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Appendix A

Scientific Notation, Units, and Constants

This appendix reviews the “scientific notation”
used in the text; the units commonly used in physics
and chemistry to quantify length, mass, and so on;
and the manipulation of these units. We discuss some
of the physical constants and the essential math-
ematical operations that are used in the text.

A.1 Scientific Notation

Most scientific discussions use numbers .that are
either very large or very small. Examples of such
numbers can be found in every chapter of this book,
including the total number of molecules in the
Earth’s atmosphere, 10%%; the fraction correspond-
ing to a mixing ratio of one part per trillion by
volume (pptv), 10712; the amount of carbon emitted
into the atmosphere each year from fossil-fuel com-
bustion, about 10*° grams; and the wavelength
measure for ultraviolet radiation, roughly 107~ meters.
Ifwe had to write out the first number, it would read:
100,000,000,000,000,000,000,000,000,000,000,
000,000,000,000. That is, the digit 1 followed by a
string of 44 zeros! The second number would read:
0.000000000001. These longhand numbers are
clumsy and impractical.

Basically, any large or small number can be
expressed as the product of two terms. The first
term is a prefactor of order unity (that is, a number
with a value between 1 and 10) that gives the
precision, or accuracy, of the original number. The
second term is a power of 10 (that is, 102, where p
is the exponent or “power” of 10). The power of
10 defines how many times the number 10 is to be
multiplied by itself. For example, 10* = 10 x 10 x
10 %10 = 10,000 (that is, 10 multiplied by itself
four times). As an example of the use of this
notation,- consider the large number 1,100,000
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(which is named one million one hundred thou-
sand). In scientific notation this number may be
written 1.1 x 106.

Notice that to arrive at this form, we must count
the digits from the position where the decimal point
is originally found (or would be placed) in the
number toward the left until only one non-zero digit
remains to the left. The decimal point is fixed here,
and the resulting figure is the prefactor. The number
of digits counted to the left becomes the power, or
exponent, of 10. The exponent is positive if we have
counted from right to left, but is negative if we have
counted from left to right. In either case, after
moving the decimal point, the remaining figure
(with one digit remaining to the left of the decimal
point) is the prefactor (usually with the unnecessary
zeros lopped off). Try this procedure with the num-
ber 0.0000000035. In this case, we count from the
original decimal point to the right nine digits, leaving
the prefactor 3.5 (all the zeros to the left are dropped)
and thus yielding the number in the form 3.5 x 107°.

The usefulness of scientific notation is easily ap-
preciated for arithmetic with large and small num-
bers. Imagine that you want to calculate the total
number of molecules in the Earth’s atmosphere for
aspecies that has a mixing ratio of 1 pptv. This would
be written literally as 100,000,000,000,000,
000,000,000,000,000,000,000,000,000,000 x
0.000000000001 = 100,000,000,000,000,000,
000,000,000,000,000. How much easier is it to
write 1 x 10% x 1 x 10712 = 1 x 1032, All we do is
multiply the prefactors and add the exponents! Con-
sider the examples given later, and enjoy.

AppLicATIONS OF ScienTiFic NoTATION

To illustrate the use of scientific notation, we offer
some examples. The number 550, for example, can
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be written in scientific notation as 5.5 x 102, That is,
550 = 5.5 x 102. In this case, the normal decimal
representation is more convenient than the scientific
representation. Naturally, the simplest notation is
adopted for specific numbers in the text of the book.
For some numbers, the choice can be a matter of
taste. Take, for example, the number of people on
the Earth—approximately 5 billion. This may be
written out as 5,000,000,000 or more compactly as
5 x 10°. You should become familiar with both
representations.

If we consider the number of molecules in Earth’s
atmosphere, there is little dissension. Which number
is more convenient to write and which value is more
immediately clear: 1 x 10** or 100,000,000,000,
000,000,000,000,000,000,000,000,000,000,000?
In addition to compactness and immediate recogni-
tion of magnitude, numbers expressed in scientific
notation are much easier to manipulate in arithmetic
operations. Some examples of these operations follow.
Multiplication: The rule for multiplying numbers in
scientific notation is to multiply the prefactors and
add the exponents(or the powers of 10). For example,

1x10° x1x10% = (1 x1)x103+5

=1x 103

1x1073 x1x100 = (1 x1)x1073+6

1 x 103

1x102 x1x107% = (1 x1) x1072°4

=1x10%

(2, 500, 000, 000) x (200)

(2.5 x 10%) x (2 x 10%)
(2.5 x 2) x (10° x 10%)
5 x 107+2

=5 x 101!

Division: The rule for dividing numbers in scientific

notation is to divide the prefactors—that is, to divide

the numerator prefactor by denominator prefactor—

and subtract the expoment of the number in the

denominator from the exponent of the number in

the numerator. For example,
Lx10% 1, 1043 =1 x 100
1x10% 1

o 10,000 o
1, 000

4
13100 11045 =1 x 1072
1x105 1
or 10000 _
100, 000
-6
1x107 1 0-6)-(-5)
1x10°5 1
=1x10%+5 =1 x 101
4
6 x10% _ 6 1043 = 3 x 10!
2 %103 2
o 65000 _ o
2,000
-3
5X107 5 10735 = 2.5 x 10-8
2 x 105 2

LarGge AND SMALL NUMBERS

Tables A.1 and A.2 summarize the notation and
identifying names of the most common large and
small numbers used in scientific discussions. These
numbers may be applied to any specific quantity by
attaching an appropriate suffix indicating the units of
measure involved.

Using Mixing RaTios

Table A.3 lists the common mixing ratios, or mixing
fractions, that are used to characterize gases in the
atmosphere. The principal ratios, or fractions, used
are parts per million, parts per billion, and parts per
trillion (abbreviated ppm, ppb, and ppt, respec-
tively). These mixing fractions can be expressed in
parts by volume (or number) or parts by mass of air. In
the former case, for example, one might specify parts
per million by volume, or ppmv. For smalier fractions
it would be ppbv and pptv. For mixing fractions
specified as parts by mass, the corresponding abbre-
viations are ppmm (for parts per million by mass),
ppbm, and pptm, respectively.

“Parts by volume” refers to the fraction of the
total number of molecules in a unit volume of air
of a certain kind of gas-—say O, or CO, or H,O.
The ratio of the number of such molecules to the
total number of molecules in the volume is the
fraction of interest; hence the term mixing vatio. An
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Table A1 Large Numbers

“Normal” notation Scientific Standard name
notation

1 1x10° One
10  1x10! Ten (deca-)
100  1x10*>  Hundred (becto-)
1000  1x10°  Thousand (kélo-)
10,000 1x10*
100,000 1x10°
1,000,000 1x10%  Million (mega-)
10,000,000 1 x 107
100,000,000 1 x108
1,000,000,000 1x10°  Billion (giga-)
1,000,000,000,000  1x 102  Trillion (zera-)

Table.A.2 Small Numbers

“Normal” notation Scientific Standard name
: notation

0.1 1x 1071 Tenth (deci-)
0.01 1x102  Hundredth (centi-)
0.001 1x107%  Thousandth (milli-)
0.0001 1x10*
0.00001 C1x107°
0.000001 1x10°  Millionth (micro-)
0.000000001 1x107°  Billionth (nano-)
0.000000000001 1x 1072 Trillionth (pico-)

Table A.3 Mixing Fraction Definitions

One part per million 1 ppm 1x10°  one out of each million
" One part per billion 1 ppb 1x107  one out of each billion
One part per trillion 1 ppt 1x 10722 one out of each trillion
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casy way to understand the mixing ratio is to
imagine grabbing a sample of air in a bottle. You
count the total number of individual molecules in
the bottle (which would amount to about 2 x 10?2
molecules in a quart-size container!). Next, you
count the number of specific molecules of interest.
If it were carbon dioxide, for example, you would
find that the quart bottle held about 7 x 1018
molecules of CO,. The ratio of these two numbers
is 7 x 1018 /2 x 1022 = 3.5 x 1074, which is the same
as 350 x 1078, or 350 parts per million (by number
or volume).
The relationship between volume and number
may not be perfectly clear. In fact, the “mixing ratio
by volume” and “mixing ratio by number” are
equivalent for air. According to the ideal gas law and
law of partial pressures (Section 3.1.1), the volume
occupied by every moleculeina gas mixture is exactly
the same. A molecule of oxygen and a molecule of
carbon dioxide take up the same “space” in a con-
tainer. The molecules themselves are so small that
they do not fill a significant part of the volume, and
there is no reason to assign more of the remaining
space to one molecule or another. Now imagine that
all the molecules of a single component of the
* mixture have been isolated in one section of the
container. If they were constrained at the same
pressure as that of the original mixture, the fraction
of the total volume occupied by that component
- would be exactly proportional to the fractional num-
ber of molecules of that component in the original
mixture (we are assuming that the temperature is
fixed during these impossible manipulations).
“Parts by mass” is interpreted in 2 similar way as
“parts by volume.” Fora specified volume of air, the
fraction of the total mass associated with a certain gas
is defined as its mass-mixing ratio in that volume.
The volume- and mass-mixing ratios are, of course,
related. The mass mixing fraction of a certain com-
ponentisits volume-mixing fraction multiplied by its
molecular weight and divided by the average mo-
lecular weight of air. More directly, the mass-mixing
ratio is the ratio of the density of the component to
the density of air in the parcel of interest. The
following algebraic relations hold:

.o b
)
Pa
= —_——t—t = ———— = ¥,
i,
many My M4 M4

where 7, is the mass-mixing ratio of a gas species
in air, 7; , 18 its equivalent volume-mixing ratio, and
py and m, are the density (mass/volume) and
average molecular weight (atomic mass units, amu)
for air, respectively.

In this book, we use volume or number and
mixing ratios or fractions wherever possible. Some
books and research papers use mass-mixing frac-
tions. They are easily converted to volume fractions
when the molecular weight of the gas is known.

A.2 The Metric System: Units and
Conversions

All physical parameters have units by which they are
measured. For example, time, length, and mass are
basic physical parameters that, unless given specific
values, are not particularly useful in quantitative
work. Similarly, temperature and electrical charge
are basic physical parameters. (See Section 2.1.3 for
a further discussion of temperature.) The units for
each parameter provide a point of reference that
defines the magnitude of the parameter. For ex-
ample, time may be specified in $econds, hours, days,
weeks, months, years, decades, centuries, millennia,
and so on in smaller intervals such as milliseconds
and microseconds. Accordingly, any specific interval
of time can be expressed as a specific number of units
of time. As long as the basic unit of time itselfis well
defined by some standard or reference, any given
interval can then be precisely specified in those units.
In almost all scientific systems of units, seconds are
the basic measure of time. Likewise, kelvin (K)is the

preferred unit for temperature.

A system of units is the collection of basic units
for all the physical parameters of interest. For
example, the mks metric system of units consists
of lengths given in meters, mass in kilograms, and
time in seconds. A related system of metric measure
called the cgs system specifies lengths in centime-
ters, mass in grams, and time in seconds. Through-
out this book, an attempt is made to conform to the
Systeme Internationale d’umités (SI) designation for
all units. The SI units are essentially the mks metric
system units. The Congress of the United States
legalized the use of the metric system in 1866. This
acceptance was reinforced by the United States’
signing of the Treaty of the Meter in 1875. Before
that, only measurements in the British system (feet,
pounds, quarts) were legally accepted. Even so, tO




this day Americans remain addicted to the more
difficult and scientifically abandoned British system
of units.

Other physical parameters deriving from the
basic parameters are given units consistent with the
basic units. For example, volume has dimensions of
length times height times width. All three dimen-
sions are actually length, so volume has overall units
corresponding to length cubed, or /3 (later we
explain “cubed”). Thus volume has units of meters
cubed (m?) in the mks metric system and centime-
ters cubed (cm®) in the cgs metric system. There is
an important distinction between the terms dimen-
sions and units as they are used here. Dimensions
define the way that a quantity depends on basic
physical parameters, and units define the scale by
which the dimensions are measured. Thus length
(/) is a basic dimension, and meter is a unit of
length. Similarly, mass () is a basic dimension, or
physical attribute, and kilogram is a specific mea-
sure of the amount of mass. Time () is also a basic
dimension, and seconds are one of the possible
corresponding units. _

Force depends on the basic parameters as mass
times length divided by time squared, or m x I/t
Note that the dimension of mass as indicated by the
abbreviation, s, in the dimensional expression, should
not be confused with meter, which is a unit of length,
l. Likewise, the dimension of time, which is abbrevi-
ated as ¢ in dimensional expressions, should not be
confused with the metric ton, or tonne, a unit of mass
(also abbreviated 7). One must be careful to distin-
guish between a dimension and its unit of measure,
and between a dimensional expression and its equiva-
lent combination of units. For example, in the mks
metric system, the combination of units correspond-
ing to the dimensional expression for force, 7 x /¢,
are kilogram-meter/second-second, or kg-m/sec?.
The newton (N) is defined as 1 kg-m/sec?.

Energy can be defined as force times distance;
which depends on the basic physical dimensions as 7
x 12/t2 with corresponding metric units of kilo-
gram-meter-meter/second-second, or kg-m?/sec?.
The joule (J) is defined as a 1 newton-meter (N-m),
or 1 kg-m?/sec?.

More complex parameters, such as a radiant
energy flux, can also be defined in terms of the basic
dimensions. For example, any energy flux may be
defined as energy per area per time, which can be
decomposed into a dependence on basic parameter
dimensions as, (m x 12/t2) /(1> X ) = m/£3. We
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have several equivalent combinations of metric
units for the energy flux: J/m?.sec = kilograms /sec®
= watts/m? (where only the second form is given in
basic units). The watt (W) is the specific unit of power
in the metric system, where 1 watt is 1 J/sec.

Common Units oF MEASURE

We next compare the most frequently employed
units of measurement for length and mass in differ-
ent systems of units. Note that one of the basic
physical parameters (and units) that is not treated
explicitly in this appendix is electrical charge. Elec-
trical charge is important to the development of
electromagnetic theory, which has not been dis-
cussed in the text. Accordingly, the unit of charge and
the units deriving from it, are not defined further.

Length

1 meter (m) = 100 centimeters (cm)= 1000 milli-
meters (mm)

1000 m = 1 kilometer (km)

1 m =1 x 10% micrometers (mm); 1 mm =1 x
10%m

1 m = 39 inches (the symbol = means “very closely,
but not exactly, equals”)

100 m =110 yards -

linch=2.5¢m
1 mile=1.6 km
Volume

1 liter () = 0.001 cubic meter (m®) = 1000 cubic
centimeters (cm?)
1 liter = 61 cubic inches = 1.06 quarts

Mass

1 kilogram (kg) = 1000 grams (g)

1 metric ton (t) = 1 tonne = 1000 kg = 1 x 10°
grams (g)

1kg=2.2 pounds

450 g = 1 pound .

1 tonne = 2200 pounds = 1.1 English ton (or ton)

Among the many derivative units that can be
defined, such as the newton, joule, and watt, are the
following useful units. Note that pressure is defined
as force per unit area.
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Pressure

1 pascal (Pa) = 1 newton/meter? (1 N/m?; or 1 kg/
m-sec?)

100,000 Pa = 1 bar (roughly the average pressure at
the Earth’s surface)

1000 millibar (mb) = 1 bar

1 mb =100 Pa

1 atmosphere (atm) = 1013 mb

1 atm = 1 bar = 14.7 pounds/inch?

ManipuLaTioN oF DimEnsions anp Units

Dimensions of parameters and their corresponding
units can be treated like variables in an equation. The
symbols representing the dimensions of length (/),
mass (#), and time (z) can be manipulated in any
expression in which the original physical quantities
are multiplied or divided. We did this when manipu-
lating the basic dimensions of derived quantities
such as force and energy flux. We can write out
similar relationships for the units corresponding to
the dimensions. Thus, m x /22 is equivalent to
kg-m/sec?. In more complex combinations of di-
mensions or units, we can cancel dimensions or units
that appear in both the numerator and denominator
and collect dimensions or units that are multiplied.

One of the mostimportant rulesregarding the use
of units is that whenever they are combined in any
expression, the units must always-be consistent. One
should never, for example, mix together mks and cgs
units; or use seconds in one part of an expression and
years in another, unless it is clearly established that
such usage will not cause problems. Accordingly, if
an expression with two or more parameters is being
evaluated, you have two choices: (1) Make sure all
the parameters are in the same units (mks, say) or (2)
correct the units of the individual parameters, or the
final expression, by multiplying by appropriate con-
version factors. , '

The principal guidelines for the conversion of
units can be demonstrated using a simple example.
Suppose you want to evaluate the distance that an air
mass had traveled in a certain time and you know the
velocity (speed) of the parcel. You will need to

evaluate the expression
d =7 (A2)

where d is the distance, v is the velocity, and Tis the
time. The velocity has units of length per unit time,

or [/t. The basic dimensions are consistent because
Equation A.2 can be written in dimensional form as,
L= (l/t) x ¢t = I Notice that the dimension of time
cancels out on the right-hand side of Equation A.2.

If velocity is measured in meters per second and
the time is measured in seconds, then clearly the
distance will be in meters. This is a consistent set of
units. However, if the velocity is given in m/sec and
the time is given in hours, the units will be inconsis-
tent. We must convert the parameters to consistent
values, by using a conversion factor. In this case, we
note that 1 hour = 3600 seconds and so write
Equation A.2 as follows:

meters

second

(3600 scconds]
| 3600 scconds

4 (meters) = v[ ] X T(ﬁours)

1 hour (A3)

= 3600 vt

The converted equation can now be evaluated using
the original unconverted values of the velocity and
time parameters. The conversion factor that has been
applied in this example is the last term in the middle
section of Equation A.3. Notice that this term changes
the units of hours in the numerator to units of seconds
by multiplying by the number of seconds per hour.
Another example follows from the box model
equation for the concentration, g, of a material in a
reservoir (see Equation 4.1, for example):

_ 5

175

(A4)

where Sis the source, Tthe residence time, and Vthe
volume of the reservoir. Imagine that the source is

" given in tonnes per day, the residence time is given

in hours, the volume is specified in cubic kilometers,
and the concentration is in grams per cubic centime-
ter. Clearly, each of the parameters determining g
needs to be converted to the appropriate units.

Instead of illustrating this procedure step by step,
the various conversions are shown collectively in a
modified version of Equation A.4:

s (m)(l x 10¢ £ )r(hours)( Loy )
g - day tonne 24 hours
v (km3 )[( 1000 m )( 100 cm )]
1 km Im

cm




1x108 o
st ” _ _31[1 x 10" ]
V1 (1000 x 100)° [ V| 24 (A.5)

In this massive equation, the same simple form of
the original equation is retained. Each of the
parameters on the right-hand side of the equation is
operated on by a specific conversion factor. The
conversion factors simply relate the original units to
the desired units, based on the relationships be-
tween the common units of measure listed earlier.
Some of the conversions require more than one
step. For example, to get from kilometers to
centimeters, we first convert kilometers to meters,
and then convert meters to centimeters. This could
be done in one step if the relationship between
kilometers and centimeters were already known—
that is, 1 km = 1 x 10° ¢m. The final overall
conversion factor in Equation A.5 combines all the
individual conversion steps by straightforward mul-
tiplication and division.

A.3 Physical and Mathematical Constants

In physics, chemistry, and mathematics, certain num-
bers are special. These special numbers are usually
constants that make general relationships between
parameters into exact relationships with the appro-
priate units. For example, the thermal energy, E, of
a molecule in a gas is proportional to the tempera-
ture, T, of the gas. But the energy is given quantita-
tively by the relation

3
E = = kgl (A.6)

Here the physical “constant,” £ , fixes the amount of

energy. It was originally determined by the physicist
Ludwig Boltzmann, and so is called Boltzmann’s
constant. Many simple and useful relations in science
contain a fundamental constant such as Boltzmann’s
constant. Some of these, which are referred to in the
chapters of this book, are listed next.

PHysicAL ConsTANTS (anD THEIR Common SymsoLs)

The following constants have associated units of
measure for the mks metric system of units.
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Universal Constants of Physics and Chemistry

Atomic unit mass, #, = 1.67 x 10727 kg/amu: The
atomic unit mass is equivalent to the mass ofa proton
Or neutron in an atomic nucleus. If the total number
of protons and neutrons in a nucleus is known—that
is, the number of atomic mass units, or “amu”—the
total mass of the nucleus will be the number of amu
multiplied by the unit mass, m. For convenience,
the weights of atoms and molecules are stated in amu
rather than kilograms. The weight of 1 mole, or
Avogadro’s number, of atoms or molecules is equal
in grams to the number of amu; that is, myN , = 1 x
1073 kg/amu = 1 g/amu.

Avogadro’s number, N 4 = 6.02 x 10%® mol-
ecules/mole: Avogadro’s constant defines 2 “mole”
of a substance; it is exactly N, molecules—or
smallest molecular entities—of that substance. The
mass of a mole of a substance is equal to the atomic
weight of the substance expressed in grams. For
example, the atomic weight of ozone (O3) is 48,
equivalent to the combined atomic weight of three
oxygen atoms. One mole of ozone therefore is the
same as 48 grams. In other words, 6.02 x 1023
ozone molecules weighs 48 g.

Boltzmann’s constant, kg = 1.38 x 1023 J/K:
Boltzmann’s constant relates temperature to the
thermal energy of motion of single molecules. To
emphasize this point, the units of kg can be written
as ] /K-molecule. Boltzmann’s constant is the most
frequently used physical constant in descriptions of
gases and their mechanical and thermodynamic
behavior.

Gas constant, R = 8.31 J/K-mole: The “univer-
sal” gas constant is closely related to Boltzmann’s
constant, since both connect temperature with en-
ergy. In this case, the energy is per mole of gas, rather
than energy per molecule. As you might suspect, the
gas constant can be defined in terms of Boltzmann’s
constant and Avogadro’s numberas R = kpN . This
equivalence is easy to check.

Gravitational constant, G = 6.67 x 10~!1 N.m?2 /
kg?: The gravitational constant quantifies the gravi-
tational force that one body of a given mass exerts on
another body of known mass. The law of gravitation
applies to all objects regardless of size. The smallest
objects exert some gravitational force on the largest,
although only the gravity of very large objects, such
as the Earth, is obvious.

Planck’s constant, = 6.63 x 10734 J.sec: Planck’s
constant relates the energy of a photon of radiation
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to the frequency of the radiation. (Frequency and
wavelength are connected through Equation 3.18.)
Only the frequency or wavelength of light needs to
be known in order to determine the energy of a
photon of radiation at that frequency or wavelength
(assuming that the radiation is traveling in free space
or in air where the speed of light is constant).

Speed of light, ¢=3.00 x 108 m/sec: The speed, or
velocity, at which light, or any other radiation, moves
in a vacuum is exactly determined as 3 X 10% m/sec.
Moreover, the velocity of a photon is independent of
wavelength (or frequency) and holds for all photons.
The speed of light in other materials (air, glass, water,
and so forth) is slower, although the velocity in air is
almost exactly the same as in a vacuum.

Stefan-Boltzmann constant, 05 =5.67 X 108w/
m?K*: The Stefan-Boltzmann constant relates the
power emitted by a blackbody, per unit surface area
of the blackbody, to the fourth power of its tempera-
ture (Section 3.2.1).

Wien constant = 2900 pm-K: The Wien constant
can be derived from Planck’s constant for blackbody
radiation and relates the temperature of the black-
body to the wavelength at which the radiant energy
is the most intense (Section 3.2.1).

“Constants” of the Physical World

The following physical “constants” have been used
in the text of this book or may be of general use to
those studying the atmospheric environment. Note
that in several cases, the “constants” are not truly
constant, but may vary by some small amount. In
many applications, particularly at the level of detail

required in this book, they may nevertheless be -

treated as true constants.

Angular speed of rotation of Earth, Q = 7.29 X
1075 radians/sec: The Earth rotates on its axis at a
nearly constant “angular velocity.” The unit of angular
motion is the “radian”; there are exactly 27 radians in
a single rotation about an axis (later we define 7). One
radian equals about 57 degrees of angle. The Earth
rotates through 27radians, or 360 degrees of angle, in
somewhat less than one day, or 86,400 seconds.

Atmospheric pressure at sea level = 1013 mb =
1.013 x 10° N/m?: This is the average pressure of
the atmosphere. ' '

Density of air at sea level = 1.225 kg/ m3: The
average density of the atmosphere at sea level is
determined by the average surface pressure and
temperature.

Gas constant for dry air (R;) =287 J/K-kg: The
gas constant for dry air can be obtained by dividing
the “universal” gas constant by the average molecu-
lar weight of air in amu, or about 29 g/mole, and
multiplying by 1000 to convert from grams to
kilograms. The gas constant says that each kilogram
of air holds 287 joules of thermal energy for each
degree kelvin of its temperature.

Gravitational acceleration (5) = 9.81 m/sec: The
gravitational force exerted by the Earth on an object
at sea level is simply the weight of the object. The
weight is the mass of the object multiplied by the
gravitational acceleration, W= my. Often, an object’s
“weight” and “mass” may be treated as interchange-
able parameters; the equivalence derives from the
constancy of the gravitational acceleration, which
relates them.

Mass of the Earth = 6.00 x 10?4 kg: The masses of
the major components of the Earth system are
discussed in Sections 2.3.1 and 4.1.1.

Radius of the Earth = 6.37 x 10® m: This is the
average radius of the Earth. The Earth tends to be
somewhat flattened at the poles rather than perfectly
spherical; the greatest radius is at the equator because
rotation on an axis creates a centripetal force that
causes the equatorial regions to bulge.

Solar constant (Fg) = 1390 W/. m?: The solar
constant is discussed in Section 11.3.1.

Sun-Earth distance = 1.50 x 10% m: The mean
distance of the Earth from the sun corresponds to the
orbit of the Earth around the sun. The difference
between the maximum and minimum distances is
about 5 percent of the average distance. Accord-
ingly, the distance between the sun and the Earth is
only roughly constant.

MATHEMATICAL CONSTANTS

7. A mathematical constant that is exactly equal to
the ratio of the circumference of a circle to its
diameter, 7 also gives the area of a circle when
multiplied by the radius of the circle squared.
(See Section A.4 for a definition of “squared.”)
There are exactly 27 angular radians in one
rotation or revolution about a point or axis: 7 =
3.1416.

e: The base of the natural logarithms, or /z, is
#2(%) — x (Section A4). Also, ¢is the base for the
exponentiation in the exponential function, exp;
e=2.718.




A.4 Mathematical Operations

The principal mathematical operations used in this
text are taking the “square,” and its complement,
taking the “square root,” using the natural exponen-
tial operation, and algebraically manipulating simple
equations. These operations are summarized next.

Sauares AND.Sauare Roots

The “square” of a number is simply the number
multiplied by itself, so the square of 2is 2 x 2 = 4. The
square of 3is 3X 3 = 9, and so on. The square of any
number can be written in the form

s(n) = nxn = n? (A7)

where s(#) is the “square of #,” and # is the number
to be “squared.” The exponent shown as a super-
script of z is the “power” to which # is raised—here,
the second power. The second power of #is the same
as the square of #. The number 7 may be a very large
number, a fraction, or any physical or mathematical
constant.

The operation that is opposite to squaring a
number is taking its “square root.” The special
mathematical symbol, v, is used to indicate a square
root. The square-root operation determines the
quantity that, if multiplied by itself, will yield the
original number. For example, we know that 2 x 2
= 4; therefore, 2 must be the square-root of 4, or

4 = 2. There is nothing mysterious here, just a
little arithmetic. The square root of a number can be
written in shorthand notation as

V(n)=«/;;rxr=n=nxn=n2 (A.8)
It follows that # is the square of 7. The square root
may also be written as a the fractional one-half power
of a number, such as: » = Vn = %Y2. Further

relationships may then be written, for example:

W = n? = 22 = 22 _ 0
(A9)

This relation shows that the square root of the square
of #is n. A key point is that when a number is raised
toa “power” in two or more consecutive operations,
the final effect can be obtained by multiplying to-
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gether the separate powers into one number. As you
might expect, if you undo a mathematical operation
you just performed with an exactly complementary
operation, you will end up at the starting point.

HigHER Powers

We are not restricted to “squares” in multiplying a
number by itself. It would be just as easy to multiply
a number by itself three times; or four times, and so
forth. The cube of a number is that number raised to
the “third power,” or multiplied by itself three times.
Thus the cube, or third power, of 2is 23 = 2 x2 x 2
= 8. The cube of 3is 3% = 3x 3% 3 = 27. And s0 on.
The “cube root” is also defined as for the square root:
The cube root is the one-third power of a number
that, when multiplied by itself three times, returns
the original number. Hence the cube root of 8 is
8173 = (2 x 2 x 2)/3 (23)1/3 = 2. One only need
perform a complementary operation to obtain a root
(although this operation is not always so easy).
These arguments may be extended to the “fourth
power.” The fourth power of 2is 24 =2 x 2x2 x

2=16; for 3,itis 34 = 3x 3x 3x 3 = 81. The “fourth

root” is defined in a similar way as for the other roots.
The fourth root is the one-fourth power of a quan-
tity. In the case of the number 16, the fourth root is
2, found as 16'/* = (24)1/% = 2. One trick (you will
perhaps not find so entertaining) is to find the fourth
root of a quantity by taking the “square root” twice,
or the square root of the square root. This is illus-
trated for the number 16:

Q622 = [J16 = 2 = 2 (A10)

Notice that the square root of 16 is 4 (that is, 4 x 4
= 16), and the square root of 4 is 2. The one-fourth

power is equivalent to appl¥ing two one-half powers
consecutively, since i =5 % -;- .

16V4 =

EXPONENTIALS AND LoGARITHMS

Exponential functions are commonly used in physics
and mathematics. Many fundamental processes can
be described by “exponential” behavior. The expo-
nential of a number, #, is defined by the mathemati-
cal expression

exp(n) = ¢”; exp(-n)
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The number, #, is the “exponent” in this relation.
The mathematical constant, ¢, is called the “base of
the natural logarithms” (its value was given earlier).
Notice that when an exponential function is in-
verted, only the sign of the exponent changes (the
last two relations in Equation A.11). Any number, #,
can be placed in an exponential function. Moreover,
the exponential function is always positive, even
- when the exponent is negative. The exponential of
“zero” is exactly “one”: exp(0) = 1.

The logarithmic function is the complement of
the exponential function. Taking the logarithm of an
exponential yields the exponent. The logarithmic
function is represented by the symbol In.} Then the
following relations hold:

Infexp(#)] = Ine” = n;Ine =1 (A.12)
We can calculate (or “take”) the logarithm of any
positivenumber. Although the logarithm ofa negative
number is not defined, the value of a logarithm may
be negative if the original number is smaller than 1.
The logarithm of “one” is exactly “zero”:In1 = 0.

If xis a number larger than zero, then its logarithm
is m = In x. Because the exponential and logarithmic
operations are complementary, it follows that

exp(ln x) = "% = ¢” = « (A13)

Accordingly, any positive number can be written as
an exponential of a base number, which is the base of
the logarithms (Footnote 1).

The exponential and logarithmic functions are
related to the scientific notation discussed earlier in
this appendix. It turns out thatIn 10 = 2.3. Then the
following relations hold:

exp(2.3n) = 23 (A.14)

— (82.3)71 = 10"
In other words, taking an exponential is similar to
dealing with powers of 10 in scientific notation.
When multiplying or dividing numbers, exponents

"may be added or subtracted, respectively, as in
scientific notation. For example:

1. Logarithms that are calculated using the mathematical
constant ¢ as the base are called nazural logarithms. This is
sometimes written as In,, although the symbol In represents the
natural logarithm. Logarithms can be taken with respect to any
base as long as the base has a positive value. The most common
alternative base for logarithms is 10 (that is, In};), which is
consistent with the representation of large and small numbers in
powers of 10, or in scientific notation.

exp(n) X exp(m) = exp(n + m),

n,m . ntm,

gen = (A.15)
102.3n % 102.3m — 102.3(n+m)

The division of exponential functions, like the divi-
sion of numbers expressed in powers of 10, is equiva-
lent to subtracting the exponents:

exp(#n) + exp(m) = exp(n — m);

n

£ _ R
o ’ (A.16)
102.311 + 102.3m - 102.3(11 —m)

Although the terminology and notation used to
describe exponentials and logarithms may seem a bit
obscure, these functions are indispensable to math-
ematicians and scientists. They are an important part
of the shorthand language of science.

Avrgeeraic EQUATIONS

We have been using equals signs throughout this
appendix to indicate equivalence between two num-
bers or quantities or functionalities. Such “equa-
tions” are nothing more than a statement that two
specific quantities are equal. Trivial equations of
the form x = x (for example, 2 = 2), convey no
information; they are obvious identities. But more
general equations that connect different parameters
or functions can convey useful information in a
compact and convenient form. Thus the equation x
= y simply states that the quantity x is equal to the
quantity y. It should be clear that this statement can
be inverted to say yis equal to x. The two statements
are perfectly compatible, given the equality. In fact,
all the equations in this book can be interpreted in
either direction.

If either x or y or both are functions of some sort,
the equation may be an “algebraic” equation. For
example, we may have the relation

This equation represents a straightforward state-
ment that x equals the square of y, which establishes
the unequivocal relationship between x and y. In-
deed, from our previous discussion, we can easily
deduce that y is the square root of x. That is, the




equation can be inverted, or solved for yin terms of
. In this case, the procedure is simple: We take the
square root on each side of the equals sign and switch
sides to get
y = x, or y = x¥2 (A.18)
In any equation, we can apply the same operation
to both sides of the equals sign without changing the
equality. In this example, we took the square root.
We could also have divided each side by the same
constant or taken the fourth root of each side, or taken
the logarithm, or carried outany number of operations
sequentially. Usually, the operations are chosen to
simplify one side of the equation or to isolate one of
the variables or parameters on one side of the equals
sign. In the preceding example, we isolated y on the

left-hand side of the equation (which is usually the ‘

side chosen for the single variable).

We can take a concrete example from Chapter 11,
in which Equation 11.12 was derived from the
energy balance model of the Earth:

F(1 - a,) = 405T} (A.19)
In this equation, we could have isolated, or solved
for, any of the parameters or variables. Typically, one
variable is to be determined from all the other
information given. In this instance, it is the tempera-
ture, T.. This can be accomplished by performing the
following sequence of operations on each side of the
equation: Divide by 4; divide by o; take the one-
fourth power of each side; reverse the sides of the
equation. Having performed these steps, you will
have derived Equation 11.14:
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¢ 40, (A.20)

Equations are fun to work with because they are
concise, precise statements of facts about the world.
So do not be intimidated by these wonderful little
artifacts of science. ’ ’

INeQuALITIES

Not all algebraic relations are exact. Equations are
exact when they are connected with an “equals” sign
(=). But we sometimes wish to express a conditional
relationship between two parameters. For example,
it may be important to know when one quantity is
“less than” another or “greater than? it. Such condi-
tions are expressed in a concise way by means of
special mathematical symbols. The symbol < is liter-
ally interpreted as “less than.” If the condition x < 0
holds, then the value of x is always “less than” zero.
Itcanbe-1,-2,-10%, or any other negative number.
Related symbols are >, which means “greater than”;
<, which translates to “less than or equal to”;and >,
which means “greater than or equal to.” The in-
equalities express a certain degree of uncertainty in a
relationship and, at the same time, a degree of
certainty. Someone may admit to being older than
you but may not say by how much. In that case, you
could mathematically write

their age > my age

You are using a mathematician’s shorthand.




