC 8 September (Fig. 5.4b).

5.3.3 Kirogi

Although most of the ensemble members capture the evolution of Kirogi’s transition,

48-hour WRF EnKF forecasts have large variability in the TC position (Fig. 5.7). For

the 48 hours following 00 UTC 17 October, the WRF EnKF forecasts show Kirogi

slowly moving to the northeast in response to a synoptic-scale trough to its north. At

forecast hour zero, the ensemble standard deviation in SLP is approximately 6 hPa
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Figure 5.6: As in Fig. 5.5, but for the forecast initialized 00 UTC 6 September 2005
(Nabi).
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and is confined to the TC, but at longer lead times, a region of ensemble spread

in excess of 6 hPa grows parallel to the eastern coast of Japan (Fig. 5.7e). Kirogi

does not have a chance to intensity into a baroclinic storm because the main trough is

downstream of the TC as the storm enters the mid-latitudes, thus the storm is quickly

sheared apart. Figure 5.3c shows that the region of large SLP variance in Fig. 5.7e

reflects the uncertainty in the northeast movement of the TC during this 48 hour

period. Whereas the best track position falls within the region characterized by 40%

of the ensemble members passing within 90 km, some of the ensemble members have

Kirogi’s remnants 700 km to the northeast of the position for the 48-hour forecast

valid 00 UTC 19 October. Although the ensemble-mean analysis of cyclone minimum

SLP on 00 UTC 17 October is 30 hPa higher than the best track estimate, all of

the ensemble members capture the TC weakening during the last 24 hours of the

forecast (Fig. 5.4c). The GFS forecast shows Kirogi moving slower than the best

track estimate; after 48-hours, the TC position is 400 km to the southwest of the

GFS analysis position.

5.3.4 Lupit

WRF EnKF forecasts initialized 12 UTC 30 November accurately simulate the track,

but not necessary the intensity of Lupit during its transition. Figure 5.8 shows that

at forecast hour zero, Lupit is located 1300 km to the south of Japan, while a se-

ries of mid-latitude cyclones are to its north over Japan. Over the next 48-hours,

the ensemble standard deviation for SLP associated with the cyclone increases from

4 hPa to 8 hPa as the cyclone moves to the northeast and transitions into a 980 hPa

baroclinic storm to the east of Japan. The reintensification occurs in response to a

weak upper-level trough located along the southern border of Mongolia and China

in Fig. 5.8b. The two cyclones north of Japan combine into one 975 hPa storm at

the southern tip of the Kamchatka peninsula by 12 UTC 1 December as the short-

wave trough originally near the eastern China-Siberia border in Fig. 5.8b moves east.
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Figure 5.7: As in Fig. 5.5, but for the forecast initialized 00 UTC 17 October 2005
(Kirogi).
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With the exception of the first 12-hours, the best track position falls within the re-

gion of maximum forecast track probability determined from WRF EnKF forecasts

(Fig. 5.3d). Although the ensemble-mean analysis of minimum SLP is 30 hPa higher

than the best track estimate, the best-track intensity estimate falls within the span

of the ensemble over the final 24 hours of the forecast when the storm is in its rein-

tensification phase (Fig. 5.4d). Furthermore, the GFS forecast of cyclone track and

intensity initialized 12 UTC 30 November are also comparable to the ensemble-mean

WRF EnKF forecast.

5.4 Forecast Sensitivities

The following section describes the sensitivity of transitioning TC forecasts to the

initial conditions, which is determined by applying ensemble sensitivity methods to

the WRF EnKF forecasts. This section seeks to understand where small errors in the

initial conditions will have a large impact on the ET forecast. The verification results

presented in the previous section indicate that the WRF EnKF forecasts contain

large intensity errors, thus the first metric considered is the cyclone minimum SLP.

An ensemble of minimum SLP forecast metric values is computed by finding the

grid point in each ensemble member with the lowest SLP in the vicinity of the TC.

The second metric considered is the RMS error in SLP forecasts within 800 km of

the best track position of the cyclone, which will respond to both TC position and

intensity errors. Similar to section 4.5, the RMS error within the circle is determined

by verifying each ensemble member’s SLP forecast within the 800 km radius circle

against the appropriate time ensemble-mean analysis. It may also seem appropriate

to determine the sensitivity of cyclone position forecast errors to the initial conditions;

however, preliminary calculations showed potential problems and is thus not shown.

For this metric, an ensemble member with a cyclone that is 200 km to the west of

the verification position has the same position error as a member with a cyclone that

is 200 km to the east. As a consequence, the linear regression coefficient between
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Figure 5.8: As in Fig. 5.5, but for the forecast initialized 12 UTC 30 November 2003
(Lupit).
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cyclone position error and the analysis grid points, which are used to compute the

initial condition sensitivity, often shows no meaningful relationship. The remainder

of this section focuses primarily on the 48-hour forecast starting 12 UTC 19 October

2004 (the onset of Tokage’s transition) since WRF EnKF and GFS forecasts initialized

at this time are characterized by large errors and ensemble spread.

5.4.1 Cyclone Minimum SLP

Figure 5.9 shows the sensitivity of Tokage’s minimum SLP forecast at various times

to the analysis of SLP at the onset of transition. Similar to section 4.2, the sensitivity

values at each grid point are multiplied by the analysis standard deviation at that

grid point to allow for a quantitative comparison among fields and forecast hours.

Grid points for which the sensitivity value is not statistically significant at the 95%

confidence level, determined via (4.1), are set to zero. Regions of positive (negative)

sensitivity indicate that increasing the analysis SLP at that grid point will lead to

an increase (decrease) in the cyclone minimum SLP at the appropriate forecast hour.

For the 12-hour minimum SLP forecast (Fig. 5.9a), a one standard deviation increase

(decrease) in the analysis SLP near the center of the TC can lead to a 2.5 hPa increase

(decrease) in the cyclone minimum SLP, thus short-term TC intensity forecasts have

memory of the analysis intensity. At longer forecast lead times (36, 48 hours), the

maximum sensitivity pattern is oriented in a dipole centered on the TC; increasing

(decreasing) the southwest (northeast) by one standard deviation, achieved by shift-

ing the storm to the northeast, leads to a 3 hPa increase in the cyclone minimum

SLP (Fig. 5.9c-d). This sensitivity pattern indicates that the post-transition cyclone

minimum SLP depends on the analysis TC position, rather than the analysis cyclone

intensity. This sensitivity pattern is consistent with the Klein et al. (2000) climatol-

ogy of western Pacific ET that showed no meaningful correlation between the cyclone

intensity prior to ET and the cyclone intensity after ET. Both the 36 and 48-hour

forecasts also have patterns of sensitivity in the mid-latitudes that have comparable
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magnitude to those near the TC itself; one standard deviation change to the SLP

field in between a cyclone, anti-cyclone, cyclone chain from southern Mongolia to the

Siberian coast can lead to a 2.5 hPa change in the minimum SLP forecast. This

sensitivity pattern implies that an eastward shift in the mid-latitude flow features is

associated with a weaker cyclone.

Sensitivity patters for 500 hPa height provide greater insight into how small initial

condition errors in the mid-latitudes can effect the transition of Tokage (Fig. 5.10).

For the 12 and 24-hour forecasts of Tokage’s minimum SLP (Fig. 5.10a, b), the largest

sensitivity values are associated with the reflection of Tokage in the 500 hPa flow; in-

creasing (decreasing) the height in the center of the cyclone by one standard deviation

can lead to a 3 hPa increase (decrease) in the forecast minimum SLP. In contrast, the

sensitivity pattern for 36 and 48-hour forecasts is maximized in dipole patterns near

Tokage’s upper-level signature, and two shortwave troughs over Mongolia and Siberia

(Fig. 5.10c-d). Moreover, a one standard deviation change to the 500 hPa height field

in the regions of large sensitivity in the mid-latitudes can lead to the same change

in the 48-hour minimum SLP forecast as a one standard deviation change in the

500 hPa height near the TC, thus initial condition errors in the mid-latitudes are of

equal importance to initial condition errors near the TC.

First, consider the trough initially located over Siberia that is associated with large

initial condition sensitivity; decreasing (increasing) the heights to the east (west) of

this feature by one standard deviation, achieved by moving the trough to the east,

leads to a 2 hPa increase in the 48-hour forecast of minimum SLP. Recall from the

previous section that the evolution of the 1010 hPa cyclone initially along the eastern

China-Siberia border (cf., Fig. 5.5a), which intensifies depending on how this trough

phases with it. Moving this trough to the east allows the 1010 hPa cyclone to undergo

cyclogenesis due to the favorable interaction between these two features. It is hypoth-

esized that this cyclone intensifies at the expense of the baroclinic potential energy

in the area east of Japan; therefore, when Tokage attempts to undergo baroclinic cy-
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Figure 5.9: Sensitivity of the (a) 12, (b) 24, (c) 36, and (d) 48-hour forecast of Tokage’s
minimum sea-level pressure to the analysis of SLP times the analysis standard devi-
ation (shading, hPa) for the forecast initialized 12 UTC 19 October 2004 (Tokage).
The contours show the ensemble-mean analysis of SLP (hPa).
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Figure 5.10: As in Fig. 5.9, but for the analysis of 500 hPa height. The squares
in panel d denote the position of the rawinsonde stations available at the forecast
initialization time. Units for the 500 hPa height field are m.
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Figure 5.11: 48-hour SLP (black contours, units hPa) and 850 hPa temperature (red
contours between 5 and 15◦C) forecast for the WRF EnKF ensemble member with a
48-hour cyclone minimum SLP forecast of (a) 984 hPa, and (b) 952 hPa initialized
12 UTC 19 October 2004 (Tokage).

clogenesis after moving across Japan, the horizontal temperature gradient, and thus

the available potential energy will be less. This hypothesis is supported by comparing

the 48-hour forecast of SLP and 850 hPa temperature for the ensemble member that

has Tokage becoming a 955 hPa cyclone, with the member that has Tokage becoming

a 985 hPa cyclone (Fig. 5.11). In the weak-cyclone member’s forecast (Fig. 5.11a),

Tokage’s remnants are moving toward the meridionally-elongated thermal ridge asso-

ciated with the downstream cyclone, and is not conducive for baroclinic cyclogenesis to

occur. In contrast, the strong-cyclone member has a more zonally-aligned horizontal

temperature gradient that may be more beneficial to Tokage’s transition (Fig. 5.11b).

The sensitivity dipole for the trough originally over central Mongolia has the

opposite sign of the Siberian trough; increasing (decreasing) the heights to the east

(west) of the trough by one standard deviation leads to a 3 hPa increase in the 48-hour

forecast of Tokage’s minimum SLP. As described in the previous section, this trough

phases with Tokage’s remnants during the forecast, thus shifting this trough to the
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west will delay the interaction of these two features, thus the minimum SLP of Tokage

will be higher. It is somewhat curious that the areas of large sensitivity for this case

coincides with regions of few rawinsonde observations, denoted by the black squares

in Fig. 5.10d. This result suggests that the absence of rawinsonde observations in

these regions may have adversely affected the forecast of Tokage’s transition. This

idea will be further explored in section 5.5 where new initial conditions are produced

based on the ensemble sensitivity structures.

Sensitivity patterns for the 48-hour minimum SLP forecast for Nabi to the analysis

of 500 hPa height further suggest that changes to the mid-latitude analysis can be

equally as important as changes to the TC (Fig. 5.12a). For the forecast initialized

at 00 UTC 6 September, the 48-hour minimum SLP forecast is most sensitive to the

500 hPa height field at the base of an upper-level trough along the northern border of

China and Mongolia. Increasing (decreasing) the geopotential heights by one standard

deviation, which in turn will amplify (weaken) the trough, is associated with a 1.5 hPa

decrease in the cyclone’s minimum SLP 48 hours later. Recall from section 5.3 that

this trough phases with Nabi’s remnants during the forecast; therefore, this figure is

suggestive that a stronger trough leads to a more intense baroclinic cyclone. A more

highly amplified trough would have a larger horizontal vorticity gradient, which in

turn could provide more vertical motion above the cyclone and greater height falls

(e.g., Trenberth 1978). Unlike the Tokage forecast, the region of largest sensitivity is

characterized by many rawinsonde observations; therefore, it might be expected that

the analysis errors in that region should be smaller.

Whereas the previous two forecasts show large sensitivity to short-wave troughs in

the mid-latitude flow, the 48-hour WRF EnKF forecast of Kirogi’s minimum SLP is

sensitive to the large-scale circulation pattern over eastern Asia, rather than individual

short-wave troughs (Fig. 5.12b). The largest sensitivity values are in a dipole pattern

surrounding the upper-level trough associated with Kirogi; increasing (decreasing)

the 500 hPa heights to the south (north) by one standard deviation leads to a 8 hPa
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Figure 5.12: As in Fig. 5.10d, but for the forecast initialized (a) 00 UTC 6 September
2005 (Nabi), (b) 00 UTC 17 October 2005 (Kirogi), and (c) 12 UTC 30 November
2003 (Lupit).
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increase in the minimum SLP forecast. This pattern may reflect the effect of shear on

Kirogi’s minimum SLP; when the TC is located further north at 00 UTC 17 October,

it will encounter the jet sooner and rapidly weaken. Furthermore, the region of

high sensitivity surrounding the TC is characterized by few rawinsondes, thus TC

intensity forecasts could have benefited from additional reconnaissance data near the

storm. Multiple areas of high sensitivity exist in the mid-latitudes on either side of

the synoptic-scale trough centered near Korea. Increasing (decreasing) the heights to

the east (west) of the longwave trough over Asia by one standard deviation leads to a

3 hPa increase in the 48-hour forecast of the cyclone’s minimum SLP. This sensitivity

pattern suggests that when the synoptic-scale trough is further west in the analysis,

Kirogi moves directly into the jet on the eastern side of this trough and thus will

quickly weaken in the forecast.

In contrast to the other ET forecast, the forecast of Lupit’s transition initialized

at 12 UTC 30 November displays minimal sensitivity to the trough that phases with

TC remnants. Figure 5.12c shows that the largest sensitivity values are associated

with the reflection of Lupit in the 500 hPa height field and a shortwave trough in

eastern China. Increasing (decreasing) the 500 hPa heights near Lupit or decreasing

(increasing) the heights in the base of the Chinese trough by one standard deviation

will lead to a 2 hPa increase in the 48-hour forecast of cyclone minimum SLP. Recall

that the upper-level trough characterized by large sensitivity values phases with the

cyclone to the north of Japan, rather than Lupit, thus the reintensification of Lupit

as a baroclinic cyclone is sensitive to the evolution of the cyclone to the north. Much

like the Tokage forecast, it is hypothesized that the northern cyclone intensifies at the

expense of the horizontal temperature gradients in the region where Lupit undergoes

transition.
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5.4.2 RMS error in SLP forecasts

The remainder of this section considers the initial condition sensitivities for the RMS

error in the SLP field surrounding the TC, which are shown to correspond well with

the regions of high initial condition sensitivity for the cyclone minimum SLP. For

brevity, only the sensitivity to 500 hPa height is shown here in Fig. 5.13. For this

metric, positive (negative) sensitivity values indicate that decreasing (increasing) the

500 hPa height analysis at that grid point will lead to a decrease in the RMS error

within the thick black circle shown in Fig. 5.13; this circle is centered on the cyclone

best track position and has radius 800 km. The RMS error in 12 and 24-hour SLP

forecasts shows maximum sensitivity to the initial position of Tokage and the height

field to the north of the storm; increasing (decreasing) the geopotential height to

the east (west) of Tokage by one standard deviation can lead to a 1 hPa decrease

in the RMS error in the circle. At longer lead times (36, 48 hours, Fig. 5.13c, d),

the RMS error in SLP has maximum sensitivity to both the tropical cyclone and the

previously described mid-latitude troughs (cf. Fig. 5.10d). The RMS error in SLP

within the circle can be reduced by 1.5 hPa by decreasing (increasing) the heights to

the east (west) of the Siberian trough by one standard deviation and/or by decreasing

(increasing) the heights to the west (east) of the Mongolian trough by one standard

deviation. Recall that the WRF EnKF 48-hour forecasts have a ET cyclone that is

deeper than the best track estimate. The combination of Fig. 5.10d and Fig. 5.13d

indicate that reducing the RMS error in SLP forecasts surrounding the cyclone would

also lead to weaker cyclone. The potential of using these sensitivity structures to

apply a posteriori diagnostic corrections to the initial conditions that will reduce the

error in SLP forecasts will be explored in the next section.

Regions of high initial condition sensitivity for the RMS error in 48-hour forecasts

for the remaining cases also located near the areas of large initial condition sensitivity

for 48-hour cyclone minimum SLP forecasts. Fig. 5.14a shows that for the forecast of



118

−1 −0.5 0 0.5 1

Figure 5.13: As in Fig. 5.10, but for the RMS error in SLP forecasts within 800 km
of the best-track position of the cyclone, denoted by the black circle in each panel.
Shading units are hPa.
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Nabi’s transition initialized 00 UTC 6 September, the error in 48-hour SLP forecast

is most sensitive to the 500 hPa heights south of the short-wave trough along the

Siberia-Mongolia border; increasing (decreasing) the heights in this trough by one

standard deviation is associated with an 0.8 hPa decrease (increase) in the RMS

error in SLP and is consistent with the change required to increase Nabi’s 48-hour

minimum SLP forecast. Initial condition sensitivities for the RMS error in Kirogi’s

forecast are largest in a dipole pattern surrounding Kirogi’s position (Fig. 5.14b).

Increasing (decreasing) the height to the south (north) by one standard deviation can

reduce the RMS error in 48-hour SLP forecasts by 1 hPa. Furthermore, the RMS

error in this forecast is also reduced by decreasing (increasing) the heights to the west

(east) of the longwave trough over Asia. In contrast to the other three cases, the

RMS error in 48-hour SLP forecast for Lupit shows minimal sensitivity to the initial

conditions; one standard deviation changes to the 500 hPa height field would lead to

a less than 0.2 hPa reduction in SLP error. This result is not surprising since the

WRF EnKF ensemble forecasts of Lupit’s transition have a more accurate forecast of

cyclone track, as compared to the other storms considered here.

5.5 Perturbed Initial Condition Experiments

In the following section, the ensemble sensitivity structures identified above will be

used to apply diagnostic corrections to the initial conditions to produce a desired

effect in the 48-hour forecast of cyclone minimum SLP and the RMS error in 48-hour

SLP forecasts. Moreover, the following experiments determine how better initial

conditions can reduce the error in the WRF EnKF forecasts explored here. Since the

WRF model contains errors in its formulation, the initial conditions that give the

best forecast are not necessarily the initial conditions that are the best estimate of

the state. These perturbed initial conditions are integrated forward using the non-

linear model whereby the resulting forecast metric value is compared to the change

predicted by ensemble sensitivities.
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Figure 5.14: As in Fig. 5.12, but for the RMS error in SLP forecasts within 800 km
of the best-track position of the cyclone, denoted by the black circle in each panel.
Shading units are hPa.
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For each of the ET forecasts described here, diagnostic corrections are computed

and applied to one ensemble member’s initial conditions using the following procedure.

Since the sensitivity values apply to small changes about the ensemble-mean forecast

metric value, the control forecast for these experiments is the ensemble member whose

48-hour forecast metric value (either the minimum SLP or RMS error in SLP) is

closest to the ensemble-mean. Ensemble-mean analyses are not used here because it

has smoothed out versions of the features in the initial conditions, especially near the

TC. A perturbed version of each element of the initial condition state vector (xp) is

found via

xp = xa +
∂xa

∂J
α, (5.1)

where for an element of the state vector j,

∂xa
j

∂J
=

cov(Xa
j ,J)

var(J)
, (5.2)

xa analysis state variable for the ensemble member closest to the mean, Xa
j is a

vector of the analysis ensemble’s estimate of the jth analysis state variable, J is

the ensemble estimate of the 48-hour forecast metric and α is the desired change

in the forecast metric. The equation for ∂xa

∂J
represents linear regression coefficient

where the independent variable is the desired change in the forecast metric and the

dependent variable is the perturbation to the analysis state vector required to realize

that change. The perturbed initial conditions are integrated forward 48 hours using

the WRF model whereby the forecast metric value is computed and compared to the

control forecast metric value. This process can be repeated for several values of α to

determine the range for which the ensemble predictions of the forecast metric change

are valid. The procedure described here is similar to experiments performed by Rabier

et al. (1996), Zou et al. (1998) and Langland et al. (2002), who used singular vector

and adjoint-based sensitivities to adjust the initial conditions in a manner that would
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reduce the error in mid-latitude cyclone forecasts. The results of perturbing the initial

conditions to improve 48-hour cyclone minimum SLP forecasts is presented first before

moving on to similar experiments for the RMS error in 48-hour SLP forecasts.

Figure 5.15 shows the control SLP and 500 hPa height analysis and the perturba-

tion that must be added to each field in order to increase the 48-hour cyclone minimum

SLP forecast by 18 hPa (the error in the 48-hour cyclone minimum SLP forecast for

this member). The largest magnitude perturbations are located near Tokage; to raise

the minimum SLP by 18 hPa, the SLP should be decreased (increased) on the south-

west (northeast) side of Tokage by 12 hPa. Moreover, reducing the intensity of the

cyclone 48-hours later also requires increasing the SLP near the downstream Asian

cyclone by 6 hPa and on the southern side of the 948 hPa cyclone in the Bering Sea

by 10 hPa. These initial condition changes are roughly two-times the SLP analysis

standard deviation at these grid points. The perturbed initial conditions for 500 hPa

height are 100 m larger (smaller) than the control analysis to the northeast (south-

west) of Tokage (Fig. 5.15b). Furthermore, the geopotential height on the eastern

side of the Siberian (Mongolian) trough is 30 m lower (50 m higher) than the control

forecast, which will achieve an eastward (westward) shift to this features. Similar

to the SLP perturbations, the 500 hPa height changes are also twice the analysis

standard deviation in these locations.

After 48 hours, the differences between the control and perturbed initial condition

forecasts have increased significantly and are primarily located near the transitioning

cyclone. The 48-hour SLP forecast for the perturbed member is up to 40 hPa higher

than the control forecast at the center of the cyclone and up to 25 hPa lower on

the northern and southern side of the forecast ET cyclone (Fig. 5.15c). This tripole

difference pattern indicates that the perturbed initial condition forecast has an ET

cyclone that is further south, and also contains a separate baroclinic cyclone over

the Kamchatka peninsula. In the perturbed initial condition forecast, the previously

described weak cyclone over far eastern China (cf. Fig. 5.5a) does not combine with
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Figure 5.15: Difference between the perturbed and control analysis of (a) SLP (units
hPa), and (b) 500 hPa height (units m) for the forecast initialized at 12 UTC 19 Oc-
tober 2004 (shading). The control analysis is given by the solid lines. The perturbed
initial condition is constructed such that the 48-hour cyclone minimum SLP forecast
is 18 hPa higher than the control forecast. (c) and (d) as in (a) and (b), but for the
48-hour forecast of SLP and 500 hPa height, respectively.
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Tokage’s remnants. Consistent with a weaker baroclinic cyclone, the 500 hPa heights

near the upper-level trough associated with the Tokage’s remnants are 300 m higher

than the control forecast (Fig. 5.15d). In addition, there are also regions of alternating

negative-positive differences downstream of the ET cyclone, co-located with ridge and

troughs in the control forecast. This distribution of forecast differences implies that

the downstream flow in the perturbed initial condition forecast is less amplified than

the control forecast. The 48-hour perturbed initial condition minimum SLP forecast

is 11 hPa higher than the control forecast value, but is smaller than the ensemble

prediction of 18 hPa change.

Repeating these perturbed initial condition experiments with various values of α

and comparing the resulting 48-hour minimum SLP forecast with the control simu-

lation shows that between -5 hPa and 10 hPa, there is good agreement between the

predicted change in the minimum SLP forecast and the actual difference in WRF

solutions (Fig 5.16a). Beyond these values, the ensemble prediction falls below the

main diagonal, which indicates that the WRF response is less than the prediction

and linear perturbation dynamics are violated. As a consequence, it is not possible to

use ensemble sensitivities to produce an initial condition change that will eliminate

the 18 hPa error in the 48-hour cyclone minimum SLP forecasts without applying an

iterative procedure.

Perturbed initial condition forecasts are generated for the three other ET forecasts

explored in this study using the procedure described above for the Tokage forecast. In

each forecast, the maximum magnitude of α is the error in the 48-hour ensemble-mean

minimum SLP forecast. Perturbed initial condition forecasts for Nabi show good

agreement between the predicted and actual changes between -8 hPa and 8 hPa;

however for values greater than 8 hPa, the predicted change in the minimum SLP

is smaller than the actual difference obtained for the forecast (Fig. 5.16b). The

significant asymmetry between positive and negative perturbations indicates that at

most Nabi can be deepened by 10 hPa, whereas it could be weakened by more than
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Figure 5.16: 48-hour cyclone minimum SLP differences as determined by perturbed
integrations of the WRF model (ordinate) against the differences predicted by ensem-
ble sensitivity analysis (abscissa) for forecasts initialized on (a) 12 UTC 19 October
2004 (Tokage), (b) 00 UTC 6 September (Nabi), (c) 00 UTC 17 October 2005 (Kirogi),
and (d) 12 UTC 30 November 2003 (Lupit). The initial conditions for the perturbed
integrations are created using ensemble statistics to obtain a desired change in the
48-hour forecast of cyclone minimum SLP. The solid line indicates perfect agreement
between the predicted and WRF model integrations. Units are hPa.
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20 hPa. Ensemble predictions of how initial condition changes affect the 48-hour

minimum SLP forecast for Kirogi are in good agreement with the actual change

obtained from the model over much of the range explored here, although for large

negative perturbations (stronger cyclone), the actual change is much larger than the

predicted change (Fig. 5.16c). This occurs because when large negative perturbations

are applied, the cyclone is shifted far enough to the south so that is not affected by the

mid-latitude trough to the north. For the Lupit forecast, the difference between the

predicted and actual change is generally less than 1 hPa between -4 hPa and 6 hPa,

with a large asymmetry between the positive and negative perturbations; positive

perturbations follow linear dynamics in the ensemble sensitivities, whereas negative

perturbations do not (Fig. 5.16d).

Ensemble sensitivities are also used to generate initial conditions via (5.1) that will

decrease the RMS error in 48-hour SLP forecasts within 800 km of the cyclone. The

procedure used for these experiments is similar to what is used for the perturbed 48-

hour cyclone minimum SLP forecasts, except that J is the RMS error in 48-hour SLP

forecasts and the control forecast is the ensemble member whose RMS error in the

48-hour SLP forecast is closest to the ensemble mean value. Recall from section 5.4

that decreasing J , which is akin to negative values of α, correspond to lower errors in

SLP forecasts. Figures 5.17a and b show the initial condition perturbation required

to reduce the RMS error in the Tokage SLP forecast by 11 hPa (the error in the 48-

hour ensemble-mean forecast). The largest differences for SLP are in a dipole pattern

surrounding Tokage; the perturbed initial condition has SLP values that are 10 hPa

lower (higher) on the west (east) side of the cyclone. Moreover, there is a tripole

of 3 hPa negative-positive-negative differences from Mongolia to the Asian coast,

which leads to an eastward shift of these mid-latitude features. For 500 hPa height,

differences of up to 60 m exist near the upper-level reflection of Tokage, while a 30 m

increase (decrease) in 500 hPa heights to the west (east) of the Siberian trough and

a 30 m decrease (increase) in the heights to the west (east) of the Mongolian trough
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are also present.

Similar to the perturbed initial condition forecasts for the 48-hour cyclone min-

imum SLP, differences between this perturbed initial condition experiment and the

control forecast are maximized near the forecast cyclone. The perturbed initial condi-

tion forecast has SLP values that are up to 30 hPa higher in the center of the forecast

cyclone, with negative differences of up to 15 hPa on the northern and southern sides

(Fig. 5.17c). This distribution implies that the perturbed initial condition forecast

does not reintensify Tokage’s remnants as much as the control forecast and the cy-

clone would be further south. At 500 hPa, height differences of up to 150 m coincide

with the upper-level trough associated with the ET cyclone; however, there are also

regions of negative and positive differences downstream of this trough that coincide

with a ridge and trough in the 500 hPa heights for the control forecast (Fig. 5.17d).

This distribution implies that the forecast characterized by lower SLP errors has less

amplitude in the downstream flow. The RMS error in the perturbed initial condition

forecast is 6 hPa smaller than the control forecast, thus systematic changes to the

initial conditions can reduce the error in SLP forecasts by 60%.

The process of generating perturbed initial conditions to reduce the RMS error

in 48-hour SLP forecasts is repeated using the above procedure for various values

of α and all of the ET forecasts studied here. The maximum value of α for each

initialization time is the RMS error in the 48-hour ensemble-mean SLP forecast.

Comparisons of the predicted change in the forecast metric to the actual difference in

model forecasts are shown in Fig. 5.18. With the exception of Lupit, altering the initial

conditions based on ensemble sensitivities can reduce the RMS error in SLP by up to

60%. Furthermore, there is considerable agreement between the predicted reduction

in SLP error estimated from ensemble statistics and the actual change obtained from

the model forecasts for values of α up to 5 hPa, 3 hPa, and 2 hPa for the Tokage, Nabi

and Kirogi forecasts, respectively. For larger magnitude perturbations, adjusting the

initial conditions to reduce the RMS error has little impact, and in the case of Kirogi,
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Figure 5.17: Difference between the perturbed and control analysis of (a) SLP (units
hPa), and (b) 500 hPa height (units m) for the forecast initialized at 12 UTC 19 Oc-
tober 2004 (shading). The control analysis is given by the solid lines. The perturbed
initial condition is constructed to decrease the RMS error in 48-hour SLP forecasts
within the solid circle in Fig. 5.13d by 11 hPa. (c) and (d) as in (a) and (b), but for
the 48-hour forecast of SLP and 500 hPa height respectively.
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can actually lead to an increase in the error. The exception to these results is the

Lupit transition forecast; altering the initial conditions does not reduce the RMS error

in SLP beyond the ensemble-mean value of 5 hPa. This result is obtained because

for this case, the RMS error in 48-hour SLP forecasts showed little sensitivity to the

initial conditions (cf., Fig. 5.14c).

5.6 Observation Impact

This section uses ensemble sensitivities to determine how observation assimilation at

the initialization time affects the WRF EnKF 48-hour minimum SLP forecast. In

these experiments, the expected value and spread of the minimum SLP forecast for

the case where observations are assimilated at hour 0 is compared to the control case

where observations are not assimilated at hour 0. This section proceeds by identifying

the observations that lead to the largest changes in the minimum SLP metric during

each of the forecasts explored here, and then describes the results for several forecast

experiments whereby different sets of observations are assimilated at hour 0 and the

resulting analysis ensemble is integrated forward 48 hours.

The observations that produce the largest change in each cyclone’s 48-hour min-

imum SLP forecast are identified using the following procedure. Consider all of the

available observations at the ET forecast initialization time. The sensitivity of the

48-hour cyclone minimum SLP forecast to the model estimate of each observation can

be computed using (2.23) and tested for statistical significance at the 99% confidence

level using (4.1). If the sensitivity value is deemed to be statistically significant, the

hypothetical change in the expected value and spread of this forecast metric is calcu-

lated from (2.25) and (2.28), respectively. Next, the observation that will produce the

largest reduction in forecast metric variance is identified and assimilated serially using

an EnKF. In addition, the change in the forecast metric values are updated in the

same manner as the analysis state variables. After assimilating this observation, the

process of computing the hypothetical change in the forecast metric due to an individ-
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Figure 5.18: As in Fig. 5.16, but for the RMS error in 48-hour SLP forecasts within
800 km of the best track cyclone position, denoted by the appropriate circle in
Figs. 5.13d and 5.14
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Table 5.4: Change in the expected value (spread) in the 48-hour cyclone minimum
SLP forecast due to the assimilating different sets of observations at hour 0. The
control forecast ensemble does not assimilate any observations at hour 0. Units are
hPa.

Tropical Cyclone Tokage Nabi Kirogi Lupit

Number of Sig. Obs. 32 42 32 39

All Observations -0.4 (-5.6) -3.0 (-2.6) -2.9 (-9.1) -3.0 (-3.9)

Best Obs. Only 2.2 (-2.0) -2.6 (-1.1) 6.8 (-5.0) -3.9 (-2.5)

No Best Obs. -0.5 (-5.6) -2.0 (-2.6) 0.0 (-8.7) -2.9 (-3.9)

No Best Platforms 0.0 (-5.5) -2.2 (-2.6) -0.1 (-9.2) -4.6 (-3.9)

Random Obs. 0.1 (-0.5) -0.7 (-0.4) 0.1 (-0.1) -0.9 (-0.6)

ual observation is repeated and the observation that will produce the largest reduction

in forecast metric variance is identified and assimilated. This procedure continues un-

til all statistically significant observations are exhausted. Table 5.4 shows the number

of statistically significant observations identified for each ET forecast; approximately

40 observations are considered in each case. It should be noted that these results are

highly dependent on the order of assimilation since nearby observations can produce

similar updates to the model state vector, and thus changes to the forecast metric. If

the change to the forecast metric due to previously assimilated observations are not

accounted for, this technique will over-estimate the effect of individual observations

because the observation data is correlated.

Figure 5.19 shows the estimated change in the expected value of the 48-hour cy-

clone minimum SLP forecast by the identified statistically significant observations.

Each of the symbols represents one observation from an individual platform; for ex-

ample, a square symbol could represent a rawinsonde zonal wind observation at one

pressure level. In all cases, the observations that produce the largest changes in

the expected value of the cyclone minimum SLP are associated with rawinsondes in



132

China and Japan, while cloud winds, ACARS and surface observations typically pro-

duce smaller changes. This result is related to the observation errors, information

content in the observation data and sensitivity of the forecast metric to the initial

conditions; rawinsonde observations have smaller wind errors than ACARS and cloud

wind observations and provide vertical profiles of the atmosphere near the important

mid-latitude features. Furthermore, observations that produce the largest change in

the cyclone minimum SLP are near regions of large initial condition sensitivity shown

in Figs. 5.10 and 5.12.

For the Tokage forecast, the Ulaan-Baator, Mongolia rawinsonde profile, which is

located near the region of large 500 hPa height sensitivity, leads to a 4 hPa increase

in the cyclone minimum SLP, while a few of the surrounding rawinsondes generally

produce changes of up to 2 hPa (Fig. 5.19a). In contrast to the Tokage forecast, Nabi’s

48-hour minimum SLP forecast is relatively unchanged by observation assimilation;

the Ulaan-Baator profile identified during Tokage case and the observation of cyclone

best track position, which will affect the nearby shortwave trough and TC respectively,

each lead to a 2 hPa reduction in minimum SLP (Fig. 5.19b). The largest changes to

Kirogi’s minimum SLP forecast result from the Minamidaitojima rawinsonde profile

near the TC and the Changchun, China rawinsode north of Korea (Fig. 5.19c). These

observations would modify the environment surrounding the tropical cyclone and

synoptic-scale trough, respectively and each produce a 4 hPa change in the minimum

SLP. Furthermore the estimated increase in the cyclone minimum SLP due to the best

track position observation is 3 hPa. Two different rawinsonde observations near the

TC lead to significant changes in Lupit’s 48-hour minimum SLP forecast; the Yonago

rawinsonde profile in southern Japan and Naze island station are associated with a

4 hPa increase and 3 hPa decrease in the metric, respectively. Moreover, the Dulan

rawinsonde over central China, which is near the trough that phases with Lupit in

the forecast, is associated with a 4 hPa decrease in minimum SLP.

Although several observations in Fig. 5.19 are shown to produce large changes
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Surface Rawinsonde ACARS Cloud Wind TC Track

−4 −3 −2 −1 0 1 2 3 4

Figure 5.19: Change in the expected value of the 48-hour forecast of cyclone minimum
central pressure valid (a) 12 UTC 21 October 2004 (Tokage), (b) 00 UTC 8 September
2005 (Nabi), (c) 00 UTC 19 October 2005 (Kirogi), and (d) 12 UTC 2 December
2003 (Lupit) due to the assimilation of statistically significant observations at the
analysis time as estimated from ensemble statistics (shading). The shape of the
symbol indicates the observation platform. Units are hPa.
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to the expected value of the minimum SLP forecast, Fig. 5.20 shows that up to five

observations are associated with large reductions in this forecast metric’s standard

deviation. While there is generally good correspondence between the observations

that are associated with large changes in the expected value and spread, there are a

few observations that only lead to a large change in one of the two quantities. This

can occur because the change in the expected value depends partly on the observa-

tion innovation (y−H(xb)), while the variance change does not. The Ulaan-Baator,

Mongolia rawinsonde is associated with a 3.5 hPa reduction in the spread of Tok-

age’s minimum SLP forecast; however, the Minamidaitojima rawinsonde south of

Japan and Chita, Siberia station produce a 2.5 hPa and 2.0 hPa decrease, respec-

tively (Fig. 5.20a). In contrast to the other cases, observation assimilation for the

Nabi forecast is characterized by smaller reductions in the forecast metric spread

(Fig. 5.20b). Only the Dulan profile in central China has a metric spread reduction

that exceeds 2 hPa. For Kirogi’s forecast, both the Minamidaitojima rawinsonde

west of the TC and the best track position observation each reduce the spread in TC

minimum SLP by 4.0 hPa (Fig. 5.20c). Furthermore, the rawinsonde observations in

southeastern China and the Changchun station in northeastern China are associated

with a 2 hPa and 1.5 hPa reduction in spread, respectively. Three observations lead

to large reductions in minimum SLP spread during Lupit’s forecast; the Yonago pro-

file in Japan and Dulan profile in central China, and best track position observation

lead to a 2.7 hPa, 1.2 hPa, and 1.2 hPa reduction, respectively, while the remaining

observations are associated with less than 1 hPa reductions (Fig. 5.20d).

The value of the identified observations to 48-hour ET forecasts is assessed by as-

similating different sets of observations at forecast hour 0, and comparing the 48-hour

forecasts that result from the resulting initial conditions. Observations for each exper-

iment are assimilated serially using the procedure described at the beginning of this

chapter, but without covariance inflation. After data assimilation is completed, the

resulting analysis ensemble is integrated forward 48 hours and the expected value and
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Figure 5.20: As in Fig. 5.19, but for the spread in the 48-hour forecast of cyclone
minimum SLP.
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spread of the cyclone minimum SLP is compared with the control ensemble forecasts

where no observations are assimilated at hour 0. The “All” observation set consid-

ers all available observations at the forecast initialization time (≈ 12,000). Two of

the five experiments assimilate orders of magnitude fewer observations. The “Best”

experiment only assimilates the ≈ 40 observations identified at the beginning of this

section that produce large changes in the metric, while the “Random” set randomly

selects an equal number of observations from the full observation set. Whereas the

“Best” experiment describes how a small number of observations can change the min-

imum SLP forecast, the “Random” experiment is used to determine whether the same

change can be obtained by randomly assimilating the same number of observations.

Finally, two additional observation sets are considered that withhold the “Best” ob-

servations. The “No Best” experiment assimilates all available observations except

for the ≈ 40 statistically significant observations; however, other observations from

the same platform are still considered. In contrast, the “No Platform” set contains all

observations except for the observation platforms that contain the statistically signifi-

cant observations. For example, consider a rawinsonde station that has a statistically

significant temperature observation at 500 hPa. In the “No Best” experiment, only

the 500 hPa temperature observation will be withheld; however, in the “No Platform”

experiment, the entire rawinsonde profile would be removed.

Comparison of the Tokage “All” experiment to the other four ensemble forecasts

indicate that a small sample of observations can lead to a large change in the cy-

clone minimum SLP (Table 5.4). Assimilation of all observations leads to a 0.4 hPa

decrease in the expected value and a 5.6 hPa decrease in the spread of the cyclone

minimum SLP as compared to not assimilating any observations. When the 32 ob-

servations associated with large changes in cyclone minimum SLP are assimilated

(“Best”), the expected value (spread) in 48-hour minimum SLP forecasts are 2.2 hPa

higher (2.0 hPa lower) than the control forecast where no observations are assim-

ilated, thus 36% of the reduction in forecast metric variance can be attributed to
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assimilating 32 observations. The “Random” experiment confirms that the “Best”

observations are important; the reduction in the spread of the minimum SLP is 5%

(25%) of the change found in the “All” (“Best”) experiments. Removing the statisti-

cally significant observations has minimal impact on the minimum SLP forecast; the

change in the expected value and spread of the metric for the “All” and “No Best”

experiments are nearly identical. When the 32 important observations are removed,

assimilating the remaining observations with flow-dependent error statistics makes up

for the absence of the “Best” data because this observation data is highly correlated.

Moreover, this result suggests that the observations in a single rawinsonde profile

contain redundant information since removing one observation from a number of raw-

insondes has little impact on the metric. In contrast, when the entire Ulaan-Baator,

Mongolia rawinsonde profile is removed in the “No Best Platform” experiment, the

expected value of the 48-hour minimum SLP forecast is the same as for the forecast

where no observations are assimilated, thus assimilating some information from this

rawinsonde is important to the Tokage forecast.

Repeating these observation impact experiments for the remaining ET forecasts

confirms the relative importance of the “Best” observations for 48-hour minimum

SLP forecasts. The reduction in the spread of the 48-hour cyclone minimum SLP

forecast when the “Best” observations are assimilated is 42%, 55% and 64% of the

change obtained when all observations are assimilated for the Nabi, Kirogi and Lupit

forecast times, respectively. Furthermore, randomly selecting observations from the

full observation set is associated with smaller reductions in forecast metric spread as

compared to the “Best” experiment. Whereas the changes in the expected value of

Nabi’s cyclone minimum SLP for the “All”, “Best”, “No Best” and “No Best Plat-

form” observation experiments are similar, there is minimal change to the expected

value of minimum SLP when the most important observations are removed from the

Kirogi forecast. In contrast to the other three forecasts, the most important obser-

vations to Kirogi’s minimum SLP forecast are in regions characterized by few in situ
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observations and high forecast sensitivity (cf., Fig 5.12b), thus the remaining obser-

vations cannot compensate for their absence. In the case of Lupit, the change in the

expected value for the “All” experiment is similar to “No Best” experiment; however,

when the entire platform is removed (“No Platform”), the 48-hour minimum SLP

forecast is 1.5 hPa lower than what is found when all observations are assimilated,

thus the “Best” observation platforms limit the reintensification of the cyclone.

5.7 Using Ensemble Statistics to Understand the Dynamics of Down-
stream Ridge Development

For the remainder of this chapter, the statistics from the short-term forecast ensemble

generated by the WRF EnKF system are used to explore the dynamical mechanisms

responsible for the amplification of the downstream flow during the onset of ET. In

order to obtain accurate downstream forecasts during ET, it is important to be able

to understand how ET impacts the downstream state. The upper-level flow will be

described using potential vorticity (PV) since this quantity is conserved in the absence

of diabatic and frictional processes. The relationship between the upper-tropospheric

PV and several factors related to the transitioning TC, such as different regions

of precipitation, is found by computing the linear regression between the ensemble

estimates of these fields. The remainder of this section proceeds by determining

the mechanisms responsible for the downstream ridging that occurred with Tokage’s

transition before a similar analysis is performed for Nabi and Lupit’s transition. Recall

that Kirogi moved into a region that was unfavorable for baroclinic cyclogenesis, and

as a result, did not lead to the amplification of the mid-latitude flow.

5.7.1 Tokage

Figure 5.21 shows the ensemble-mean six-hour forecast of SLP, precipitation, 850 hPa

temperature, 850 hPa frontogenesis, and the upper-level flow, represented by the 2

potential vorticity unit (PVU) contour on the 250 hPa pressure surface, each twelve
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hours prior to and during the transition of Tokage. Over this 24 hour period, the

upper-level flow downstream of Tokage amplifies as the TC moves into the mid-

latitudes south of Japan. Further, there are two primary regions of precipitation,

and thus latent heating, near Tokage: a quasi-circular region near the center of the

TC, with precipitation rates in excess of 45 mm (6 h)−1, and another west-east ori-

ented region to the north and east of the storm with rates around 20 mm (6 h)−1.

Whereas the former precipitation area is associated with the TC, the latter region is

co-located with the warm front to the northeast of the TC. On 00 UTC 19 October,

the TC is located well to the south of this baroclinic zone; however, 24 hours later,

Tokage becomes embedded within the 850 hPa thermal ridge and the two areas of

precipitation become indistinguishable. The southerly winds in between the tropi-

cal cyclone and the sub-tropical high to its east advect tropical values of heat and

moisture into the mid-latitudes and is responsible for the frontogenesis in excess of

1 K (100 km)−1 (3 h)−1 along this baroclinic zone northeast of the TC. Assuming that

the 2 PVU contour follows the mid-latitude flow, the horizontal component of the rel-

ative vorticity vector, which is proportional to the vertical wind shear, is directed to

the northeast in the vicinity of the TC, thus either the precipitation associated with

the TC inner core, or the frontogenesis could be responsible for the amplification of

the downstream ridge.

The relative importance of each precipitation region is determined from the en-

semble statistics by evaluating how changes in horizontally-averaged precipitation

affect the 250 hPa PV at each grid point (Fig. 5.22). This figure and several others

like it are created using the following procedure. For each ensemble member, the

six-hour accumulated precipitation associated with the baroclinic zone (TC) is deter-

mined by computing the area-average precipitation within the box (circle) shown in

Fig. 5.22. Next the ensemble estimates of the area-average precipitation are normal-

ized by dividing the ensemble estimates by the ensemble standard deviation. Finally,

the change in the 250 hPa PV at each horizontal grid point associated with a one
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Figure 5.21: (left column) Six-hour ensemble mean forecast of accumulated pre-
cipitation (shading, mm (6 h)−1), sea-level pressure (thin contours, hPa), and
the 2 potential vorticity unit contour on the 250 hPa surface (thick contour, 1
PVU=10−6 K m2 kg−1 s−1) valid 06 UTC 19 October 2004 (top row), 18 UTC
19 October 2004 (middle row) and 06 UTC 20 October 2004 (bottom row). The
right column shows the corresponding time 850 hPa temperature (shading, ◦C) and
850 hPa frontogenesis contoured for values greater than 1 K (100 km)−1 (3 h)−1 every
1 K (100 km)−1 (3 h)−1.
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standard deviation change in each area of precipitation (∂xa

∂J
) is computed using (5.2),

where J is the normalized average precipitation in either the box or circle and xa is

the six-hour forecast of 250 hPa PV. Similar to Fig 5.9, the sensitivity at each grid

point is tested for statistical significance at the 95% confidence level using (4.1); grid

points that do not pass the test are set to zero. Regions characterized by warm (cold)

colors on this figure show where a one standard deviation increase in the respective

area of precipitation is associated with an increase (decrease) in the 250 hPa PV.

On 06 UTC 19 October, increasing the six-hour forecast of warm-front precipita-

tion by one standard deviation is associated with a 0.25 PVU decrease in the six-hour

250 hPa PV forecast within the developing ridge north of Japan, while increasing the

precipitation in the inner core does not seem to relate to the 250 hPa PV in the ridge

(Fig. 5.22a, b). Decreasing the PV to the north of Japan achieves an amplification

of the ridge, thus the statistics of the ensemble indicate that the development of the

ridge at this time is tied to the latent heating along the baroclinic zone. Twelve (24)

hours later, a one standard deviation increases to the warm-front precipitation is as-

sociated with a 0.4 PVU (0.6 PVU) reduction in the ridge PV, thus the precipitation

has a larger impact as the storm moves poleward. Moreover, one standard deviation

changes to the tropical cyclone precipitation during these same times are associated

with a 0.25 and 0.6 PVU reduction, respectively. These results suggest that when

the tropical cyclone is located well south of the mid-latitude baroclinic zone, the

warm-front precipitation is primarily responsible for the initial upper-tropospheric

ridge amplification; however, when the TC moves into the lower-tropospheric thermal

ridge, both the TC and frontal precipitation are equally important in amplifying the

upper-level flow, possibly because it is difficult to distinguish between the two areas

of precipitation.

Two factors can contribute to the amount of precipitation, and thus the amount

of latent heating, associated with the baroclinic zone: the strength of the vertical cir-

culation along the baroclinic zone, as measured by the magnitude frontogenesis near
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Figure 5.22: Change in the six-hour forecast of 250 hPa PV associated with a one
standard deviation change in the six-hour forecast of the area-average precipitation
within the box (left column), and the average precipitation within the circle (right
column) valid 06 UTC 19 October 2004 (top row), 18 UTC 19 October 2004 (middle
row), and 06 UTC 20 October 2004 (bottom row). The box encloses the precipitation
associated with the warm-front, while the circle encloses the tropical cyclone precipi-
tation. Contours are the six-hour ensemble-mean forecast of 250 hPa PV. Units are
PVU.



143

the warm front, and the amount of water vapor available to precipitate, which is re-

plenished by the poleward flux of moisture south of the baroclinic zone. To determine

how the magnitude of each factor contributes to the destruction of PV, the change in

the six-hour forecast of 250 hPa PV associated with a one standard deviation change

in the horizontally-averaged six-hour frontogenesis and moisture flux forecast is com-

puted from the ensemble statistics in a manner similar to what is done above for the

average precipitation (Fig. 5.23). At 06 UTC 19 October, increasing (decreasing) the

frontogenesis or moisture flux in the respective boxes by one standard deviation is

associated with a 0.15 PVU and 0.30 PVU decrease (increase), respectively, in the

PV within the ridge (Fig. 5.23a, b), while 12 hours later, the same change leads to

a 0.35 PVU decrease (increase) in PV (Fig. 5.23c, d). In addition, a one standard

deviation increases to the moisture flux are also associated with increasing (decreas-

ing) the 250 hPa PV to the east (west) of the circular PV region associated with the

TC. This result suggests that the moisture flux is larger when the TC is further east

because the southerly winds are stronger.

Both the 850 hPa frontogenesis and 850 hPa moisture flux are a function of the

wind field at that level, and therefore, it is possible that the magnitude of these two

factors could be related. To evaluate which of these processes is a better predictor of

the magnitude of the PV destruction within the ridge, multi-variate linear regression

(e.g., Wilks 2005, section 6.2.8) of the form y = a1x1 + a2x2 is performed where the

independent variables are the normalized frontogenesis (x1) and normalized moisture

flux (x2) in the respective boxes shown in Fig. 5.23, and the dependent variable (y) is

the horizontally-averaged 250 hPa PV within the dashed box shown in Fig 5.23b and

d, which serves as a proxy for the ridge amplitude. Table 5.5 displays the regression

coefficients and correlation between the predictors for each time considered. Although

the magnitudes vary based on the time considered, the larger regression coefficient for

850 hPa moisture flux indicates that a one standard deviation change to the moisture

flux leads to a larger change in the average 250 hPa PV within the box. As suspected,
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Figure 5.23: Change in the six-hour forecast of 250 hPa PV associated with a one
standard deviation increase in the six-hour forecast of the average 850 hPa fronto-
genesis within solid box in the left column, and the average 850 hPa moisture flux
within solid box in the right column valid 06 UTC 19 October 2004 (top row), and
18 UTC 19 October 2004 (bottom row). The dashed box in panels b and d denote
the region of 250 hPa PV used for the multi-variate regression calculations displayed
in Table 5.5. Contours are the six-hour ensemble-mean forecast of 250 hPa PV. Units
are PVU.



145

Table 5.5: Multi-variate linear regression coefficients for 850 hPa frontogenesis (a1)
and 850 hPa water vapor flux (a2), which are the independent variables, and the
dependent variable is the average 250 hPa PV in the dashed boxes in Figs. 5.23, 5.27,
and 5.31 for the Tokage, Nabi, and Lupit forecasts, respectively. r1,2 and R2 are the
correlation between the predictors and the fraction of variance explained, respectively.

Forecast valid time a1 a2 r1,2 R2

Tokage

06 UTC 19 October 2004 0.001 PVU -0.072 PVU 0.40 0.41

12 UTC 19 October 2004 0.0005 PVU -0.093 PVU 0.24 0.47

18 UTC 19 October 2004 -0.046 PVU -0.066 PVU 0.56 0.54

Nabi

12 UTC 6 September 2005 -0.042 PVU -0.054 PVU 0.50 0.55

18 UTC 6 September 2005 -0.025 PVU -0.069 PVU 0.41 0.55

Lupit

18 UTC 29 December 2003 -0.0007 PVU -0.038 PVU 0.27 0.39

00 UTC 30 December 2003 -0.015 PVU -0.091 PVU 0.07 0.54

the magnitude of the frontogenesis and moisture flux are correlated above 0.25, thus

there is redundant information in these predictors. Nevertheless, these two variables

explain approximately 50% of the variance in the average 250 hPa PV. The moisture

flux is a function of both the winds and water-vapor mixing ratio, thus the multi-

variate regression described above is repeated where the independent variables are now

the normalized average wind, and normalized average water vapor in the moisture flux

box shown in Fig. 5.23d. The regression coefficients for meridional wind and water-

vapor at 12 UTC 19 October are -0.11 and -0.03, respectively; therefore, the evolution

of the downstream ridge is linked to the lower-tropospheric wind speed.

The relationship between the moisture flux and 250 hPa PV is confirmed by gen-

erating perturbed initial conditions that will increase the analysis water vapor flux at
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00 UTC 19 October. This perturbed forecast is integrated forward 12-hours whereby

the difference between the 12-hour forecast of 250 hPa PV within the dashed box

in Fig. 5.23b is compared to the control forecast and the ensemble-based prediction.

These perturbed initial condition experiments are created similar to those described

in section 5.5, but with the following differences. The perturbed initial condition

is generated via (5.1), where J is the horizontally-averaged analysis 850 hPa water

vapor flux in the solid box in Fig. 5.23b, and the control analysis is the ensemble

member whose average 850 hPa moisture flux is closest to the ensemble-mean value.

In addition, the largest value of α for these experiments is three times the ensemble

standard deviation of the analysis moisture flux.

Figure 5.24 shows that, over the range of values tested here, the 12-hour forecast

of the average 250 hPa PV within the dashed box in Fig. 5.23d is linearly related to

the horizontally-averaged 850 hPa moisture flux. A 0.03 m s−1 increase (decrease)

in water vapor flux leads to a 0.28 PVU decrease (increase) in the 12-hour average

250 hPa PV forecast. Moreover, the ensemble prediction of how the PV is altered by

a change in the analysis moisture flux is in good agreement with the actual difference

obtained from the model, which lends confidence to the hypothesis that the poleward

transport of tropical moisture and the resulting latent heating along the baroclinic

zone are associated with downstream ridging during ET.

5.7.2 Nabi

The downstream ridge amplification during Nabi’s transition has characteristics that

are similar to the Tokage transition; however, the response of mid-latitude flow to the

transition and thus the downstream impact is less. Figure 5.25 shows two primary

regions of precipitation during Nabi’s transition, one associated with the TC inner

core and another along a weak warm front to the northeast of the TC. Nabi’s transi-

tion occurs during early September, thus the 18◦ isotherm at 850 hPa extends north

into Japan and the meridional temperature gradient is smaller than what would be
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Figure 5.24: Change in the 12-hour average 250 hPa PV forecast within the dashed
box in Fig. 5.23b (ordinate, units PVU) associated with adjusting the average 850 hPa
moisture flux in the solid box in Fig. 5.23b (abscissa, units m s−1) as determined by
perturbed integrations of the WRF model for the forecast initialized on 00 UTC 19
October 2004. The solid line denotes the ensemble prediction of how adjusting the
analysis moisture flux changes the 12-hour 250 hPa PV forecast.
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obtained during October or November based on climatology. In comparison to the

Tokage transition, the frontogenesis in this region is smaller magnitude and more

disorganized.

Statistics from the six-hour ensemble forecasts valid 12 UTC and 18 UTC 6

September indicate that 250 hPa PV forecast distribution is sensitive to both the

tropical cyclone and baroclinic zone precipitation (Fig. 5.26). This figure is computed

using the procedure used to estimate the relative impact of different precipitation ar-

eas on the 250 hPa PV during Tokage’s transition. The only differences relate to the

regions of TC and baroclinic zone precipitation during Nabi’s transition, which are

shown in Fig. 5.26. Whereas increasing (decreasing) the baroclinic zone precipitation

by one standard deviation yields a 0.25 PVU decrease in the 250 hPa PV within

the developing ridge north of Japan, a similar change to the TC precipitation corre-

lates with a 25% smaller change in the PV field. Comparable values are most likely

obtained at both times because the baroclinic zone and TC precipitation are closer

together than in the Tokage transition.

Figure 5.27 compares the change in six-hour 250 hPa PV forecasts associated

with adjustments to the magnitude of the six-hour forecast of 850 hPa frontogenesis

and 850 hPa water vapor flux. Increasing (decreasing) the magnitude of the average

frontogenesis or water vapor flux in the respective boxes by one standard deviation at

12 UTC 6 September is associated with a 0.3 PVU decrease in PV within the ridge.

Six-hours later, a one standard deviation change in the moisture flux (frontogenesis)

relates to the same (0.2 PVU) reduction in PV in the ridge.

Using the procedure described for the Tokage case, multi-variate linear regression

coefficients are computed for these times to determine the relative importance of the

850 hPa frontogenesis and moisture flux to the mid-latitude PV. For these calcula-

tions, the dependent variable is again the average 250 hPa PV within the dashed box

in Fig. 5.27b, d, while the independent variables are the normalized 850 hPa frontoge-

nesis and 850 hPa moisture flux in the solid boxes shown in Fig. 5.27. The regression
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Figure 5.25: As in Fig. 5.21, but for the six-hour forecast valid 12 UTC 6 September
2005 (top row) and 18 UTC 6 September 2005 (bottom row).
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Figure 5.26: As in Fig. 5.22, but for the six-hour forecast valid 12 UTC 6 September
2005 (top row) and 18 UTC 6 September 2005 (bottom row).
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coefficients for these forecasts indicate that one standard deviation changes to the

moisture flux leads to a larger reduction of PV within the ridge (Table 5.5). Whereas

a one standard deviation change in the 850 hPa moisture flux leads to a 0.05 PVU

decrease in the average PV within the ridge, the same change to the frontogenesis

leads to a 0.03 PVU decrease in the average PV. Moreover, these two predictors ex-

plain 55% of the variance in the average 250 hPa PV, but are still correlated above

0.40.

The impact of increasing the moisture flux to the east of Nabi is further evaluated

by generating twelve-hour forecasts initialized at 06 UTC 6 September with perturbed

initial conditions consistent with a larger (smaller) analysis moisture flux. The proce-

dure used to produce the perturbed initial conditions for this time is similar to what

is used for the Tokage forecast above, except that the average PV is evaluated within

in the dashed box in Fig. 5.27d and the region of average moisture flux is given by

the solid box in Fig. 5.27b. Figure 5.28 shows that, much like the Tokage forecast

described previously, the average PV in the ridge is a linear function of the analysis

moisture flux to the east of the TC; a three standard deviation increase (decrease) in

the water vapor flux is associated with a 0.4 PVU decrease (increase) in the average

250 hPa PV within the box 12 hours later. Furthermore, the ensemble-based pre-

dictions of how the magnitude of the analysis water vapor flux impacts the 12-hour

forecast of average PV nearly match the actual difference obtained from non-linear

forecasts.

5.7.3 Lupit

Unlike the previous two cases, the downstream ridging that occurs during transition of

Lupit is complicated by the presence of a series of mid-latitude cyclones to the north of

the TC. Figure 5.29 shows that at 18 UTC 29 December and 00 UTC 30 December,

the western Pacific Ocean is dominated by two regions of large precipitation; one

associated with Lupit’s core where the rate exceeds 35 mm (6 h)−1, and another
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Figure 5.27: As in Fig. 5.23, but for the six-hour forecast valid 12 UTC 6 September
2005 (top row) and 18 UTC 6 September 2005 (bottom row).
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Figure 5.28: As in Fig. 5.24, but for the twelve-hour forecast valid 18 UTC 6 Septem-
ber 2005. The region used for the average 12-hour PV forecast (analysis 850 hPa
moisture flux) is denoted by the dashed (solid) box in Fig. 5.27d (5.27b).

extending from the northern periphery of the TC along the north-south baroclinic

zone to the northern coast of Japan with rates exceeding 20 mm (6 h)−1. Furthermore,

the baroclinic zone has two areas of larger precipitation rate that are co-located with

larger frontogenesis values, one to the north of the TC where the TC winds are

advecting the tropical air poleward and a second to the west of Japan where the

polar airmass (850 hPa temperature < -20◦C) is being advected equatorward. The

entire region to the south of the baroclinic zone is characterized by southerly winds

that are transporting tropical heat and moisture poleward in between the surface high

in the northwest Pacific and Lupit. Unlike the previous two cases, the ridge initially

builds in response to the downstream cyclone over Japan, thus the TC transition is

not solely responsible for the ridge; however, it will be shown that it contributes to

its continued amplification. The procedures used to construct each of the following

figures are the same as what is used to evaluate the Tokage and Nabi transitions,
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except where noted.

The change in the six-hour forecast of 200 hPa PV associated with changes to the

six-hour forecast of average baroclinic zone (box) and TC core precipitation (circle) is

shown in Fig. 5.30. Since the cyclones north of Lupit have already lead to an amplified

mid-latitude flow, 200 hPa PV is used to evaluate downstream ridge amplification

for the Lupit transition because it better reflects the tropopause level near the TC.

While the baroclinic zone precipitation box is larger than the previous two cases, for

consistency, it encloses the entire area of precipitation from south of Japan to the

Kamchatka peninsula. This figure shows that increasing (decreasing) the amount of

precipitation in the baroclinic zone box by one standard deviation is associated with

up to a 0.2 PVU decrease in the 200 hPa PV at the apex of the ridge on 18 UTC 29

November and a 0.3 PVU decrease in ridge PV on 00 UTC 30 November. In contrast,

precipitation associated with the tropical cyclone is associated with up to 0.3 PVU

and 0.2 PVU change in the PV along with western side of the ridge at 12 UTC and

18 UTC, respectively. This result suggests that while the latent heating associated

with the baroclinic zone precipitation amplifies the ridge, the latent heat with the

TC precipitation acts to increase the wavelength of the ridge, even though the TC is

further from the jet.

Although it is not as clear as the Tokage and Nabi transition, the ensemble statis-

tics indicate that the magnitude of the 850 hPa frontogenesis and 850 hPa moisture

flux are good predictors of the downstream ridge amplitude. Figure 5.31 shows that

whereas a one standard deviation increase (decrease) in the frontogenesis along the

baroclinic zone at 18 UTC 29 November is associated with a 0.2 PVU decrease (in-

crease) in the PV at the apex of the ridge west of Japan, six hours later the same

change is associated with an 0.3 PVU increase (decrease) the 200 hPa PV near the

tip of the Kamchatka peninsula. Adjusting the magnitude of the moisture flux south

of Japan has an asymmetric impact on the PV distribution; a one standard deviation

increase in the 850 hPa moisture flux is associated with a 0.4 (0.2) PVU decrease to
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Figure 5.29: As in Fig. 5.21, but for the six-hour forecast valid 18 UTC 29 November
2003 (top row), 00 UTC 30 December 2003 (bottom row) and 200 hPa PV.
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Figure 5.30: As in Fig. 5.22, but for the six-hour forecast valid 18 UTC 29 November
2003 (top row), 00 UTC 30 December 2003 (bottom row) and 200 hPa PV.
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the west (east) side of the ridge at either time. This distribution suggests that when

the moisture flux is larger, the extra latent heating is associated with an amplified

ridge and an increase in the horizontal wavelength.

The relative impact of the frontogenesis and moisture flux is determined by per-

forming a multi-variate regression similar to what is done in the Tokage and Nabi

forecasts, where the region of average 200 hPa PV used in this calculation is denoted

by the dashed box in Fig. 5.31b and d and the regression coefficients are listed in

Table 5.5. Whereas a one standard deviation change in the water vapor flux is asso-

ciated with a 0.038 and 0.091 change in the average PV at 18 UTC 29 November and

00 UTC 30 November, respectively, a similar perturbation to the average frontogene-

sis produces a much smaller difference. In contrast to the other cases, the correlation

between frontogenesis and moisture flux is smaller because the two predictor regions

are further apart.

Finally, initial condition perturbations, consistent with changing the magnitude of

the analysis moisture flux in the box on 12 UTC 29 November, are constructed using

the procedure described for the two other ET events (Fig. 5.32), where the region of

average 200 hPa PV is shown in Fig. 5.31d and the analysis moisture flux by the solid

box in Fig. 5.31b. Over the range of values tested here (+/- three standard deviations

in the analysis moisture flux), the 12-hour forecast of PV within the dashed box in

Figs. 5.31d responds linearly to the initial moisture flux; however unlike the previous

two cases, the ensemble prediction is generally less than the actual change in the

average PV obtained from the non-linear forecast. Whereas the ensemble sensitivity

predicts that a 0.03 m s−1 increase (decrease) in moisture flux leads to a 0.32 PVU

decrease (increase) in the 12-hour forecast of the average 200 PV in the dashed box,

the model runs indicate that the actual change is 0.5 PVU. It is not clear why the

ensemble prediction is inaccurate for this case, though one possibility is that the

initial condition perturbation that changes the analysis moisture flux will also lead to

adjustments to nearby cyclones.
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Figure 5.31: As in Fig. 5.23, but for the six-hour forecast valid 18 UTC 29 November
2003 (top row), 00 UTC 30 December 2003 (bottom row) and 200 hPa PV.
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Figure 5.32: As in Fig. 5.24, but for the twelve-hour forecast valid 00 UTC 30 Novem-
ber 2003. The region used for the average 12-hour PV forecast (analysis 850 hPa
moisture flux) is denoted by the dashed (solid) box in Fig. 5.31d (5.31b).
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Chapter 6

SUMMARY AND CONCLUSIONS

The chaotic nature of the atmosphere allows small deficiencies in the initial con-

ditions of NWP models to grow into large errors during the subsequent forecast. As a

consequence, several techniques have been independently developed, such as sensitiv-

ity analysis, data assimilation and ensemble forecasting, to determine regions where

small initial condition changes will have a large impact on a forecast and generate the

best analysis of the atmosphere by combining a short-term forecast with observations.

This dissertation describes two applications of ensemble sensitivity analysis, which

when combined with ensemble data assimilation, provide a consistent framework for

evaluating the predictability and dynamics of the atmosphere. These ensemble tech-

niques are applied to weather systems in the northeast Pacific Ocean and to western

Pacific extratropical transition events, both of which are characterized by forecast

errors resulting from inaccurate initial conditions.

The benefit of assimilating observations with flow-dependent error statistics in

a region of sparse in situ data is determined by evaluating output from a pseudo-

operational, limited-area EnKF system. Whereas a large fraction of observations

used by operational forecasting systems is satellite radiance data, the UW EnKF

system only considers in situ data from surface stations, rawinsondes, ACARS and

cloud motion vectors. In addition to providing an ensemble of analyses and short-

term forecasts for observation assimilation each six hours, the UW EnKF system

produces 90 independent forecasts out to 24 hours at 00 UTC and 12 UTC. Ensemble

forecasts from this system and deterministic output from operational global models

on the same domain are verified against rawinsonde and surface observations over a
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two-year period starting 1 January 2005.

Although the UW EnKF system assimilates a small fraction of the observations

used by other operational centers, the RMS error in UW EnKF forecasts of wind

and temperature is similar to those yielded by the NOGAPS and UKMO forecasts

and slightly larger than GFS and CMC forecasts in this region. In contrast, the bias

in geopotential height forecasts from the UW EnKF system leads to errors that are

slightly worse than other operational systems. Multiple reasons could exist for why

UW EnKF forecasts have comparable errors, which include assimilating data using

flow-dependent error statistics, using GFS lateral boundary conditions and the WRF

model formulation. Two additional forecasts are produced during this same period

to evaluate the relative contribution of each of these factors. The “no assimilation”

forecast is a WRF ensemble member that is run for the two-year period without

being updated with observations, while the WRF-GFS is a forecast initialized with

the GFS analysis. The “no-assimilation” forecast, which defines the contribution

from the lateral boundary conditions, has RMS errors that are up to 50% larger

than six-hour UW EnKF forecasts. Moreover, WRF forecasts initialized from the

GFS analysis yield errors that are comparable to GFS forecasts in this region, thus

the WRF model is not responsible for the skill in the UW EnKF forecasts. As a

consequence, the performance of the UW EnKF system must be due to performing

data assimilation with an EnKF. Previous studies on the impact of various observation

sets have shown that satellite radiance observations lead to large improvements to

operational forecasts, especially in data sparse regions (e.g., Rabier et al. 2005). These

results show that in regions of sparse in situ data, such as the ocean, assimilating

observations with flow-dependent covariances can make up for not having a large

number of observations.

Quite surprisingly, the error in 24-hour UW EnKF forecasts of dew-point tempera-

ture are equal to or smaller than all operational centers shown here, especially for raw-

insonde stations along the North American coast. The region upstream of the coast is
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characterized by many cloud motion vector and ACARS observations, but no direct

observations of moisture. Whereas the fixed-error statistics used by other operational

systems do not allow these wind and temperature observations to adjust the water

vapor field (e.g., Parrish and Derber 1992, Rabier et al. 1998), the flow-dependent

error statistics used an EnKF permit such modifications. Time-averaged correlations

computed from UW EnKF data, indicate that on average, upper-tropospheric wind

and mid-tropospheric temperature data lead to systematic corrections to the water

vapor field. Previous studies (e.g., Ralph et al. 2004, Knippertz and Martin 2007)

have shown that short-term global model forecasts of water vapor in regions of clouds

are often characterized by large errors. The results presented here suggest that this

problem may be reduced by assimilating other available observations, such as cloud

winds, with flow-dependent error statistics.

Verification rank histograms for winds, temperature and moisture indicate that

the forecast ensemble spread has skill in predicting the forecast error; however, for

the mass field, the model biases are the dominant signal in this diagrams. Whereas

the analysis mass field exhibits smaller bias, the mean difference between observations

and the ensemble-mean forecast grows with increasing forecast hour, suggesting that

observations can eliminate the bias for short-term forecasts, but cannot completely

overcome it at longer lead times. Moreover, this low bias exists even when the WRF

model is initialized with the GFS analysis, thus the loss of mass does not result

from EnKF data assimilation, though it is possible that using covariance averaging

to parameterize model error makes the problem worse at shorter lead times. Unlike

the EnKF system described by Houtekamer et al. (2005), the spread in UW EnKF

forecasts grows in tandem with the mean error during all forecast hours, thus the

analysis perturbations project onto growing disturbances. Consistent error growth at

all forecast hours most likely results from how the UW EnKF system parameterizes

model error (covariance averaging), which will at least partially retain the growing

structures from the previous six-hour forecast.
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Similar to other mesoscale ensemble systems based on different initial conditions

(e.g., Eckel and Mass 2005), forecasts of parameterized surface fields, such as 10 me-

ter winds and 2 meter air temperature and dew-point temperature, are characterized

by relatively constant errors at all forecast lead times and small growth in ensemble

spread. The errors in these fields are related to the model’s formulation of their evolu-

tion. Surface and boundary layer parameterization schemes have two different types

of input: dynamical fields that are different for each ensemble member (i.e., low-level

temperature and wind), and fixed fields that are the same for each member (i.e., solar

constant, land surface type). The relative lack of ensemble spread for surface fields

indicates that the invariant input parameters restrict error growth in the ensemble.

Although the UW EnKF system did not attempt to assimilate surface wind, tem-

perature or moisture data, the lack of variance in these fields would have caused the

data assimilation scheme to under-weight the new information from observations. As

a consequence, flow-dependent error statistics will not improve surface field forecasts

unless the spread of these fields is boosted. Sutton et al. (2006) attempted to over-

come the lack of variance in surface variables during periods of convection by adding

uncertainty to soil moisture fields. Their results indicates that adding variance to

the soil moisture showed limited improvement over using constant parameters for all

ensemble members.

The large errors in surface field forecasts at all lead times indicate that model

deficiencies, rather than initial condition errors are responsible for the mean error,

and as a consequence, improvements to the initial conditions will not necessary lead

to better forecasts. Model errors can be corrected by either improving the formulation

of parameterization schemes, or by increasing the horizontal resolution, which would

allow the model to resolve the local features that influence the surface wind and

temperature fields. Another possible method of decreasing the model error in surface

fields is objective parameter estimation, whereby the state vector is augmented with

unknown parameters and thus can be adjusted by observation assimilation. Aksoy et
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al. (2006) and Tong and Xue (2007) had some success improving forecasts of a sea-

breeze circulation and supercell thunderstorm, respectively, when applying parameter

estimation with an EnKF. The two year repository of UW EnKF forecasts offers an

opportunity to retrospectively improve WRF surface forecasts through parameter

estimation.

One method of improving UW EnKF forecasts is to determine where small changes

to the initial conditions would have a large impact on subsequent forecasts and to

assimilate observations in that region. This can be determined by applying the ensem-

ble sensitivity technique described by Hakim and Torn (2007) and Ancell and Hakim

(2007) to data drawn from the UW EnKF system during January–July 2005. Ensem-

ble analyses and forecasts are used to determine locations of persistent sensitivity for

selected forecast metrics near western North America. The skill of ensemble sensi-

tivity analysis in predicting the change in a forecast metric mean, δJ , and variance,

δσ, due to observation assimilation is also determined. Although this work focuses

mainly on forecast metrics near the West Coast of North America, this technique is

general and may be applied to any other scalar forecast metric.

Climatological sensitivity fields for 24-hour western WA SLP and precipitation

forecasts are most frequently sensitive to the upstream mass field and to a lesser

extent the temperature field. While a large fraction of the frequently sensitive region

is observed by the fixed buoy network, the buoy closest to the sensitivity maximum

was not functioning during the period and thus could have adversely affected western

WA forecasts. Composite patterns for the most-sensitive forecasts indicate that the

region of largest sensitivity for 24-hour western WA SLP and precipitation forecasts

is approximately 1000 km west of the metric box and exhibits modest upshear tilt

in the vertical. A one-standard-deviation change in the most-sensitive region of the

analysis mass field would have a larger impact on either the SLP or precipitation

metrics compared to a one standard deviation change in the most-sensitive region of

the temperature field, which suggests that targeted buoy and ship SLP observations
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have the largest potential impact on short-range, surface-based forecast metrics in

this area.

The change in average SLP forecasts due to withholding a buoy from the region

of frequent sensitivity is evaluated for the 30 most-sensitive cases of western WA

SLP forecasts. Removing the buoy pressure observation from the assimilation process

yields a perturbed forecast metric that is compared with the prediction from ensemble

sensitivity analysis. For all forecast cycles, the ensemble-based estimate of the forecast

metric change is in good agreement with the actual change obtained from perturbed

non-linear model forecasts. These results indicate that a single SLP observation within

the region of frequent sensitivity can change 24-hour western WA area-averaged SLP

forecasts by up to 0.8 hPa and reduce the ensemble spread by up to 0.5 hPa.

Single-observation impact calculations are extended to estimate how a larger num-

ber of assimilated observations change 12-hour SLP forecasts in the western Wash-

ington region. Approximately 100 observations per analysis time will produce a sta-

tistically significant change in the forecast metric mean value at the 99% confidence

level. As a consequence, the ensemble sensitivity approach attempts to predict the

change in the forecast metric mean and variance with approximately 100 observations

from the several thousand observations that are assimilated. An attractive attribute

of this approach is that it can be applied “off line” to an existing dataset of ensemble

analyses and forecasts without running the model or cycling a data assimilation sys-

tem. Results show that the ensemble-based estimates provide a moderately accurate

prediction of how observations change to the spread of the forecast metric, although

agreement is worse than the case of a single observation. Similar results are found for

a forecast metric that covers the west coast of North America, suggesting that the

results are not limited to metrics covering small geographical areas.

Ensemble sensitivities can also be applied to test how observations impact the SLP

forecast error in a manner similar to what is summarized above. For an error metric

defined by the root-mean-square error in the box over western Washington state, re-
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sults also show that ensemble sensitivity provides accurate estimates of the reduction

in error standard deviation, and to a lesser extent the error expected value. Partition-

ing the error estimates by observation type indicates that surface observations, rather

than ACARS or cloud-wind observations, are more likely to reduce the error for the

areas described here. In particular, the fixed-position buoys 500 km from the North

American coast have the largest impact because they are in the region of persistent

sensitivity. It should be noted that the impact of these observation platforms can

vary depending on the forecast metric, season, model, and particular observation set.

For the experiments and metrics considered here, it is evident that ensemble sen-

sitivity analysis is more reliable in predicting changes in the spread (variance) of a

forecast metric as compared to the mean-value. In the absence of significant non-

linearity and model error, this difference in predictive ability may be understood by

exploring how sampling error impacts the calculation of these quantities. The key

quantity in (2.25) and (2.28) is the covariance between the forecast metric and the

model estimate of an observation, J(Hxb)T, which affects the predicted changes in

the metric mean and spread differently. If sampling error (εcov) for this covariance

is unbiased (E[εcov] = 0), then the predicted changes to the metric mean value will

have zero mean, and the scatter about the line of perfect prediction will scale with

the magnitude of the sampling error. In contrast, the error in the predicted change

in the metric spread is proportional to the sampling error variance (E[εcovε
T
cov] 6= 0),

which will introduce a bias to estimates of δσ even when the sampling error itself is

unbiased (see Fig. 4.10b); the larger the sampling error, the greater the overprediction

in the variance reduction. Using a confidence test on the forecast metric-observation

covariance reduces the effect of sampling error, but also places limits on the number

of observations that are included in the calculation. This technique works well until a

point of diminishing return is reached when, for confidence levels approaching 100%,

important observations are not considered and thus the ability to predict the change

in the forecast metric is adversely affected. The results shown here with UW EnKF
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data show that this point is reached around the 99% confidence level.

The results presented here suggest that ensemble sensitivity analysis provides an

attractive alternative to adjoint sensitivity analysis. In addition, the results indicate

that this technique may prove useful for observation thinning, where a large sample

of observations is reduced to a set that is expected to produce the largest decrease in

forecast-metric spread, while also producing a statistically significant change in the

forecast-metric mean value. Unlike previously described thinning algorithms (e.g.,

Liu and Rabier 2002, Ochotta et al. 2005), it is possible to adapt the thinning

algorithm to the forecast metric of interest. Similarly, ensemble sensitivity may be

useful for observation targeting because the impact of a hypothetical observation on

the forecast metric variance can be determined prior to knowing the observation value.

Furthermore, this method is particularly attractive because, unlike other targeting

methods, it takes the analysis-error statistics into account (Berliner et al. 1999,

Langland 2005). Ensemble sensitivity analysis may also prove useful for selecting

observations based on their predicted affect on forecast error variance in previous

forecasts.

Given the skill of UW EnKF ensemble forecasts and the ability of ensemble sen-

sitivity to estimate the impact of changes to the initial conditions, these methods are

applied to the extratropical transition of western Pacific tropical cyclones, which are

often characterized by large forecast errors. Forecasts of the transition of Typhoons

Lupit (2003), Tokage (2004), Nabi (2005) and Kirogi (2005), which differ by their

post-transition evolution, degree of predictability, and impact on the downstream

state, are explored by cycling a WRF EnKF data assimilation system for the period

prior to and during the transition of each cyclone. This EnKF system assimilates con-

ventional in situ observations from surface stations, rawinsondes, ACARS, cloud wind

observations and best track position data each six-hours. For the analysis time closest

to the onset of transition, all 90 ensemble members are integrated forward 48 hours

whereby the initial condition sensitivity and impact of assimilating observations is
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evaluated. Although this WRF EnKF system only assimilates a small fraction of the

observations available to the GFS, the ensemble-mean track and intensity forecasts

have comparable skill.

Ensemble forecasts of the cyclone minimum SLP show large initial condition sen-

sitivity to the features that are expected to be important during ET, namely the TC

and the upper-level trough that phases with it. Whereas the region of largest sensi-

tivity for short-term forecasts of cyclone minimum SLP are near the TC, at longer

lead times, the areas of significant sensitivity are still near the TC, but are also lo-

cated near mid-latitude features. Initial condition sensitivities for Tokage and Kirogi’s

(Lupit and Nabi’s) minimum SLP forecast have larger (smaller) magnitude and are

associated with the position (amplitude) of the mid-latitude troughs. Forecasts where

the largest sensitivities are associated with the position of the trough are character-

ized by a stronger mid-latitude jet since small displacements to the trough’s position

can lead to a mismatch of the TC and trough during ET. In contrast, transition

events for which the largest sensitivities are associated with the trough amplitude are

associated with a weaker mid-latitude jet. For these forecasts, the model is likely to

obtain the correct phasing between the cyclone and trough, thus the degree to which

the tropical cyclone reintensifies as a mid-latitude cyclone depends on the amplitude

of the trough. Furthermore, the sensitivity of the RMS error in the SLP field near

the TC forecast is also large in the same regions as the initial condition sensitivity

for minimum SLP forecasts, thus small errors in the TC or mid-latitude troughs can

have a large impact on errors in the ET forecast.

Based on previous research (e.g., Rabier et al. 1996, Browning et al. 2000, Klein

et al. 2002, Ritche and Elsberry 2003), it might have been expected that the largest

sensitivity values would only be associated with the upper-level trough that phases

with the TC remnants; however, these results show that the evolution of mid-latitude

cyclones poleward of the TC that are not associated with the ET can have a large

effect the ET forecast. The southerly winds on the east side of the TC advect tropical
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air poleward into the mid-latitudes, and therefore increase the horizontal tempera-

ture gradient. Coincident with Tokage and Lupit’s transition, mid-latitude cyclones

initially poleward of the TC undergo cyclogenesis along the resulting temperature

gradient. The results shown here suggest that when the TC moves into a region

where another cyclone deepens, the ET cyclone is less likely to undergo baroclinic cy-

clogenesis. As a consequence, the errors in ET forecasts not only originate from how

the TC interacts with a mid-latitude trough, but also the evolution of mid-latitude

features in the area where the ET storm will reintensify as a baroclinic system.

The ability to improve forecasts of cyclone minimum SLP and the RMS error in

SLP forecasts is demonstrated by employing ensemble sensitivity to produce diagnos-

tic corrections to the initial conditions. Since the model is not perfect, these initial

conditions may improve the forecast, but are not necessarily best analysis of the cur-

rent state. The benefit of these perturbed initial condition forecasts is verified by

integrating this forecast forward 48 hours and comparing the resulting forecast to the

control where no perturbation is applied. For changes of up to 8 hPa, the ensemble

prediction of how the initial condition change will affect the 48-hour minimum SLP

forecast is in good agreement with the actual difference obtained from the non-linear

forecast; however, for larger magnitude changes, non-linearities begin to dominate and

the predictions are less accurate. With the exception of the Lupit forecast, diagnostic

corrections to the initial conditions can reduce the error in 48-hour SLP forecasts

by up to 50%, thus more accurate initial conditions, which can be obtained through

additional observations, or improved model physics could lead to better forecasts of

these events, though it is not clear which approach would be more beneficial.

Ensemble-based sensitivities are applied to identify how assimilating individual ob-

servations at the forecast initialization time affects the 48-hour minimum SLP fore-

casts shown here. This procedure identifies the ≈ 40 observations that produce a

statistically significant change in the minimum SLP forecast. In general, rawinsonde

observations near the regions of large initial condition sensitivity, which are located
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near the TC and the important mid-latitude features, lead to the largest changes in

the expected value and spread of the minimum SLP metric. Rawinsonde observations

are important because they are the only source of observation data in the WRF EnKF

system over Asia, and directly measure model state variables. For the Nabi and Lupit

forecasts, the regions of high sensitivity and identified critical observations are in the

dense Chinese rawinsonde network, thus additional observations are unlikely to make

large corrections to the initial conditions. For the Tokage forecast, the largest sensi-

tivities are in Mongolia, which is characterized by few rawinsonde observations and

thus may have could contribute to the large uncertainty observed in the WRF EnKF

forecasts. Moreover, when the most sensitive region is in a sparsely observed area,

the forecast could benefit from targeted observations, such as reconnaissance flights,

near the TC.

The actual change associated with assimilating these significant observations is

determined by generating multiple sets of ensemble forecasts, which differ by the ob-

servation set assimilated at forecast hour zero. For each ET forecast studied here,

the ≈ 40 important observations account for 50% of the reduction in forecast metric

variance obtained when assimilating the 12,000 available observations. When these

critical observations are withheld from the analysis, the change in the expected value

and spread in the cyclone minimum SLP due to observations is the same as the case

where all observations are assimilated because the information in the remaining ob-

servations is correlated and thus will produce a similar correction to the analysis state

vector. The exception to this result is when the most important observations are in a

region characterized by few observations; both the Kirogi and Tokage minimum SLP

forecast are different when the important rawinsondes are withheld because there is a

lack of surrounding observations to compensate for their absence. Moreover, it can be

concluded from these results that when assimilating observations with flow-dependent

error statistics, ET forecasts do not require a large quantity of data, but rather a few

high quality observations in the locations of large initial condition sensitivity.
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Tropical cyclones that deepen as baroclinic systems often lead to the rapid am-

plification of the mid-latitude flow, and as a consequence, produces an eastward-

propagating wave packet that can have significant impact on North American fore-

casts. It is unclear from the literature what processes are responsible for the genesis of

the downstream ridge; therefore the statistics from the short-term ensemble forecasts

from the predictability experiments are used to explore how the upper-tropospheric

potential vorticity (PV) is affected by latent heating associated with different regions

of precipitation. Prior to the onset of transition, a majority of the PV destruction is

associated with precipitation along the developing warm-front on the northeast side

of the TC, and not the precipitation associated with the TC itself. This warm front

forms in response to the large-scale southerly winds on the east side of the TC that

advect tropical air poleward into the mid-latitudes. After the onset of transition,

the TC is located within the thermal ridge of this baroclinic zone and it becomes

difficult to distinguish between the two precipitation regions. As a consequence, the

mid-latitude flow during the onset of ET responds to the synoptic-scale latent heating

associated with the warm-front and to a lessor extent, the convection within the TC.

The amount of latent heat release within the warm front precipitation region de-

pends on both the magnitude of the vertical circulation, measured by the average

frontogenesis, and the lower-tropospheric moisture flux south of the baroclinic zone.

Ensemble statistics indicate that the PV within the mid-latitude ridge responds to

changes in either of these factors. Multi-variate linear regression where the frontoge-

nesis and moisture flux are the independent variables and the average PV within the

ridge is the dependent variable indicates that a one unit change moisture flux leads

to a larger amount of PV destruction. This idea is confirmed by using the ensemble

statistics to adjust the initial conditions such that there is more (less) water vapor

flux at forecast hour zero, integrating the model forward, and comparing the resulting

change in 12-hour PV forecasts to the predictions from ensemble statistics. Ensem-

ble predictions of how adjustments to the analysis moisture flux changes the 12-hour
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forecast of PV within the ridge are in good agreement with actual change obtained

from the non-linear forecast.

As described previously, the distribution of lower-tropospheric water vapor in the

global models is often characterized by significant errors, which combined with these

results, suggest that these deficiencies could have a large impact on the downstream

forecast. Given that UW EnKF dew-point temperature forecasts yield lower errors

than global model forecasts and that transition usually occurs over regions of sparse

in situ data, observations of lower-tropospheric winds and moisture assimilated with

flow-dependent error statistics may improve downstream forecasts during ET. Future

work may include testing this hypothesis during the upcoming THORPEX Pacific

field campaign and through predictability experiments on larger domains that include

North America.
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