ATM S 111: Global Warming Solar Radiation

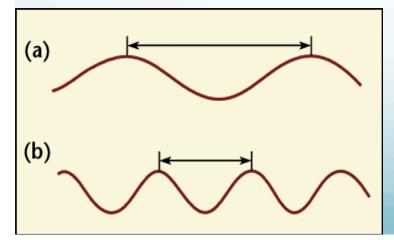
Jennifer Fletcher Day 2: June 22 2010

Yesterday We Asked...

- What factors influence climate at a given place?
 - Sunshine (and latitude)
 - Topography/mountains
 - Proximity to oceans and large lakes
 - Ocean currents
 - Presence of trees/vegetation
 - Etc.
- But what are the main factors that control the global climate?
 - We'll study this next

Outline of This Lecture

Today:

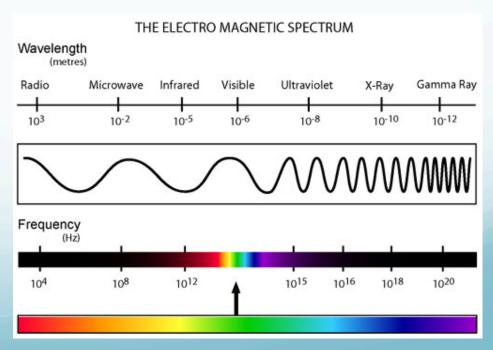

- How exactly the Sun heats the Earth
 - How strong?
 - Important concept of "albedo": reflectivity

Tomorrow & Thursday:

- How the greenhouse effect works
 - How the Earth cools
 - And how greenhouse gases lead to less cooling
- What are the main greenhouse gases?
 - And which are changed by human activity?

How Does Energy Arrive From the Sun?

- Energy from the Sun is "electromagnetic radiation" or just "radiation" for short
 - Goes through space at the speed of light
 - Radiation is absorbed or reflected once it gets to Earth
- Radiation with shorter wavelengths are more energetic
 - And radiation is classified in terms of its wavelength



← This has long wavelength and low energy

← This has short wavelength and high energy

Types of Radiation

- Types of electromagnetic radiation, from most powerful to least powerful (or shortest wavelength to longest wavelength)
 - Gamma rays
 - X-rays
 - Ultraviolet (UV) radiation
 - Visible light
 - Infrared radiation
 - Microwaves
 - Radio waves

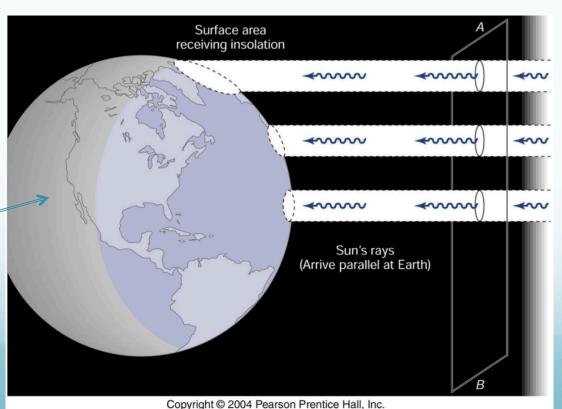
Sun's Radiation

- The Sun emits at all wavelengths, but primarily:
 - Visible light (of course)
 - Also "near infrared" radiation (infrared with very short wavelength)
 - A small (but dangerous) amount of ultraviolet radiation
 - This is what makes us sunburn
- These three bands together we call "shortwave radiation"

How Strong is the Sun?

By the time it gets to the top of Earth's atmosphere, the Sun shines at a strength of 1366
 Watts per square meter

 Watt (abbreviated as W): unit of power or energy per unit time

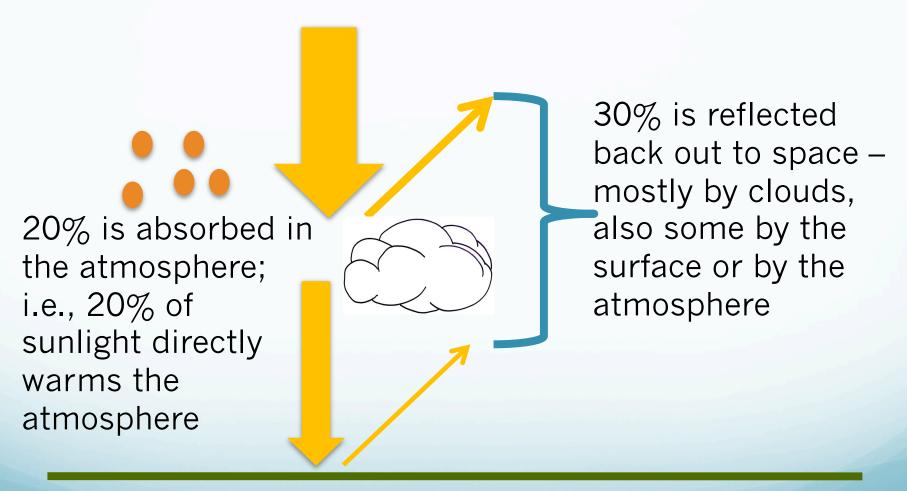

• 1366 W/m² is roughly what's experienced in the **tropics** when the sun is **directly overhead**

Average Solar Radiation

- The average incoming solar radiation is not 1366
 W/m² though
 - It's only 342 W/m² (exactly ½ of this). Why?

Half the planet is dark at all times...

Here it's nighttime


High latitudes get less direct radiation, which spreads out more

Reason for seasons: Winter is tilted away from the Sun, gets less direct light, and thus is colder

Radiation and Matter

- When light or radiation of any wavelength is intercepted by matter (solid, liquid or gas), the following can happen:
 - A) Scattering or Reflection: The light changes direction because of electromagnetic forces from the protons & electrons. (For this class, you can think of the light as bouncing off the substance.)
 - B) Absorption: The light gives its energy to the substance that absorbed it, often increasing its temperature.
 - C) **Transmission**: The light passes directly through the substance with no change in energy or direction.

Solar Radiation on Earth

50% is absorbed at the surface

Key Concept for Climate: Albedo

- Albedo: fraction of incident light that's reflected away
 - Albedo ranges from 0 to 1:
 - 0 = no reflection
 - 1 = all reflection
 - Things that are white tend to reflect more (high albedo)
 - Darker things absorb more radiation (low albedo)

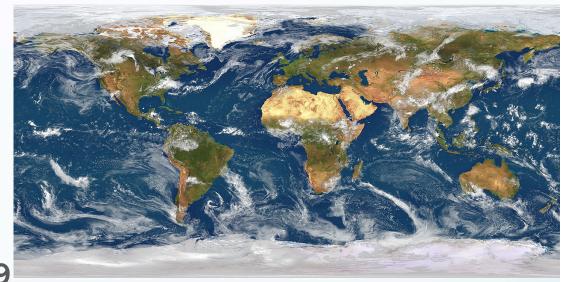
(Actually the cause-effect is the other way around – things that reflect more look white to us because more light is hitting our eyes! Things that absorb more look dark because our eyes are receiving less light.)

Key Concept for Climate: Albedo

- Albedo: fraction of incident light that's reflected away
 - Albedo ranges from 0 to 1:
 - 0 = no reflection
 - 1 = all reflection
 - Things that are white tend to reflect more (high albedo)
 - Darker things absorb more radiation (low albedo)

Pop Quiz! (Not really.) Rank these from highest to lowest albedo: fresh snow, fresh asphalt, grassland.

Key Concept for Climate: Albedo


- Albedo: fraction of incident light that's reflected away
 - Albedo ranges from 0 to 1:
 - 0 = no reflection
 - 1 = all reflection
 - Things that are white tend to reflect more (high albedo)
 - Darker things absorb more radiation (low albedo)

Pop Quiz! (Not really.) Rank these from highest to lowest albedo: fresh snow, fresh asphalt, grassland.

Answer: Snow, grassland, fresh asphalt. So, what effect might building a city have on how much sunlight is absorbed in an area? This is the "urban heat island" effect.

Albedo Values for Earth

- Clouds, ice, and snow have high albedo
 - Cloud albedo varies
 from 0.2 to 0.7
 - Thicker clouds have higher albedo (reflect more)
 - Snow has albedo ranging from 0.4 to 0.9

(depending on how old the snow is) and ice is approximately 0.4

- Ocean is very dark (< 0.1), as are forests (0.15)
 - Desert has albedo of 0.3

Relative Contributions to Earth Albedo

- Remember we said 30% of incoming solar radiation is reflected away?
 - 20% is from clouds
 - 5% is by the surface
 - 5% is by the atmosphere (things like dust from deserts and air pollution are key players here)

Total Solar Input

- Total absorbed solar radiation is 70% of the incoming solar radiation
 - Because 30% is reflected away
 - 70% of $341 \text{ W/m}^2 = 240 \text{ W/m}^2$

Summary So Far

- The Sun heats the Earth
 - Some is reflected back, a bit is absorbed in the atmosphere
 - But other than that, the atmosphere is pretty much transparent when it comes to solar radiation (half is absorbed right at the surface)
 - Clouds and snow/ice are primary contributors to the albedo of Earth
- Tomorrow & Thursday: how energy escapes from Earth and the greenhouse effect