Mon Nov 10

Announcements:

9.0 earthquake in Puget Sound! (in 1700)

TALK TODAY: Monday 10 Nov 3:30 310 ATG

Prof Lyatt Jaegle, UW, "Space-based observations of biomass-burning emissions of NOx" [a pollutant gas]

Where we're going:

This week:

KKC Chaps 8,9 (selected) and Snowball Earth article (web)

Solid Earth Circulation (wrap-up last week)

Ancient Climates (or "History of Planet Earth in 3 Easy Lessons")

Tues: HOLIDAY (free talk by veteran in Kane 120, 7pm)

Wed: HW#4 DUE

Fri: review, tutorial

Continental drift: Fig 6-1

Late Carboniferous (about 300 million years ago)

Eocene (about 50 million years ago)

Pleistocene Glacial (about 1 million years ago)

Plate tectonics: Fig 6-21

- the third of our three BIG pumps
- driven by circulations in the upper mantle; ultimately, by radioactive decay, releasing heat within the Earth's interior
- recycles key substances like mineralized carbon

Wilson Cycle: Fig 6-27

- continents group together then spread apart
- timescale is ~500 million years
- major climatic consequences (location of continents affects atmos/ocean currents; ice-albedo feedback, etc)

Circulation Summary

Three BIG Pumps

- Atmosphere/Surface Ocean
 - distributes heat poleward
 - cause of regional and seasonal climates
 - mixing timescale is ~1 week
- Thermo-haline circulation (THC)
 - mixes deep ocean
 - timescale of mixing is about 1000 years
 - may shut on and off as conditions change in N. Atlantic
 - possible "trigger" for global climate
- Solid Earth circulation: Wilson Cycle
 - continents group and then spread
 - cycle timescale is ~500 million years
 - major climatic effects (e.g. sets boundaries for the other two circulations)
 - mixes key elements like carbon and recycles them from rocks back to the atmosphere

Ancient Climates: Readings (info on website)

Introduction/Overview 8:152-153, Fig 8-1

Formation of Early Atmosphere 8:158-159, Fig 8-7

Faint Young Sun paradox 8:159-161, Figs 8-8, 8-9

Long Term Climate Record 8:161-164, Fig 8-10, 8-11

Low Latitude Glaciation BOX 8:165

"Snowball Earth" article available on web

Warm Mesozoic Era 8:167-169, Fig 8-15

Cooling During Cenozoic Era 8:169-170, Fig 8-17

Modern Controls on Atmos. O2 9:188-189, Fig 9-17

Ancient Climates: Stories

Paleoclimate record

fossils, clues and mysteries

Grand Sweep of Earth History

4.6 billion years (so far) marker events (to memorize)

Faint Young Sun paradox

good illustration of scientific method

Rise of Atmospheric Oxygen

greatest global pollution event ever but made life on land possible oxygen and fire

Snowball Earth >>>read from article

something new in ancient history

Failure of planetary life support

Venus and Mars Snowball Earth asteroids

Fig 9-5: microfossils, 3.5 billion yr old, Australia

Origin of life: ~4 billion yrs ago

prokaryote (bacteria):
single-celled organisms
with no cell nucleus

- only form of life for most of Earth history
- still dominates

eukaryote:

organism whose cells have a nucleus

- includes all multicellular organisms
- came much later

Evidence of glaciations: tillite, 2.4 billion yrs old, Fig 8-10a

Evidence of glaciations: striations, 650 million yr old, Fig 8-10b

Evidence of glaciations: dropstone, Fig 8-10c

Wed Nov 12

Announcements:

- grades on web
- HW#4 due today; HW#5 due next thursday
- Tad gone Tues-Thurs next week

Today:

- marker events in Earth history
- Faint Young Sun paradox

but first, tribute to a life of self-sacrifice...

Temperature/Precipitation History

Faint Young Sun paradox: Fig 8-8

model assumes:

- CO2 in atmosphere same as today
- Earth albedo same as today

Why do we know this model is wrong?

Fig 9-5: microfossils, 3.5 billion yr old, Australia

Answer:
Archeon life!
Requires liquid water

Faint Young Sun paradox: p159-161

<u>paradox:</u> despite less solar energy, Archean was warm enough to support photosynthetic life

Possible explanations

- sun...?
- albedo... no
- geothermal energy... no
- > greenhouse...
 - H2O... no
 - NH3... no
 - > CO2... [see figure]

less land

more volcanism

plenty of carbon [see inorganic carbon cycle figure]

> CH4 methane? (CH4) [recent Kasting proposal]
early life would have produced it
far longer atmospheric lifetime than today due
to lack of oxygen

Illustrates nature of scientific knowledge/progress (draw figure)

conceptual framework:

 $T_s = f(S_o, A, \Delta T_g)$

CO2 over Earth History: Fig 8-9

Thurs Nov 13

Announcements:

9

Today:

- marker events in Earth history
- Mesozoic Warmth
- Cenozoic Cooling
- Sister planets
- Snowball science history (and some pretty pictures)

but first, a few late-breaking headlines...

Earth History: Marker Events

1. Origin of Earth

4.6 billion ybp (years before present)

2. Origin of Life

~4 billion ybp

3. Rise of Oxygen to ~ modern levels

~2 billion ybp

4. Snowball Earth events

600-900 million ybp

5. Beginning of fossil record (Cambrian explosion)

540 million ybp

6. Extinction of Dinosaurs by asteroid

65 million ybp

7. Beginning of modern glaciations

3 million ybp

8. End of last ice-age

10 thousand ybp

Mesozoic Warmth (250-65 million ybp)

What:

- Warmer global-mean temperature.
- <u>Much</u> warmer Polar Regions; no ice-caps.
- Much warmer deep ocean.

Evidence:

- Lush ferns and alligators in Siberia.
- Carbon isotopes in ocean sediments

Cause:

- Higher CO2 is leading suspect.
- sea-floor spreading rate was greater
- higher sea level (no ice caps)

Remaining mysteries:

- Ocean/atmos heat transport must have been much more efficient.
- latitudinal and vertical
- this is not understood

Cenozoic cooling, 65 million ybp to present

What:

- Earth cools, beginning ~60 million ybp.
- Life retreats from Poles.
- Polar ice caps form.
- Eventually, ice-ages begin.

Cause (one leading theory):

- India collides with Asia.
- Himalayas form.
- Silicate weathering increases.
- Atmospheric CO2 goes down.

Sister planets

Venus (runaway greenhouse)

Earth ("just right")

Mars (virtually no greenhouse)

- Oceans boiled away
- No more weathering
- Carbon partitions to atmosphere
- CO2 is ~100,000 times that on Earth
- $T_s = 427 \text{ C}$; $\Delta T_g = 466 \text{C}$ negative feedback

- has oceans
- hydrological cycle
- weathering returns CO2 to lithosphere
- plate tectonics (volcanoes) no carbon cycle return carbon to atmos.

- farther from Sun; too cold for liquid water
- no water vapor greenhouse
- too small for plate tectonics
- CO2 is ~10 times Earth
- $-T_{s} = -53C; \Delta T_{g} = -3C$

Mars, CO2 and Greenhouse

Mars (virtually no greenhouse)

- CO2 is ~10 times Earth
- $-\Delta T_g = \sim 3C$

Do you notice something strange about these facts???

What can we conclude about the cause of the greenhouse effect on Earth???

Hoffmann, Schrag, and Dropstone

http://www-eps.harvard.edu/people/faculty/hoffman/snowball_paper.html

Snowball Science History -1

1960's: Mikhail Budyko (theoretical climate modeling)

- "run-away" ice-albedo feedback if Earth freezes below 30-degree latitude
- this must never have happened for two reasons...
 - 1. continuous life
 - 2. Earth could never recover

1964: Brian Harland (geologist)

- Late proterozoic glacial deposits on almost every continent
- magnetic alignment of grains indicate continents were near Equator

ice-albedo feedback

Positive feedback loop:

- amplifies an initial perturbation
- potentially causes current equilibrium state to be unstable

Earth's Magnetic Field

Possible continental positions during Late Proterozoic Glaciations: Fig 8-12

Critical latitude for "runaway" ice-albedo (~30 degrees):

Why would ice-albedo feedback get stronger as the ice-line got to lower and lower latitudes???

Answer: - more sunlight to reflect at lower latitudes

- the amount of <u>area</u> per degree latitude gets much larger (major factor)

Snowball Science History -2

1960's: Martin Rudwick (biologist) with Brian Harland

- Recovery from global glaciation may have spurred Cambrian explosion
- "all 11 animal phyla ever to inhabit the earth emerged within a narrow window of time" after the end of the last glaciation

1970's: more biology

- discovery of life in extreme environments
- organisms near geothermal vents at ocean bottom have no need of sunlight
- bacteria and algea living in snow, ice, and rock pores under extreme cold, heat, and pressure
- overcomes argument (1), above

1992: Joseph Kirschvink (geophysicist)

- Atmospheric CO2 would build up during a global glaciation
- CO2 removal by silicate weathering would cease, but
- CO2 input from volcanoes would continue unabated
- overcomes argument (2), above

Snowball Science History -3

1992: Kenneth Caldeira and James Kasting

- Calculate that CO2 would have to be 350 times current levels to melt a global glaciation
- This would take about 10 million years

1992: Kirschvink

- Iron deposits mixed with glacial debris indicate ocean lacked oxygen
- This implies ice-covered oceans

1990's: Hoffman and Schrag

- Carbon isotopes in rocks surrounding glacial deposits indicate a virtual shut-down of biological activity
- Massive carbonate deposits on top of the glacial deposits ("cap carbonates") indicate very warm water and sudden deposition of huge amounts of carbon
- Apparently, the glaciation events were immediately followed by a global hothouse period
- This is consistent with huge buildup of atmospheric CO2.

Idealized carbon isotope record through a Snowball event

Measured carbon isotope record through a Snowball event

Ghaub Glaciation, Otavi Group, NW Namibia

Iron Solubility and Deposition in Relation to a Snowball Event

If O₂ is absent, iron is soluble as ferrous (Fe²⁺) ion. If O₂ is present, iron is insoluble as ferric (Fe³⁺) ion.

atmospheric oxygen levels

(xPAL)

Deglaciation: ocean ventilation

Fe 3+

Fe2+

http://www-eps.harvard.edu/people/faculty/hoffman/snowball_paper.html

dropstones

iron-formation

Namibia cliffs, snowball record

