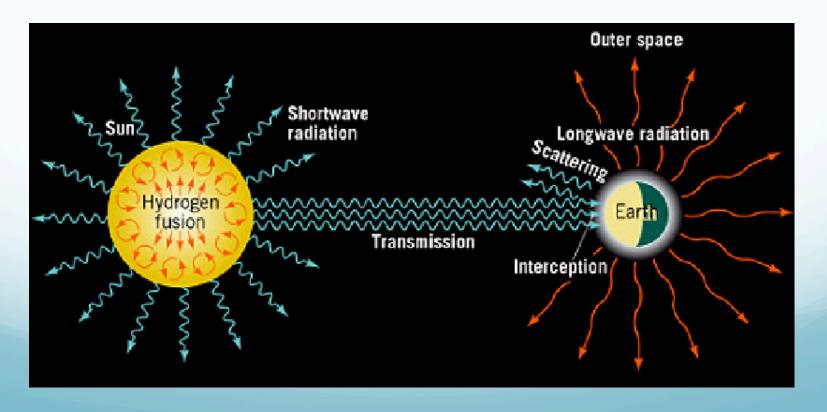
ATM S 111: Global Warming Climate Forcings

Jennifer Fletcher Day 5: June 28 2010

Climate Forcings vs Climate Feedbacks


- Climate forcings:
 - Things that can change global temperatures directly
 - Examples: intensity of sunlight, atmospheric CO₂ concentration
 - Will focus on these today
- Climate feedbacks:
 - Things that respond to temperature changes, but themselves affect temperature too
 - Example: Ice sheet extent on Greenland and Antarctica
 - Will focus on these tomorrow and Wednesday

Climate Forcings

- Climate forcings directly change global temperatures
- Examples:
 - Changes in strength of the Sun
 - Changes in greenhouse gas concentrations (water vapor is an exception, as we will see)
 - Volcanic eruptions (which block out the Sun)
- We need a way to put these on equal footing in terms of how much warming they cause
 - Let's recall how the Earth is heated/cooled

Heating/Cooling of the Earth

- Solar radiation in, longwave radiation out
 - The Earth is heated by shortwave radiation from the Sun
 - The Earth cools by longwave radiation

Radiative Forcing

- Radiative forcing is calculated as the change in shortwave in or longwave out due to the particular climate forcing
 - Measured in Watts per square meter (W/m²)
- Recall energy balance: $E_{in} = E_{out}$
 - Positive radiative forcing = increased shortwave in or decreased longwave out, so that $E_{in} > E_{out}$.
 - Negative radiative forcing = decreased shortwave in or increased longwave out, so that $E_{\rm in} < E_{\rm out}$.
 - In response to a positive radiative forcing, the climate must warm

Radiative Forcings: Shortwave Forcings

Shortwave forcing is just the change in solar energy absorbed by the planet

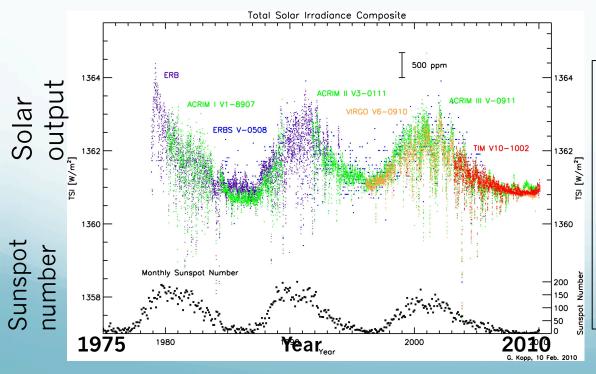
- Ex. 1: if the Sun increases in strength so 0.2 W/m² more is absorbed, the radiative forcing is 0.2 W/m²
 - OK that was obvious...
- Ex. 2: if a volcano blows up and reflects back an extra 0.3 W/m² of the Sun's rays, the radiative forcing is -0.3 W/m²

Shortwave Forcings

- Shortwave forcings affect how much solar radiation is absorbed
- Examples of shortwave forcings:
 - Changes in strength of the Sun
 - Changes in the surface albedo
 - Not changes in ice coverage that's a feedback
 - Volcanoes
 - Air pollution
 - This falls under the more general category of "aerosols"
- Let's discuss each of these in more detail

Changes in the Intensity of the Sun

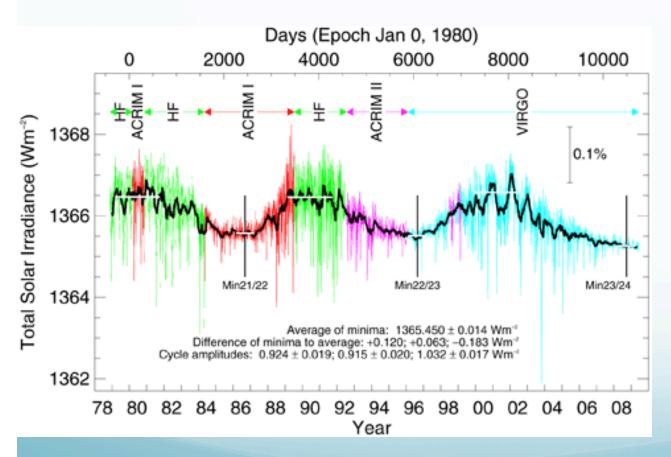
- The Sun has natural variability in its strength
 - The changes are rather small though (around 0.1% since we've been measuring accurately with satellites)
- The variability of the Sun is correlated with the


sunspot cycle

 Sunspots are temporarily darkened regions on the Sun →

Sunspot Cycle

- Sunspots vary over an 11 year cycle
 - More sunspots → more solar radiation (Also more solar flares – these mess with satellites, communication systems, etc)

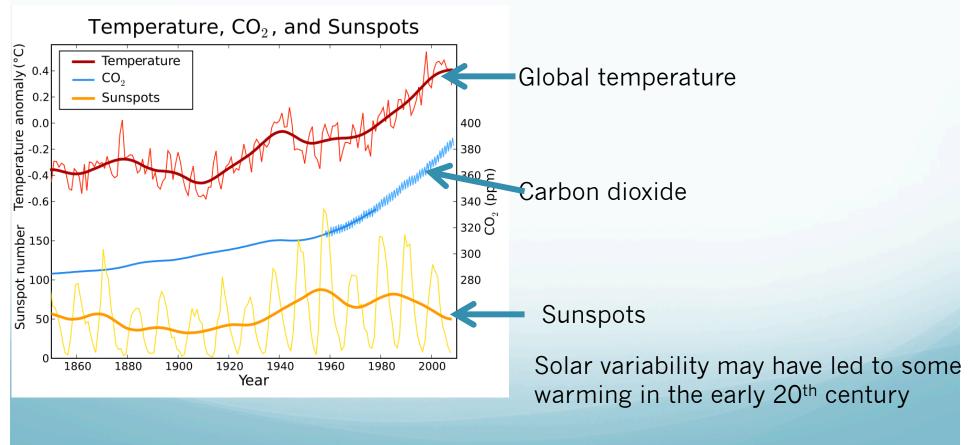

Fun Fact: Radiative forcing by the Sun

- = change in solar radiation absorbed on Earth
- = 0.7*(irradiance change)/4
- $= 0.2 \text{ W/m}^2 \text{ (max to min)}$

(takes into account albedo and directness of radiation)

Current Solar Intensity

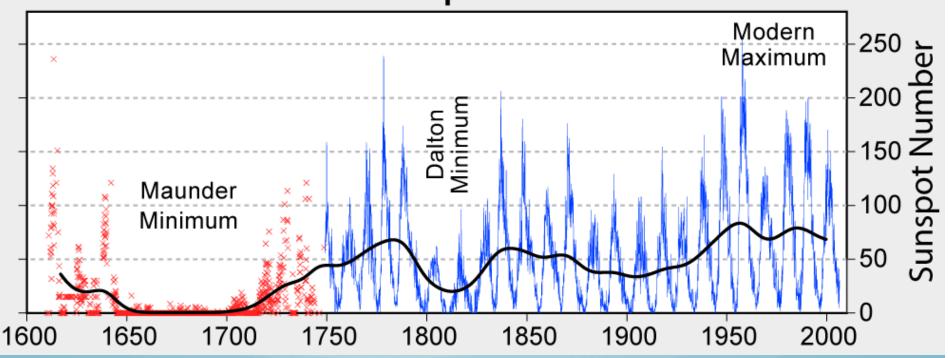
We're at the end of a deep minimum of solar intensity



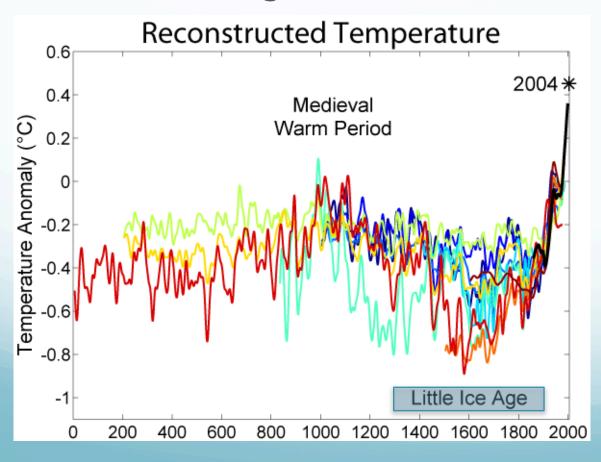
Peak to peak radiative forcing of the Sun: 0.2 W/m²

Affects global temperatures by around **0.2° C** (research of Prof. Tung, Applied Math, UW)

Sunspot Cycles over Time


 Sunspot cycles are not the same each 11 year cycle:

Sunspots over Last 400 Years


Sunspots since we've been observing them:

A Preview of Some Paleoclimate

 Maunder minimum (1650-1700) coincides with "Little Ice Age":

There was also enhanced volcanic activity at this time

We'll discuss these & other periods more when we study paleoclimate

Other Ways to Change Absorbed Solar Radiation

- Changes in the Sun aren't the only way to change absorbed solar radiation
- We can also directly change the albedo of the Earth
 - Land cover
 - Soot on snow
 - Reflective particles in the air

Land Cover Changes

Forests have low albedo (they're dark)

Cutting down forests to create farmland/pastures tends to

raise the albedo

This is actually a negative radiative forcing

 Causes local cooling because there's more solar energy reflected

- However, remember that deforestation is an important source of carbon dioxide
 - Deforestation can cause global warming but local cooling...

Soot on Snow

- A tiny amount of soot (AKA black carbon) in pure white snow can change the albedo dramatically!
 - Currently a very active area of research (Prof. Warren, Atmos Sci)

Fresh snow over Greenland from high above

Other Ways to Change Albedo

- Can change albedo in the atmosphere as well
- Aerosols (fine particles suspended in air) make a large contribution to reflection of sunlight
 - Volcanoes!
 - Pollution (from coal burning or other types of burning)
 - Dust (e.g., from the Sahara)
 - And others

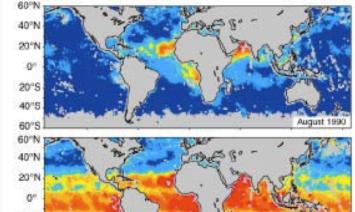
Volcano Effects on Climate

- Volcanoes can have a large climate impact
 - Certain big ones cause a temporary cooling of the climate

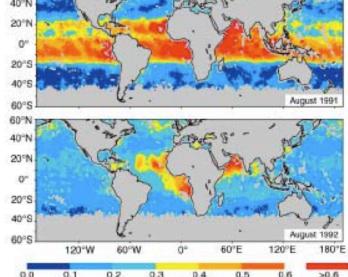
Mount Pinatubo, Philippines, erupted June 1991, resulted in more than **0.5° C** (0.9° F) global temperature **decrease**

Direct heating of atmosphere by volcanoes is small.

CO₂ emission by volcanoes is <1% of anthropogenic emission.


Volcano Impacts on Climate

Dust and sulfates from volcanoes block out the Sun

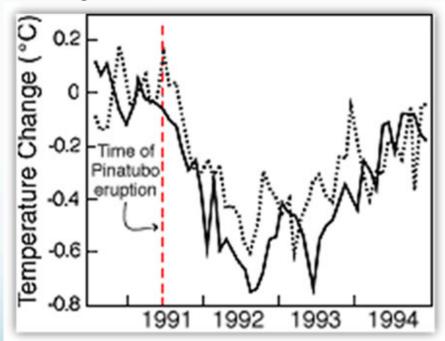

Before the Pinatubo →

2 months

after →

14 months after →

Optical Depth


Volcanic material spreads quickly around the same latitudes as the eruption

Slight dimming seen across the globe over a year after the eruption

Red colors = atmosphere is reflecting a lot of sunlight back

Volcano Impacts on Climate

 Effects of big eruptions are felt for a couple of years

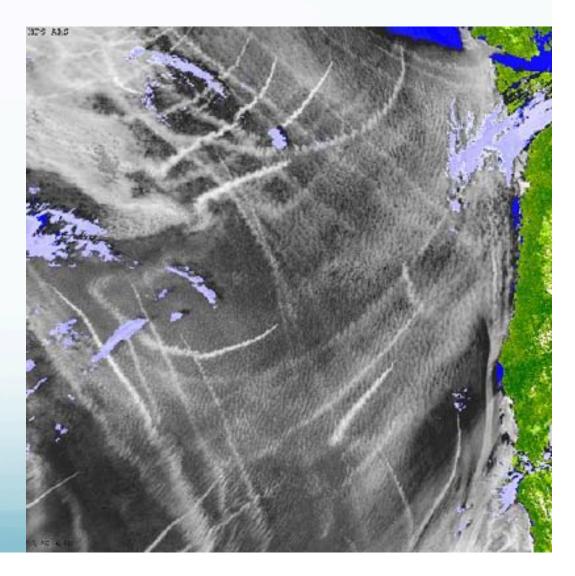
Temperatures were cold for around 2 years before recovering

Fun Fact: **Tropical** volcanoes that get lots of **sulfates** into the **stratosphere** have the biggest climate effect

Observed (dashed) vs modeled (solid) temperature change (from Hansen et al 1996)

Air Pollution Aerosols

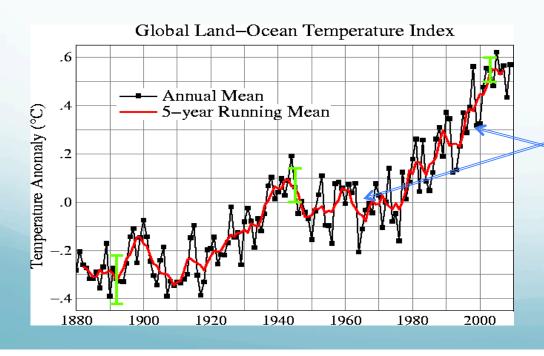
- Air pollution particles block out sunlight too
 - Sulfates from dirty coal burning are particularly important (sulfate aerosols)
 - This is the same stuff that causes acid rain
 - These are a big effect
 - One of the main uncertainties in our understanding of climate



Aerosol "Indirect Effect"

 Aerosols also affect cloud formation

 Ship tracks can be seen as brighter
clouds follow the ships' smokestacks



"Global Dimming"

- Solar radiation reaching the Earth's surface declined by ~4% from 1961-1990
 - This has coexisted with large increases in the global temperature. Why?
- Increased aerosol concentrations partially to blame
 - Both direct reflection and indirect cloud changes are thought to be important
- Trend has reduced since 1990s (likely due to Clean Air Act and similar laws in Europe)

Aerosol Effects on Climate

- Air pollution thus is another strange issue:
 - Sulfate aerosols reflect away sunlight so itself causes cooling
 - Cleaning up pollution has had great benefits for air quality, human health, acid rain, etc
 - However it has likely led to additional warming

Aerosol increases/cleanup is likely partially to blame for the small warming from 1950-1970, and the rapid warming since then

Another twist: China is pumping out lots of dirty coal emissions now

Summary of Shortwave Climate Forcings

- Shortwave radiative forcings can come from:
 - Changes in strength of the Sun
 - Changes in albedo at the surface
 - Changes in albedo of the atmosphere

Summary of Shortwave Climate Forcings

 Radiative forcings for shortwave agents in current climate vs preindustrial:

•	Solar radiation changes	$+0.12 \text{ W/m}^2$
•	Land cover changes	-0.20 W/m ²
•	Soot on snow	+0.10 W/m ²
•	Aerosol direct effect	-0.50 W/m ²
•	Aerosol indirect effect (clouds)	-0.70 W/m ²

- All of the above have significant scientific uncertainty associated with them.
 - We just don't know these values very accurately.
 - This is because we don't have enough data on the amount of aerosols in the atmosphere.

Longwave Climate Forcings

- Shortwave forcings affect the amount of solar (shortwave) radiation that Earth absorbs.
- Longwave forcings affect how much infrared (longwave) radiation that Earth emits.
- What are longwave forcings?
- Greenhouse gases

Climate Forcing of CO₂

- Radiative forcing of CO₂ for current value versus preindustrial (year 1750) value: 1.66 W/m²
- This means that, if everything else stayed the same since 1750 (temperature, other greenhouse gases, etc), the extra CO₂ in the atmosphere would prevent an extra 1.66 W/m² radiation from escaping to space.
- Radiative forcing for doubling CO₂: around 3.7 W/m²
 - And the radiative forcing increase gets less as CO₂ increases more.
 - Why?

Radiative Forcing of Other Greenhouse Gases

These are all current values vs preindustrial values

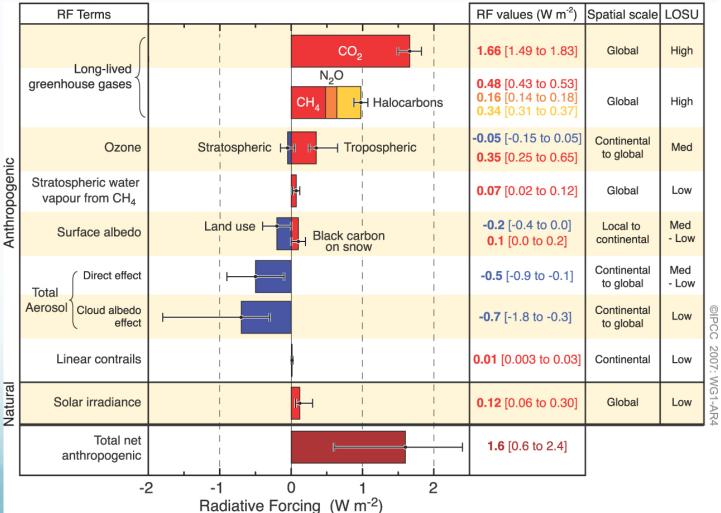
Carbon dioxide: 1.66 W/m²

Methane: 0.48 W/m²

Nitrous oxide: 0.16 W/m²

CFCs: 0.32 W/m^2

- But CFCs are decreasing now (everything else is increasing)
- These numbers give the percentages of the anthropogenic greenhouse effect from last lecture...
- Recall that average solar radiation absorbed by Earth is 240 W/m², so these are small but important perturbations.


Radiative Forcings all Plotted Together

Red = warming, blue = cooling

Longwave and shortwave together here

Radiative forcing of present climate vs Preindustrial, with uncertainties

Aerosols (air pollution) are the biggest uncertainty

IPCC AR4 SPM

Climate Forcings Summary

- Climate forcings either change shortwave radiation or longwave radiation
 - Longwave forcings are greenhouse gases and include:
 - Carbon dioxide
 - Methane
 - Nitrous oxide
 - Ozone
 - Shortwave forcings include:
 - Changes in solar radiation
 - Changes in surface albedo by land use and soot on snow
 - Volcanoes
 - Aerosols

Local Aspects of Many Climate Forcings

- CO2 is still the main problem
 - And it is global (essentially the same concentration everywhere)
 - Hence "global warming" is an appropriate name
- Many of the other climate forcings are much more localized though
 - Soot on snow, land use, aerosols all tend to be localized
 - Hence "climate change" is a better term when covering these

Summary

- Climate forcing: anything natural or not that can change energy balance, and hence climate, independently.
- Distinguish this from climate feedbacks, which can also change energy balance but which depend on the climate itself (tomorrow!).
- Most greenhouse gases (but not water vapor) are a form of positive climate forcing.
- Aerosols, soot, and changes in land use also represent human-caused climate forcing, and mostly would cause global cooling if there were no GHGs.