Lecture 21 Formation of Rain and Snow

• How do cloud droplets grow to raindrops 100 times as large?

Figure 5.14
Relative sizes of raindrops, cloud droplets, and condensation nuclei.

EOM 5.15

• How are precipitation processes different when water droplets freeze?

Warm cloud precipitation (no frozen water):

Even cloud droplets fall

Drop diameter	Fall speed	<u>d</u>
20 microns	$0.01~\mathrm{m~s}^{-}$	1 (cloud droplet)
100	0.27	(drizzle droplet)
1000 (1 mm)	4	(small raindrop)
5000 (5 mm)	9	(large raindrop)

Collision and coalescence - merging of colliding small drops.

- Collisions occur mainly because cloud drops have varying sizes, so fall at different speeds.
- Large drops get even larger as they collect the small drops in their path

Thin clouds at most drizzle because

- Collisions occur infrequently
- Drops fall out of cloud before reaching raindrop size, then evaporate below cloud base.

Strong cumulus updrafts can suspend rain-size droplets and allow them to grow even larger by coalescence with rising cloud droplets.

Figure 5.15
A cloud droplet rising then falling through a warm cumulus cloud can grow by collision and coalescence and emerge from the cloud as a large raindrop.

Raindrop shape

- Drizzle and cloud droplets are nearly spherical due to surface tension.
- Larger raindrops are flattened by the push of the air on them as they fall.
- Raindrops larger than 5 mm in diameter flatten so much they are split apart.

Ice in Clouds

- 0 to -40 C: Surface tension of small cloud droplets can keep them from freezing 'supercooled'.
- In such a cloud, vapor pressure saturated wrt water, supersaturated wrt ice.
- Ice crystals can form on sparse *ice nucleii*, which are much less common than condensation nucleii.
- Vapor is deposited onto ice crystals, lowering vapor pressure, so vapor evaporates from droplets (Bergeron process).

EOM fig. 5.20

Snow

- Ice crystals can splinter into many small crystals that collide with and freeze most of the liquid droplets in the cloud.
- These ice crystals can stick to each other to create *snowflakes*, which grow by vapor deposition or aggregation.
- The shape of snowflakes reflects their formation temperature.
- Snow falls 300 m or more below freezing level before fully melting.

