Lecture 7 Air Pressure

Pressure =
$$\frac{\text{Force}}{\text{Area}}$$

- In an air filled container, pressure is due at the molecular level to molecules pushing the sides outward by rebounding off them.
- This also applies to 'parcel' of air surrounded by more air; now molecules create pressure by rebounding off air molecules surrounding parcel.

- At any point, pressure is same in all directions, but...pressure varies from one point to another.
- Higher <u>density</u> (more molecules pushing) or <u>temperature</u> (faster molecules) produce more pressure.

Pressure supports air column weight

- Higher up, the weight of overlying air molecules is smaller, so pressure is also smaller.
- High pressure squeezes air most at bottom, so air is densest there.

Gravity (due to weight of molecules) pulls down

Air pressure pushes up

Pressure decreases faster with height in cold air

- It takes more cold, slow, molecules than hot, fast ones to exert a given pressure
- \Rightarrow Cold air is denser.
- Consider cold and warm air columns with equal weights, and equal amounts of overlying air.
 Cold column is shorter
- ⇒ Pressure decreases faster with height in cold air.

Mercury barometers

- Weight of mercury in tube balanced by pressure
- A water barometer at sea level would have to be read from a ladder 30 ft high, since water is only 10% as dense as mercury.

Aneroid Barometers

- Aneroid is partly evacuated and sealed. Pressure increase compresses aneroid.
- Similar barometers in miniature are used in altimeters and altimeter watches.

Altimeters

...are aneroid barometers that use a standard formula (1 mb pressure decrease ≈ 30 ft height increase) to convert pressure change to height change.

- Height errors occur if:
 - 1. Initial elevation not correct
 - 0-1000 ft errors
 - 2. Pressure changes with time or location.
 - 0-10 mb (0-300 ft) errors in 12 hours
 - 0-5 mb (0-150 ft) errors in 200 km distance
 - 3. Temperature vs. pressure different from formula
 - 15 C warmer causes pressure to decrease 5% slower with height, so altimeter underestimates height change by 50 ft per 1000 ft of rise.

Lapse Rate, Compressibility and Stratification

- The troposphere is 50 C hotter at the bottom than at the top.
- We know that in convection, hot air rises and cold air sinks.

Question:

• Why don't we have convection everywhere, moving the warmer air from the surface to the upper troposphere?

Temperature changes as air rises and sinks

FIGURE 1
Rising air expands and cools; sinking air is compressed and warms.

EOM, p. 31

- As air rises, pressure of surrounding air drops.
- The air 'parcel' expands, pushing outward on surrounding air until its pressure drops to ambient.
- Pushing outward against a force ('work') consumes energy, which is taken from the random motions of the molecules, reducing temperature
- Thus dry air cools 'adiabatically' (without addition of heat) at about 10°C/km -- the *dry-adiabatic lapse rate*.
- Thus, as one hikes up the mountainside above, the temperature will be 10°C lower for each 1 km ascended.

Stratification

- The actual lapse rate of the troposphere is typically 6.5 C/km, less than the dry-adiabatic lapse rate of 10 C/km. This is called *stable stratification*.
- At any height, warmer air is less dense, buoyant.
- Temperature of unheated rising air decreases faster than ambient.
- Rising air loses buoyancy in stable stratification.
- Convection will occur whenever the lapse rate exceeds 10 C/km (*unstable stratification*). It exchanges the hot and cold air until the lapse rate is

reduced to 10 C/km.

• In clouds, latent heating of rising air due to condensation of water vapor into clouds may permit 'moist' convection to occur even in 'stable stratification' (lapse rate less than 10 C/km). Discuss this later.