Mon Nov 10

Announcements:

9.0 earthquake in Puget Sound! (in 1700)

TALK TODAY: Monday 10 Nov 3:30 310 ATG

Prof Lyatt Jaegle, UW, "Space-based observations of biomass-burning emissions of NOx" [a pollutant gas]

Where we're going:

KKC Chaps 8,9 (selected) and Snowball Earth article (web)

Solid Earth Circulation (wrap-up last week)

Ancient Climates (or "History of Planet Earth in 3 Easy Lessons")

HOLIDAY (free talk by veteran in Kane 120, 7pm) Tues:

HW#4 DUE Wed: Fri: review, tutorial

but first, some first-grade wisdom...

Plate tectonics: Fig 6-21

- the third of our three BIG pumps
- driven by circulations in the upper mantle; ultimately, by radioactive decay, releasing heat within the Earth's interior

Wilson Cycle: Fig 6-27 continents group together then spread apart timescale is ~500 million years major climatic consequences (location of continents affects atmos/ocean currents; ice-albedo feedback, etc)

Circulation Summary

Three BIG Pumps

- Atmosphere/Surface Ocean
- distributes heat poleward cause of regional and seasonal climates
- mixing timescale is ~1 week
- Thermo-haline circulation (THC)
- mixes deep ocean timescale of mixing is about 1000 years
- may shut on and off as conditions change in N. Atlantic
- possible "trigger" for global climate
- Solid Earth circulation: Wilson Cycle
- continents group and then spread
- cycle timescale is ~500 million years
- major climatic effects (e.g. sets boundaries for the other two circulations)
- mixes key elements like carbon and recycles them from rocks back to the atmosphere

Ancient Climates: Readings (info on website)

8:152-153, Fig 8-1 Introduction/Overview 8:158-159, Fig 8-7 Formation of Early Atmosphere 8:159-161, Figs 8-8, 8-9 Faint Young Sun paradox Long Term Climate Record 8:161-164, Fig 8-10, 8-11

☐ Low Latitude Glaciation BOX 8:165

"Snowball Earth" article available on web Warm Mesozoic Era 8:167-169, Fig 8-15 8:169-170, Fig 8-17 Cooling During Cenozoic Era Modern Controls on Atmos. O2 9:188-189, Fig 9-17

Announcements:
- grades on web
- HW#4 due today; HW#5 due next thursday
- Tad gone Tues-Thurs next week
Today:
- marker events in Earth history
- Faint Young Sun paradox

but first, tribute to a life of self-sacrifice...

Mars, CO2 and Greenhouse

Mars (virtually no greenhouse)

Do you notice something strange about these facts???

What can we conclude about the cause of the greenhouse effect on Earth???

Snowball Science History -1

- 1960's: Mikhail Budyko (theoretical climate modeling)

 "run-away" ice-albedo feedback if Earth freezes below 30-degree latitude

 this must never have happened for two reasons...
 - - 1. continuous life
 - 2. Earth could never recover

- 1964: Brian Harland (geologist)

 Late proterozoic glacial deposits on almost every continent

 magnetic alignment of grains indicate continents were near Equator

Snowball Science History -2

1960's: Martin Rudwick (biologist) with Brian Harland

- Recovery from global glaciation may have spurred Cambrian explosion
 "all 11 animal phyla ever to inhabit the earth emerged within a narrow window of time" after the end of the last glaciation

1970's: more biology

- · discovery of life in extreme environments
- organisms near geothermal vents at ocean bottom have no need of sunlight
- bacteria and algea living in snow, ice, and rock pores under extreme cold, heat, and pressure
- overcomes argument (1), above

1992: Joseph Kirschvink (geophysicist)

- Atmospheric CO2 would build up during a global glaciation
- CO2 removal by silicate weathering would cease, but
 CO2 input from volcanoes would continue unabated
- overcomes argument (2), above

Snowball Science History -3

1992: Kenneth Caldeira and James Kasting

- Calculate that CO2 would have to be 350 times current levels to melt a global glaciation
- This would take about 10 million years

- Iron deposits mixed with glacial debris indicate ocean lacked oxygen
- · This implies ice-covered oceans

- 1990's: Hoffman and Schrag

 Carbon isotopes in rocks surrounding glacial deposits indicate a virtual shut-down of biological activity
 - Massive carbonate deposits on top of the glacial deposits ("cap carbonates") indicate very warm water and sudden deposition of huge amounts of carbon
 - Apparently, the glaciation events were immediately followed by
 - a global hothouse period

 This is consistent with huge buildup of atmospheric CO2.

