
Chapter 3

3.1 Basic Equations in isobaric coordinates (x,y,p,t)

Work through the derivations in this section on your own, in class we will focus on solving

problems and building intuition. All derivations are straightforward and make good practise,

except Sp is rather tricky (even though Holton says “it is easy to show”).

The horizontal momentum equation in isobaric coordinates is

DV

Dt
+ fk̂ × V = −∇pφ (1)

where V = uî + vĵ is the horizontal velocity and the little subscript p means holding

pressure constant. The total derivative written out in component form is coordinate system

dependent. Even though this is only the horizontal momentum equation, D/Dt still depends

on vertical advection:

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ ω

∂

∂p

where ω = Dp/Dt is the vertical velocity component in isobaric coordinates. ω has the

opposite sign of w.

The geostrophic wind in isobaric coordinates is independent of ρ

fVg = k̂ ×∇pφ

For homework this week you get to show an additional extremely nice property of Vg in

isobaric coordinates — it is divergentless on pressure surfaces when f=constant:

∇p · Vg = 0

The continuity equation also is independent of ρ (and this form is not restricted to an

incompressible flow)

∇p · V +
∂ω

∂p
= 0 (2)
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The thermodynamics energy equation in isobaric coordinates is

∂T/∂t + V · ∇pT − Spω = J/cp (3)

where the static stability in isobaric coordinates is

Sp = −
T

θ

∂θ

∂p
=

α

cp

−
∂T

∂p
=

Γd − Γ

gρ
.

Compare with the z-coordinate equation

S =
T

θ

∂θ

∂z
= Γd − Γ.

For reasonably small vertical displacements we can usually approximate Γ ≈ constant, hence

S ≈ constant. However Sp is not approximately constant because ρ varies exponentially. This

is a disadvantage of isobaric coordinates.

3.2 Balanced Flow

Balanced flows follow relatively simple force balances.

Here we let ω = 0 and only consider flow that are approximately in the horizontal plane. ω

resurfaces again near the end of this chapter.

3.2.1 Natural Coordinates

t̂ = tangent to velocity at each instant

n̂ = normal to velocity at each instant

s is the distance along the parcel’s path

V = V t̂ is the velocity

V = Ds/Dt is the speed

DV

Dt
= t̂

DV

Dt
+ V

Dt̂

Dt
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Fig 3.1 from Holton illustrates the natural coordinate system.

From the figure you can see that R is the radius of curvature and Dt̂
Dt

is an angular velocity

with direction normal to the path:

Dt̂

Dt
=

V

R
n̂.

Hence, the momentum equation in natural coordinates is

DV

Dt
= t̂

DV

Dt
+ n̂

V 2

R
(4)

The first term is the acceleration along the path and the second is the centripetal acceleration

due to curving relative motion on Earth in the horizontal plane (different from the centrifugal

force swept into g due rotation rate of Earth).

The Coriolis force in natural coordinates is

−fk̂ ×V = −fV n̂.

The pressure gradient force (PGF) in natural coordinates is

−∇Φ = −t̂
∂Φ

∂s
− n̂

∂Φ

∂n

Setting the acceleration (Eq. 4) equal to the sum of Coriolis and PGF gives two component

equations (no vector symbols now in component equations)

DV

Dt
= −

∂Φ

∂s
t̂−component (5)
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V 2

R
+ fV = −

∂Φ

∂n
n̂−component (6)

Eq (5) states the parcel acceleration along the parcel path equals the PGF along the parcel

path. Eq (6) states the acclerations normal to the parcel path (which is the centripetal plus

Coriolis) equal the PGF normal to the parcel path. Generally the two accelerations are moved

to the right hand side and referred to as forces and then Eq ?? becomes 0 = Ce+Co +PGFn,

where the right hand side is the sum of three forces: centrifugal, Coriolis and pressure

gradient normal to the flow.

By definition, V > 0 but R can be positive or negative: R > 0 for cyclonic flow and

R < 0 for anticyclonic or antibaric (clockwise flow around a low) flow

3.2.2 Geostrophic Flow

If |R| → ∞ then V = Vg are both in the t̂ direction and Vg ≡ −f−1 ∂Φ

∂n
, is found by equating

the Coriolis force and PGF.

For any R, if DV/Dt = 0 then V 6= Vg, but we can still define a geostrophic flow: Vg ≡

−f−1 ∂Φ

∂n
. It is locally parallel to height contours and hence is either parallel or antiparallel

to V.
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For any R, if DV/Dt 6= 0 then we can still define a geostrophic flow

fk̂ × Vg = −∇Φ

but this time you can expect a nonzero angle between Vg and V.

In all three cases, the PGF is to the left of Vg. In the first two the PGF along the path is

zero, so the math is easier.

3.2.3 Inertial Flow

When ∂φ/∂n = 0 the flow is called “inertial” and the remaining balance of centrifugal and

Coriolis forces in Eq. (6) yields a circular flow with R = −V/f . R < 0 always for inertial

flow, so the motion is clockwise in the northern hemisphere.

3.2.4 Cyclostrophic Flow

If horizontal scales are small enough to neglect the Coriolis force, then Eq. (6) can be written

V 2

R
= −

∂Φ

∂n

and

V =

(

−R
∂Φ

∂n

)1/2

.

The centrifugal force Ce always points away from the center of rotation, so the PGF must

always point towards it. Remember V is always positive, but nothing requires the flow to

be clockwise or counterclockwise. Hence it can be either. The “normal” direction is always

to the left of the direction of flow.

3.2.5 Gradient flow

Gradient flow is a special case when DV/Dt = 0 so V is time-independent and always flows

parallel to lines of constant geopotential, defined by Eq (6):

V =
−fR

2
±

(

f 2R2

4
− R

∂φ

∂n

)1/2

=
−fR

2
±

(

f 2R2

4
+ fRVg

)1/2

(7)
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V must be real so the argument of the square root must be positive. This is only an issue

for anticyclonic flow around a high because R < 0 and Vg > 0

fVg = −
∂φ

∂n
<

−Rf 2

4
. (8)

This requirement makes pressure gradients flat at the center of highs.

In class exercise: Compute the gradient wind speed

V =
−fR

2
±

(

f 2R2

4
− R

∂φ

∂n

)1/2

for the following cases (all with f = 10−4 s−1)

1. a regular low with −∂φ/∂n = 0.86 × 10−3 m/s2 and R = 250 km.

2. an anomalous low with −∂φ/∂n = −0.86 × 10−3 m/s2 and R = −250 km.

3. a regular high with −∂φ/∂n = 0.26 × 10−3 m/s2 and R = −250 km.

4. an anomalous high with −∂φ/∂n = 0.26 × 10−3 m/s2 and R = −250 km.

5. Is Equation 4 violated for a high if −∂φ/∂n = 0.86 × 10−3 m/s2 and R = −250 km.

6. What will the wobbly path of the actual parcel motion look like if the low is changed
to a high? (Do not make the gradient wind approximation. Just be qualitative.)

3.4 Thermal Wind

“The geostrophic wind must have vertical shear in the presence of a horizontal temperature

gradient,” (Holton p70) Think carefully about what this means.

Mathematically it can be written

∂Vg

∂z
6= 0 if ∇T 6= 0

Consider a special case of motion parallel to the y-axis (into the page for the axes below).

In this case isobars only depend on x and z.
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Recall that

Vg =
1

f
k̂ ×∇pΦ

Then for our special case (recall Φ = gz):

vg =
g

f

∂z

∂x

∣

∣

∣

∣

∣

p

,

which says the local slope of an isobar p(x, z) determines the
geostrophic wind speed.

The geostrophic wind must have vertical shear if the slopes
of isobars vary with height. When isobars vary in this way,
the vertical separation of isobars (or thickness) increases with
x. Recall that the hypsometric equation gives the thickness of
layers:

δz =
R

g
< T > ln

p1

p0

At right, δz increases with x because < T > increases with x,
so vg increases with height too.

p(x, z)

z

x

X

x

z

p0(x, z)

p1(x, z)

p2(x, z)

Because “thickness” δz is proportional to temperature < T >:

vg must vary with height whenever T varies in x.

ug must vary with height whenever T varies in y.

Technically the “thermal wind” equation is

∂Vg

∂ ln p
= −

R

f
k̂ ×∇pT

which relates vertical shear of the geostrophic wind to temperature gradients.

To solve problems we usually first integrate the thermal wind equation and define the “ther-

mal wind”

VT ≡ Vg(p1) − Vg(p0) = −
R

f
(k̂ ×∇p < T >) ln

p1

po
(9)

where < T > is the average temperature in the layer. Also

VT = −
1

f
k̂ ×∇p(Φ1 − Φ0) (10)
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< T + δT >

-

B
B
B
BBN

Q
Q

Q
Q

Q
QQs

Vg1

VT

Vgo

< T − δT >

< T >

Vg1

-

B
B

B
BBM

�
�

�
���

< T − δT >

< T >

< T + δT >

VT

Vgo

Winds are backing = counterclockwise
rotation with increasing height.

Causes cold advection, expect tempera-
tures to fall.

Winds are veering = clockwise rotation
with increasing height.

Causes warm advection, expect tempera-
tures to rise.

All that is needed is 2 of the 3 vectors to solve problems. Or because knowing ∇ < T >

gives us VT, if < T > is known, then the geostrophic wind can be found at a given level

provided the geostrophic wind is known at another level.

The average temperature advection in the layer can be estimated from the advection of

< T > by < Vg >.
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Sample Problem

Seattle at 6:30AM

6

6
Vg1

Vgo

For po = 1000 hPa and p1 = 800 hPa,
Vg0 = 0 m/s and Vg1 = 6 m/s to the north.
Ignore friction and topography. What is ∇p < T >
and what is the temperature advection?

Seattle at 10:30AM

Vg0 = 4 m/s ĵ and Vg1 = 2 m/s î + 6 m/s ĵ
Ignore friction and topography. What is ∇p < T >
and what is the temperature advection?
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3.4.1 Barotropic and Baroclinic Atmospheres

Barotropic means ρ = ρ(p). Hence isobars are constant density surfaces.

In the ideal gas approximation, T = p/ρR so T = T (p). Hence isobars in a barotropic

atmosphere have constant temperature too: ∇p(T ) = 0, so Vg has no vertical shear. When

V ≈ Vg in a barotropic atmosphere, V doesn’t vary much in height either.

Baroclinic means ρ = ρ(p, T ), which is more often the case, so generally V does vary with

height.

3.5 Vertical Motion

The scale of vertical motions is W ∼ 1 cm/s

Weather balloon soundings and satellites only measure to an accuracy of about 1m/s, so w

must be found indirectly. In this section we will see two not very successful ways to estimate

w as a residual. Both use isobaric coordinates, so first we must find a relationship between

ω and w. (Notation note: I’m switching from w to w in this section to denote the vertical

velocity Dz/Dt because I find w hard to distinguish from ω. This is the only time I’ll do it

though.) Recall:

ω ≡
Dp

Dt
=

∂p

∂t
+ V · ∇zp + w

∂p

∂z

Vg is normal to ∇p, so Vg · ∇p = 0. Defining the ageostrophic wind

Va ≡ V −Vg (11)

along with hydrostaticity in the last term gives

ω =
∂p

∂t
+ Va · ∇zp − wgρ
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Using scale analysis we find

∂p

∂t
∼

δpU

L
∼ 10 hPa/d

where L/U ∼ 105 s ∼ 1 d is the time scale (see Holton p 39) and δp ∼ 10 hPa is the change

in pressure from one synoptic system to the next. The next two terms are about 1 hPa/d

and 100hPa/d. Hence

ω ≈ −wgρ away from the surface.

This relation is not appropriate next to the surface where ws = 0 (no flow through the

surface), but ωs 6= 0 in general. Instead take the next order term:

ωs ≈
∂ps

∂t
near the surface. (12)

Incidently, both w and ω are zero at the top of the atmosphere.

3.5.1 Kinematic Method (aka non predictive)

Continuity in isobaric coordinates is

∇p · V +
∂ω

∂p
= 0

Integrating we get

ω(p) − ω(ps) = −
∫ p

ps

∇p · V dp (13)

In homework 4 you showed ∇p ·Vg = 0 for constant f. The integrand is then roughly ∇p ·Va.

But Va cannot be measured accurately, so this method is not recommended.

3.5.2 Adiabatic Method

The thermodynamic energy equation (Eq. 3) can be written

ω = S−1

p

(

∂T

∂t
+ V · ∇T − J/cp

)

- The last term is usually negligible.
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- The middle term can be approximated Vg · ∇T using a snapshot of T and Z or φ.

- The first term is non negligible and difficult to measure. T has a large daily cycle plus it

has variability from system to system, yet it is only measured a couple of times daily. This

is known as aliasing, and it is very inaccurate. So this method is not recommended either.

3.6 Surface Pressure Tendency

Recycle Eq (13) but take p = 0 (ie the top of the atmosphere) so ω(0) = 0. Hence

ω(ps) =
∫

0

ps

∇p · V dp (14)

Substituting from Eqs. 11 and 12

∂ps

∂t
≈ −

∫ ps

0

∇p · Va dp (15)

Even though ∇p · Va is hard to measure accurately, Eq (15) gives a useful relation for

qualitative understanding.

The four primitive equations in isobaric coordinates in isobaric coordinates can be written:

1) Horizontal momentum

DV

Dt
+ fk̂ × V = −∇pφ

2) Continuity

∇p · V +
∂ω

∂z
= 0

3) Thermodynamics energy

∂T/∂t + V · ∇pT − Spω = J/cp

4) Hydrostaticity

∂Φ

∂p
= −α
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These four equations together can be used as a complete predictive model with the addition

of a lower boundary condition for Φs. Note that w = Dz/Dt = 0 means:

∂Φs

∂t
= −Va · ∇Φs − ω

∂Φs

∂p
.

Neglecting the advection by the ageostrophic wind and using Eq (14) and hydrostaticity

gives:

∂Φs

∂t
≈ −

RT

ps

∫ ps

0

(∇ ·V)dp.

These equations are too hard to solve on paper for typical atmospheric flows, but numerical

weather/climate prediction models use them routinely.
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