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2.  Temperature, Pressure, Wind, and Minor Constituents.

2.1  Distributions of temperature, pressure and wind.

     Close examination of Figs. 1.7-1.10 of MS reveals the following features that cry out
for explanation:

¥  In the zonal mean cross sections (Figs. 1.7 and 1.8), zonal mean wind (positive from
the west, or westerly) increases with height where temperature decreases toward the pole.

¥  Seasonal mean and instantaneous wind direction at mid-tropospheric and stratospheric
heights follows contours of constant height on isobaric surfaces  (Figs. 1.9-1.12).

¥  Seasonal mean and instantaneous wind speed at mid-tropospheric and stratospheric
heights tends to be inversely proportional to spacing of contours (Figs. 1.9-1.12).

¥  As a consequence of the preceding two bullets, the relationship between the wind and
height contours on an isobaric surface tends to resemble flow between walls of a channel;
however, since the contours evolve over time, this flow is more aptly described as flow
channeled by "flexible membranes".

     Several other features are noteworthy in Fig. 1.7, e.g., decrease of tropopause height
toward the poles, increase of lower stratospheric temperature toward the poles, decrease
of mid-stratospheric temperature from summer to winter pole at solstice seasons, and
increase of mesopause level temperature from summer to winter pole at solstice seasons.
Because of the first bullet above, these thermal features are associated with the following
noteworthy features in Fig. 1.9 and 1.10: jets (closed contour wind speed maxima in the
latitude height plane) at the mid-latitude tropopause, and stratosphere-mesosphere
summer easterlies and winter westerlies with jets in the upper mesosphere.  Figs. 8 and 9
reveal equatorward and poleward meanders of the prevailing westerly winds with sharper
features of smaller scale on the daily map.  On the monthly mean map, ridges (poleward
meanders) tend to occur near north-south mountain ranges or continental west coasts, and
troughs (equatorward meanders) tending to occur over continental east coasts and
western oceans.  The patterns depicted in Fig. 8 are typical of autumn, winter, and spring.
Weaker patterns, displaced toward higher latitude, occur in summer.  Figs. 1.11-1.12
show similar features, but the horizontal scale of the meanders tends to be larger in the
stratospheric maps.

     In the next  two sections we will investigate the mechanism responsible for the
features noted in the four bullets above.

2.2  Geostrophic balance.

     If the planetary rotation rate is fast enough, pressure and horizontal wind fields are in
approximate geostrophic balance as a result of the coriolis force.  To analyze this balance,
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we will use a cartesian coordinate system that is locally tangent to the planet's surface
with coordinate directions, unit vectors, and wind velocity components as follows:

Coordinates     Unit vectors     Velocity components

x Ãi u eastward

y Ãj v northward

z Ãk w upward

     The horizontal wind is

v i jh = +Ã Ãu v  . (2.1)

     On the large scales of the trough ridge systems in MS Figs 1.9-1.12, the vertical wind
component is at least two orders of magnitude smaller than the horizontal wind
components,  so we consider here only the horizontal components.  These are driven by
the horizontal pressure gradient, which is a force per unit volume
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balance is given in terms of the coriolis parameter, f º 2Wsinj :
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(Note that rotation period is the period of the sidereal day, not the solar day).
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     This geostrophic wind has the properties that:  (a)  horizontal wind is parallel to
pressure contours on a geopotential surface, (b) wind speed is approximately inversely
proportional to contour spacing (proportional to pressure gradient), and as a consequence
of (a) and (b), (c) as  pressure contours evolve over time, the flow evolves with it
(approximately) as if the pressure contours act like "flexible membranes", channeling the
flow.

     Why is geostrophic balance a good approximation?  To answer this, we proceed in
two steps, first deriving the coriolis effect in the equation of motion using a heuristic
approach (see MS Chap. 10 for a more formal derivation), and second performing a
simple scaling analysis to identify the dominant terms in the equation of motion.

     For our heuristic derivation, consider separately the coriolis force acting on east-west
and on north-south flow relative to a coordinate frame rotating with the planet.  The
effects on an arbitrary horizontal flow can be obtained by superposing these two effects.

(a)  On eastward (westward) flow, the coriolis force appears as excess (deficit)
centrifugal force relative to the centrifugal force acting on a resting object due to
planetary rotation.  The magnitude of this force is obtained by expanding the total
centrifugal acceleration, recognizing that atmospheric wind speeds are small compared
with the rotational speed of the planet.  Thus total centrifugal acceleration is
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where Wtot
2  is total rotation rate, due to both planet and zonal wind, R a= cosj  is radial

distance outward from the planetary rotation axis, u is relative eastward velocity, and
HOT represents a higher order term in the expansion that is much smaller than the
explicitly expressed terms.  Term W2R  is the planetary centrifugal acceleration, acting
radially outward from the rotation axis.  This term has already been incorporated in
apparent gravity and in our use of geopotential surfaces as vertical coordinate surfaces.
Term 2Wu  is the coriolis acceleration acting on the eastward relative motion speed u.
Since it acts radially outward, it has two components in the tangent plane (x,y,z)
coordinate system: 2Wucosjupward and -2Wusinj  poleward (note that since sinj
changes sign between hemispheres, this acceleration is in the -y direction in the northern
hemisphere, and in the +y direction in the southern hemisphere).  The HOT are real but
small effects due to curvature of horizontal motion on the (nearly) spherical planet.  They
need not concern us here.  Since we are only concerned with horizontal motions and
accelerations in the horizontal, the vertical component of the coriolis force (which is
typically 4 orders of magnitude smaller than gravitational acceleration) also need not
concern us here.  We can write the partial y-component equation of horizontal motion
including inertial and coriolis accelerations as

dv
dt

u fu= - º -2W sinj . (2.5)
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(b)  On equatorward (poleward) motion, coriolis force appears as a westward (eastward)
acceleration arising as an effect of angular momentum conservation.  Imagine looking
down on Earth's North pole from space.  The projection on the equatorial plane of the
displacement vector for a southward moving object would be seen to be radially outward
from the rotation axis.  The tendency for such an object to conserve angular momentum
as it increases its radial distance from the axis would produce a westward velocity
increase (decrease in angular velocity) in proportion to the outward displacement of the
object dR .  The corresponding change in velocity over a small time interval would
appear as westward acceleration in proportion to the rate of radial displacement, in other
words, in proportion to radial velocity.   This can be analyzed beginning with the angular
momentum conservation principle that implies that WtotR

2  is conserved following the
motion of the object.  Expanding this expression for a small radial displacement dR from
initial values ( , )Winit initR ,
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Dividing by dt  and taking the limit dt® 0 ,
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and the contribution from the very small vertical motion can be neglected.  [Note that the
time derivatives in these equations are derivatives following the fluid flow or "substantial
derivatives"].  Adding the pressure gradient contributions to (2.5) and (2.6) and dividing
by density to convert from force per unit volume to force per unit mass (acceleration), we
obtain the inviscid horizontal equations of motion (except for small terms due to Earth's
curvature as mentioned above; inviscid implies neglect of any terms due to either
molecular viscosity or the effects of small scale turbulence).
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     We can now do a simple scale analysis on the vector form of these equations (last
equation in the box of eq. 2.7).  If any of the three terms in the equation (inertial
acceleration, coriolis acceleration, pressure gradient acceleration) can be shown to be
much smaller than either of the other two terms, then the two larger terms must be in
approximate balance.  To see which is the smaller term under the conditions shown in the
large scale maps in MS Figs. 9-12, we need only compare terms I and II above by
assuming velocity, length, and time scales V, L, and T.  For large-scale atmospheric
motions, the time-scale characterizing changes in the system is T = L/V.  This is the time
required to change the flow by advection (transport of fluid properties by the flow).  Then
the scale of term I in (2.7) is V2/L, and the scale of term II is fV.  The ratio of these terms
is

Ro
V
fL

=  .

This is an important parameter characterizing the flow called the Rossby Number.  For
large-scale motions in Earth's atmosphere (except at very low latitudes), V ms» -10 1,
L m» 106 , f s» - -10 4 1  so that

Ro
V
fL

= << 1 . (2.8)

That is, coriolis acceleration is much larger than inertial acceleration and there must be an
approximate balance between terms II and III in eq. 2.7.  In other words, eq. 2.4 holds
with an error of order Ro, and the coriolis acceleration on the rapidly rotating Earth is
strong enough to ensure that Ro<<1 for large-scale motions except in very low latitudes.
The resulting approximate balance between pressure and coriolis accelerations defines
the geostrophic wind of eqs. 2.3 and 2.4.  We will use vg  to denote the geostrophic wind.

     Note that, to the extent that spatial variations in r and f can be neglected, the
geostrophic wind is approximately non-divergent,
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This has two implications.  First, the geostrophic wind tends to follow contours on
horizontal surfaces of a scalar field (in this case pressure), which acts as a stream-
function for the flow, i.e., the contours of stream-function act like "flexible membranes".
Second, since vertical velocity is connected with divergence of the horizontal wind,
large-scale vertical velocity is constrained to be small (even smaller than the geometric
constraint of a large ratio of horizontal to vertical scale would imply).


