Name:				Section:		TA: Celeste / Sarah / Ken
		ATM S	101 HOMEV	VORK 4.	Winter	2004
		Du	ue Thursday	Feb 19 th in	n class.	
Answer in answers.	n th	e spaces provide	ed. Include wor	king where	appropriat	e, not just the numerical
1. Use the f	ollow	ring list of cloud type	es to fill in the blank	s below:		
Cirrus, Strat		umulus, Advection F A type of cloud the				(often seen over Mt. Rainier)
	b.)	This cloud appears			chilly lake	
	c.) d.)	Hail forms in this ty	ype of cloud ıds			
	e.)	Puffy white cotton				
	f.)	Low layered clouds	s (most often seen in	Seattle in the v		
	g.)	Cloud that appears	low to the ground a	fter a cold clear	night	[7 points]
h.)	In v	which of the followi	ing types of clouds	would you M	OST expect t	he Bergeron process to occur?
<i>3.</i> ,	JUS	TIFY YOUR ANSW us, Stratus, Cumulus	/ER!!	-	_	
		ach of the following	affects the growth of	of a CLOUD dro	oplet:	[4 points]
b.)	Solut	e effect				

		[4 points]
4. How	do the following affect the growth of RAIN drops? a.) Dependence of fall speed on size	
	a.) Dependence of fair speed on size	
	b.) Presence of ascending air currents in deep convective clouds	
	c.) Coalescence	
		[6 points]
	sider two cities, A and B. Each has a surface pressure of 1000mb. The air temperature y B it is 5C. SHOW ALL OF YOUR WORK!	over city A is 20C and
over cit	a.) Calculate the average surface density of the air over each city. (Remember to exp	ress pressure in Pascals
	for all calculations)	
	b.) Using the answer from part (a) (assuming that density doesn't change with heigh approximation (consider the acceleration due to gravity to be 9.8 m/s^2), determine:	nt), and the hydrostatic
	i.) How high you have to go over each city to reach 900mb.	

ii.) The pressure at 1km ABOVE each city.
c.) Consider an air parcel located halfway between A and B, with a density equal to the average of the densities of the two cities. If A and B are 1000km apart, calculate the horizontal acceleration (also note direction of acceleration) that this parcel may experience if it were located: i.) At the surface
ii.) At 1km above the surface
6. During the cloud in a bottle experiment performed in section, we had to put smoke into the bottle before we could
get cloud formation. Explain why this was necessary.
[2 points]
7. Place the following words in the blank that BEST FITS: scattering, refraction, diffraction, and reflection: a.) The rainbow effect you see when you hold a prism in the light is an example of
b.) While driving on a sunny day, you are blinded by light from the window of the car ahead of you. This is
c.) Steam from a pot of boiling water looks whitish due to
d.) You can occasionally see corona around the moon. The corona is due to