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Exponents

. An exzponent is the power to which a number (which we’ll call base) is
raised. Say we have a positive base a that is greater than zero. Then:

a* = a (ato the power of 1)
= axa (asquared)

a® = axaxa (acubed)

So, the exponents indicate how many times the number a is multiplied by
itself.

. A number raised to the power of zero equals one. i.e.:
a®=1
. If we have a negative exponent, this means that we have a fraction with

1 in the numerator and the number raised to the positive exponent in the
denominator. i.e.:

For example, a=2 = 1/a?.

. If we multiply two different powers of the same number together, we end
up with the number raised to the sum of the exponents. i.e.:

a™ x a" = a™t"
For example,
a'xa® = = x(axaxa)
= axa
= a2



Note that in this example we have disguised a division as a multiplication
by using negative exponents.

. A fractional exponent is the same as a root. i.e.:
al/™ = Ya

So that a'/? is the same as the square root of a, a'/? is the cubic root of
a and so on.

. A power of @ raised to another power, is a raised to the product of the

exponents. i.e.
(am)n — amX’I’L

For example,

(@®)? = (axaxa)?
= (axaxa)x(axaxa)

= (axaxaxaxaxa)

= a6
This will be useful when dealing with roots since (a'/™)" = a, so that by
raising a root to the appropriate number we can get rid of it.

Significant figures

. The significant figures in any number, are the digits starting from the
first non-zero figure from the left. For example, in the number 0.003503
the significant figures are 3503 and in 142.50023 the significant figures are
142.50023. When presenting numbers, we will often do so “to the first n
significant figures”. For example, 0.003503 written to the first 3 significant
figures will be 0.00350 because 350 are the first 3 significant figures. When
doing this, we have to make sure the last figure is properly rounded. For
example 142.50023 written to the first 3 significant figures is 143.

. Many times when we perform operations on numbers, our calculations
will produce numbers with many many more significant figures than the
numbers we started with. For example, to the question “How many times
heavier is a rock of 1.1 tons than a rock of 0.7 tons” the straight forward
answer is

% = 1.5714285714285714...

In this case, the significant figures extend indefinitely, but it doesn’t make
sense to try to recite them all to answer the question. Since the initial
numbers were not given as 1.10000000000000... or 0.7000000000000..., it
is apparent that the real weights were within a tenth of ton of the given
values. We can’t get more accuracy than what we had to begin with! An



appropriate answer may be 1.6. That is, we only considered the first two
significant figures when presenting the answer. There is no clear-cut rule
about how many significant figures to keep, just try to be reasonable.

Scientific notation

. When working in science, we’ll be dealing with numbers from a large
range of scales. For example, the age of the Earth is approximately 4.6
billion years while while a storm cloud may live only half an hour (or
approximately 0.00006 years).

If we were to write these numbers side by side in the same units, it will look
messy if we use the same degree of accuracy (number of decimal places)
for both. i.e.:

Age of Earth = 4600000000.00000 years
Life of cloud = 0.00006 years

Note that age of the Earth written in this way seems much more accurate
than what we really have, while the zeros on the life of a cloud provide
with no information by themselves.

. To avoid the problems mentioned, we introduce the so-called scientific
notation in which only the significant (non-zero) part of the number is
explicitly mentioned and the number of zeros present is indicated by a
power of 10. The exponent on the 10 tells us how many places to move
the decimal point.

Using this, we can rewrite the numbers in our previous example as:

Age of Earth = 4.6 x 10° years
Life of cloud = 6 x 107 years

To recover 4600000000 from 4.6 x 10°, we shift the decimal point in 4.6
by 9 places (the exponent on the 10) to the right. The shift is done to the
right because the exponent is positive.

In the other case, we shift the decimal point on 6 by 5 places to the left
because the exponent is negative.

. When operating on numbers written in scientific notation it is useful to
operate separately on the numbers before the 10 and on the powers of ten.
For example, the ratio of the life of a cloud to that of the Earth is

6 x 1075 6 1075
- @@ = - X -
4.6 x 109 4.6 109



= 1x1075"°
= 1x107 ™

The exponent on the 10 is —14, which means that the decimal point should
be moved 14 places to the left. It is a lot of zeros we are avoiding to write
by using scientific notation!

Logarithms

. In previous sections we've dealt with exponents. Raising a number to
some power provided us with a new number. For example:

x =23
yields
r=2_8

In the example we were given the 2 and the 3, and we calculated the 8.
What if we had been given instead the 2 and the 8, and we wanted to find
out what the exponent was? In this case we’d have

2 — 8§

Our usual approach for solving algebraic equations doesn’t help us. We
cannot solve for y by simply adding, subtracting, multiplying or dividing
both sides of the equation by any number.

So, we introduce the logarithm! This is just a way of expressing that we
have solved for the exponent. For example, in our previous example we
would write

y =log, 8

which simply means “y is the number by which we raise 2 to get 8”. We
still don’t have a numerical value for y, though. That’s what calculators
(or numerical tables, for the old timers) are for! In general y = log, b
means “y is the number by which we raise the base a to get b”.

. Previously we talked about logarithms with any base. However, as we’ve
seen in previous sections, we’ll be using heavily the base 10. In fact, this
is so widely used, that if the base is not explicitly mentioned then it is
assumed to be 10. So

y =logb

is the same as
y =logiob

If b were 10 raised to an integer power, then y would just give the number
of zeros in b. For example log 1000 = 3.



3. Another commonly used base is the number known plainly as e, which is a
number that shows up often in mathematics and science. An approximate
value for e is 2.71828, but it is an irrational number (i.e. decimals go on
to infinity). The logarithms with base e are called Naperian logarithms
(after John Napier) and are written

y=Inb

which is the same as
y = log, b

4. By considering the operation rules for exponents, we can come up with
the following rules for logarithms:

e Addition/multiplication
log, b+ log, ¢ = log, (b x c)

Example: log,, 100 + log;, 1000 = log;, 100000

e Subtraction/division

b
log, b — log, c = log, ()
c

Example: log;, 100 — log;, 1000 = log;, 0.1

e Exponent to multiplication
log, 0" = nlog, b

Example: log;, 2% = 3log;, 2

e Change of base
_ log.b
~ log,a

log, b

a

. _ log;,1000 __ 3
Example: log;y, 1000 = Tog.o 100 = 3

Direct and inverse proportionality

1. We usually say that two quantities are directly proportional when a change
in one of them implies a change in the other by the same factor. For
example, the doubling in one of them implies a doubling of the other one.
Generally this is indicated as x o y, which says “z is directly proportional
to y”.

An example from physics is Hooke’s law for a spring, which says that the
force required to extend a spring is proportional to the length by which it



is extended. So, the more you want to extend the spring, the greater the
force you need to apply. In mathematical notation this can be written as:

F=kx

where F' is the force applied,  the extension and k is called “spring
constant”, but in general it is the “proportionality constant” between F
and x.

Note that the proportionality constant could be negative, so that an in-
crease in one of the quantities could imply a decrease in the other. An
example can be found in energy transfer between two bodies A and B.
Since energy is conserved, what is lost by one is gained by the other. If
5 calories are transferred from A to B, the change of the energy of A is
-5 calories and the change in energy of B is +5 calories. If 10 calories
were transfered, the respective changes would be —10 and 10 respectively.
Therefore, the changes in energy of both bodies are proportional and the
proportionality constant is -1.

. Two quantities are said to be inversely proportional if the product of the
two are constant. So, if one of the quantities is doubled then the other is
halfed, if one is tripled then the other is reduced to a third, and so on.

A physical example is given by Boyle’s law constant temperature, which
says that the product of the pressure and volume of a gas at constant
temperature is constant . In mathematical form this can be written as

PV = Constant

So, if the volume V of the gas is reduced to half, then the pressure P is
doubled. This can also be written as P = Constant X %, which tells us
the fact that the two quantities are inversely proportional to each other
is equivalent to saying that one of them is proportional to 1 divided by
the other. Using the notation we introduced previously, if x and y are

inversely proportional, then z o 1/y.



