
Chapter 6 Synoptic Scale Motions I: Quasi-Geostrophic

Analysis

“The motion of large-scale atmospheric disturbances is governed by the laws of conservation

of potential temperature and absolute potential vorticity, and by the conditions that the

horizontal velocity be quasi-geostrophic and the pressure quasi-hydrostatic”

Jule Charney, 1948, from his paper titled The scale of atmospheric motions

6.2 QG Approximation

Goal: Develop scaled, conservative, time-dependent equations for baroclinic flow (ie, to

predict V and T and to subsequently diagnose w to leading order). Motivation:

• Balanced equations like geostrophic wind or gradient wind are not predictive and pres-

sure features are rarely linear or circular

• The real atmosphere is baroclinic. Recall barotropic means ρ = ρ(p) only, so ∇hT = 0

and Vg is independent of height, which is unrealistic.

Begin with conservation equations in isobaric coordinates

DV

Dt
+ fk × V = −∇Φ (1)

∂Φ

∂p
= −α (2)

∇ · V +
∂ω

∂p
= 0 (3)

(
∂

∂t
+ V · ∇

)

T − Spω = J/cp (4)

with Sp = −T∂ln θ/∂p

The approximations in these equations:

• Eq 2 is the hydrostatic balance, which neglects vertical acceleration. It “filters” (or

removes) vertical sound waves from the motion.
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• curvature terms

The QG approximation eliminates more terms from scale analysis. Notably, it uses

geostrophic balance in places, but without neglecting acceleration (otherwise we couldn’t

make a prediction). Thus the QG approx filters out even more unwanted motions (like

hydrostaticity filters sound waves) that obstruct prediction!

Let V = Vg + Va where Vg is nondivergent:

Vg ≡ f−1

o k ×∇Φ

This is the “CF” definition, where the geostrophic wind is nondivergent because fo is a con-

stant. Recall in a homework problem you showed Vg is nodivergent provided f is constant.

Well now we redefine Vg replacing f with fo explicitly for the QG approximation.

Recall if V = Va + Vg, then |Va|/|Vg| ∼ Ro

Thus scale analysis shows that

DV

Dt
≈

DgVg

Dt

where vertical advection is neglected and only the geostrophic wind participates in horizontal

advection:

Dg

Dt
=

∂

∂t
+ Vg · ∇.

The other two terms in the momentum equation are the Coriolis force and the PGF. We

would not have a prognostic equation if these two terms are in balance — a zeroth order of

magnitude approximation. Instead we must keep terms up to Ro × |∇Φ|.
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We do this by first making a Taylor’s series
expansion of f about latitude φo:

f ≈ fo + βy

where β = (df/dy)φo
= 2Ω cos φo/a (a

is the radius of Earth) and y = a(φ −
φo). This is called the midlatitude beta-

plane approximation because f varies
as if on a tangent plane rather than on
the true curving earth. β = 1.67 ×
10−11m−1s−1 at φ = 43◦N . −1000 −500 0 500 1000
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Hence,

fk × V + ∇Φ = (fo + βy)k× (Vg + Va) − fok × Vg

≈ fok ×Va + βyk×Vg

So Eq (1) becomes

DgVg

Dt
= −fok × Va − βyk× Vg (5)

Similarly the other conservations equations can make use of the definition of Vg and scale

analysis. The TDE uses an expansion in temperature about a basic state temperature field

To(z) and a perturbation temperature field T (x, y, z, t) plus hydrostaticity and the ideal gas

law. Finally we arrive at the QG conservation equations:

DgVg

Dt
= −fok × Va − βyk× Vg (6)

∂Φ

∂p
= −α = −

RT

p
(7)

∇ · Va +
∂ω

∂p
= 0 (8)

Dg

Dt

(

−
∂Φ

∂p

)

− σω =
R

cp

J

p
(9)

where the stability parameter is

σ = −
RTo

p

d ln θo

dp
.

Φ appears in the TDE rather than T to more easily relate to vorticity.
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Recap:

• Hydrostatic equation (filters sound waves)

• QG Approximation (filters gravity waves) neglect O(Ro

2 × |∇Φ|), e.g.,

DV

Dt
≈

DgVg

Dt

• Midlatitude Beta plane approximation f ≈ fo + βy

6.2.2 QG Vorticity Eq

Goal: Derive QG Vorticity Eq and use it to predict Φ

With the CF definition of Vg so ∇ ·Vg = 0, Φ is the streamfunction of the geostrophic

wind:

ug = −
1

fo

∂Φ

∂y
vg =

1

fo

∂Φ

∂x
and ζg =

1

fo

∇2Φ

QG Vorticity Eq:

∂

∂x
[v − component of the QG Momentum Eq]

minus
∂

∂y
[u − component of the QG Momentum Eq]

gives

Dgζg

Dt
= −fo∇ · Va − βvg

or

∂ζg

∂t
= −Vg · ∇ζg − βvg − fo∇ ·Va

which is like Eq 4.22, Dh(ζ + f)/Dt = −f∇ · V, but with the important QG approx to

filter gravity waves.

For disturbances embedded in the midlatitude westerlies the first two terms on the r.h.s.

have opposite sign. See Holton fig 6.7. If the advection of relative vorticity dominates, it

tends to cause the pattern of highs and lows to shift eastward, as if the systems were on a
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conveyer belt. If instead the advection of planetary vorticity dominates it tends to make the

pattern shift westward, or retrogress.

The dominance of one term over the other depends on scale. Synoptic scale systems tend

to advect westward, while planetary scale systems should retrogess according to QG theory

and without taking into account topography, land/sea heating, etc.

The dependence on scale is illustrated nicely by an example of a sinusoidal wave disturbance

embedded in westerly flow:

Φ(x, y) = Φ0 − foUy + fo(V/k) sin kx cos ly. (10)

The wave numbers k and l are k = 2π/Lx and l = 2π/Ly with Lx and Ly the wavelength in

the x and y directions.

In class we worked out how

ug = −
1

fo

∂Ψ

∂y
= U + u′

g = U + V
l

k
sin kx sin ly

vg =
1

fo

∂Ψ

∂x
= v′

g = V cos kx cos ly

ζg =
1

fo

∇2Φ =
∂vg

∂x
−

∂ug

∂y
= −V

(k2 + l2)

k
sin kx cos ly

Advection of relative vorticity is

−Vg · ∇ζg = −(ug î + vg ĵ) ·

(
∂ζg

∂x
î +

∂ζg

∂y
ĵ

)

= −ug

∂ζg

∂x
− vg

∂ζg

∂y

For the special case of a sinusoidal wave disturbance (not gaussian or some other non wave

disturbance), the wave-wave contribution to the advection of relative vorticity is zero. Hence

only the zonal mean wind advects the vorticity:

−Vg · ∇ζg = −U
∂ζg

∂x
= UV (k2 + l2) cos kx cos ly

Where there is a trough to the west and ridge to east embedded in westerly mean wind

ζg > 0 → U ζg < 0

At the midpoint between the trough and ridge you should expect advection to be positive.
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You can see this by looking upstream and seeing higher voriticy than at the midpoint — the

flow is bringing the trough towards you!

Advection of planetary vorticity is

−βvg = −βV cos kx cos ly

The ratio of the advection of relative vorticity to advection of planetary vorticity is

U

β
(k2 + l2) =

4π2U

β

(
1

L2
x

+
1

L2
y

)

Therefore the advection of relative vorticity dominates provided the scale of the wave is

synoptic Lx ∼ Ly ∼ 3000 km, while the advection of planetary vorticity dominates for

Lx ∼ Ly ∼ 10, 000 km.

At this point we can make our Φ time dependent by only changing x → x − ct to all the

equations on the previous page, so the whole system is moving eastward with phase speed c.

Once a system like this is set in motion and if the wave disturbance is height dependent so

there is “differential vorticity advection” (ie the magnitude of the disturbance or its phase

changes with height, like in problem 6.4), then the system will develop vertical shear of the

horizontal wind. This shear drives an ageostrophic vertical motion via the stretching term,

∂ω/∂p in

∂ζg

∂t
= −Vg · ∇ζg − βvg + fo

∂ω

∂p

To compute ∂ω/∂p, we must first find

∂ζg

∂t
= V c(k2 + l2) cos(k(x − ct) cos ly

Hence

∂ω

∂p
=

1

fo

(
∂ζg

∂t
+ Vg · ∇ζ + βvg

)

= −
V

fo

[(U − c)(k2 + l2) − β] cos(k(x − ct) cos ly

and of course the streching ∂ω/∂p = −∇ · Va
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Unlike advection of relative vorticity, there is no simple rule to determine where there is

divergence with respect to the vorticity. Instead we must solve the vorticity equation and

determine ∂ω/∂p from the balance of terms. For the example given here the relative magni-

tudes of U , c, and β are key to determining the sign of the divergence.

6.3 QG Prediction

From the QG vorticity equation, we know that given some positive vertical stretching, the

QG vorticity will rise. The vertical stretching will necessarily coincide with adiabatic heating,

which then influences the temperature as can be seen by taking the derivative of the TDE

with respect to p:

∂

∂p

[
fo

σ

(
∂

∂t
+ Vg · ∇

) (

−
∂Φ

∂p

)]

− fo

∂ω

∂p
= fo

∂

∂p

[
R

σcp

J

p

]

Alternatively when the temperature changes following horizontal parcel motion varies with

height (as one expects), then the first term above is nonzero. This drives an ageostrophic

vertical motion which yields vertical streching and drives vorticity changes. There is a strong

relation between the QG vorticity equation and the TDE that is a result of the conservation

laws.

Remember this figure? It illustrates vortex
stretching, ∂ω/∂p > 0 as the parcel moves
from left to right. The upper part of the
vortex moves up, so it cools, and the lower
part moves down, so it warms. This drives
a change in the parcel’s vertical tempera-
ture profile. Thus we can associate such
changes in the vertical temperature profile
with vortex stretching (and vice versa).

θ + δθ

δp

θ

δA
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6.3.1 Geopotential Tendency Equation

A consequence of vertical streching appearing in both the QG vorticity equation and the

equation above is that we can combine the equations and eliminate the vertical stretching:

[

∇2 +
∂

∂p

(
f 2

o

σ

∂

∂p

)]

χ

︸ ︷︷ ︸

= −foVg · ∇

(
1

fo

∇2Φ + f

)

︸ ︷︷ ︸

−
∂

∂p

[

−
f 2

o

σ
Vg · ∇

(

−
∂Φ

∂p

)]

︸ ︷︷ ︸

A B C

where “chi” χ = ∂Φ/∂t and J = 0. If we know Φ at one time, then we can compute its

tendency, χ.

Term A is the local geopotential tencency, which when Φ is composed of a wave disturbance

tends to vary like minus one times χ (recall the second derivative of a cosine is minus

cosine). It is a combination of the time rate of change of the QG vorticity and the change

to the vertical temperature profile that arises from vortex stretching from the TDE (this

temperature change is due to the ageostrophic motion!).

Term B is proportional to the advection of absolute vorticity from the QG vorticity equation

Term C is the differential temperature (or thickness) advection. This term causes the upper

level disturbance to develop. For example, as illustrated in Fig 6.5 when below and to the

east of the 500 hPa trough, there is cold advection associated with the cold front. This will

cause the trough to deepen and move to the east. The temperature change that results from

term C is due to the geostrophic motion.

6.3.2 Quasi-Geostrophic Potential Vorticity

An equivalent form of the QG geopotential tendency equation is

Dgq

Dt
= 0

q =
1

fo

∇2Φ + f +
∂

∂p

(
fo

σ

∂Φ

∂p

)
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which states that the sum of the QG relative vorticity, the planetary vorticity, and the

stretching vorticity is conserved following the geostrophic motion.

Recall the Ertel’s potential vorticity

P = (ζθ + f)

(

−g
∂θ

∂p

)

is conserved following the adiabatic parcel motion. q is a linearized form of P .

Important properties:

• The laplacian of a wave function is proportional to minus the same wave function.

Hence, according to the first term in q, when q increases, you can expect trough

development and vice versa.

• When Vg is parallel to lines of constant q, the advection of q is zero, so the tendency

of q must also be zero and hence the flow must be steady.

6.3.3 - 6.3.4 PV inversion and vertical coupling

Because q is composed in part of second order derivatives of Φ, q tends to have smaller-scale

variations (it can even be discontinuous), while Φ tends to be more smoothly varying and

spread out.

For Φ of the form from p5 of last week’s notes:

Φ(x, y) = Φ0 − foUy + fo(V/k) sin kx cos ly

If we let σ and f be constants for simplicity here, then

q =
1

fo

∇2Φ + fo +
fo

σ

∂2Φ

∂p2

and q = fo +Q(p) sin kx cos ly, where Q = −(k2 + l2)V/k+(fo/σ/k)∂2V/∂p2. The two terms

in the conservation of q are

−Vg · ∇q = −U
∂q

∂x
= −kUQ cos kx cos ly
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and

∂q

∂t
=

1

fo

∇2χ +
fo

σ

∂2χ

∂p2

where order of the spatial derivative and time derivatives have been interchanged. Equating

these last two:

1

fo

∇2χ +
fo

σ

∂2χ

∂p2
= −kUQ cos kx cos ly

and substituting

χ(x, y, p, t) = X(p, t) cos kx cos ly

yields

d2X

dp2
− λ2X = −

σ

fo

kUQ

where λ2 = (k2 + l2)σf−2

o . This is a diffusion equation with a source term. It indicates that

QG PV advection at a given altitude will create a Φ spread out in p with vertical scale λ−1.

Because λ depends inversely on the horizontal length scale, the larger the length scale, the

more spread out in the vertical is the response. Hence the advection of q at upper-levels

from very large length-scale disturbances and will tend to induce Φ tendencies down to the

surface with little loss of amplitude.
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6.4 Diagnosis of the vertical motion

6.4.1 The traditional omega equation

We have been computing ω in problems where we made use of a tendency (time derivative)

of another variable. For example when we used the QG vorticity equation, we had the

tendency of ζg. Atmospheric measurements are not routinely conducted frequently enough

to accurately capture the tendency of variables, so it would be better to find ω from an

equation without any time derivatives. This can be accomplished by performing operations

on the vorticity equation and the TDE, so that there sum eliminates the tendency terms.

The result is the traditional omega equation:

[

∇2 +
∂

∂p

(
f 2

o

σ

∂

∂p

)]

ω

︸ ︷︷ ︸

=
fo

σ

∂

∂p
Vg · ∇

(
1

fo

∇2Φ + f

)

︸ ︷︷ ︸

+
1

σ
∇2

[

Vg · ∇

(

−
∂Φ

∂p

)]

︸ ︷︷ ︸

−
κ

σp
∇2J

︸ ︷︷ ︸

A B C D

Term A tends to be proportional to minus ω and recall that ω is proportional to minus w,

therefore term A tends to be proportional to w.

Term B is the rate of change of the absolute vorticity advection with height

Term C is the horizontal Laplacian of temperature advection

Term D is the horizontal Laplacian of diabatic heating

Note that terms B-D depend on σ−1 therefore they decrease with increasing stability. In

other words, vertical motion is weak in a highly stable atmosphere.
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There is often some cancellation between terms B and C and individually these terms are not

invariant under a Galilean transformation (ie x → x − ct), hence after some manipulation,

neglecting small terms, and letting J = 0 we can also write:

[

∇2 +
∂

∂p

(
f 2

o

σ

∂

∂p

)]

ω

︸ ︷︷ ︸

≈
fo

σ

∂Vg

∂p
·∇

(
2

fo

∇2Φ + f

)

A

Note that my equation differs from Holton’s Eq 6.36 by a factor of 2 on the right. I performed

a scale analysis on the term from the traditional omega equation that Holton neglected and I

didn’t find it negligible. I read a couple more texts about the omega equation and they agreed

with me. This factor of two gives you the correct answer in problem 6.8 too. Fortunately the

conclusions Holton draws in the text are the same, since they do not depend on the factor

of 2!

The advection on the right is accomplished by the thermal wind, not simply the geostrophic

wind because

∂Vg

∂p
≈

Vg(po) − Vg(p1)

∆p
= −

VT

∆p
.

Thus

w ∝ −VT · ∇(ζg + f)

{

< 0 east of the 500-hPa ridge

> 0 east of the 500-hPa trough

Finally, for synoptic scale disturbances, the relative vorticity advection dominates, and for

planetary waves the planetary vorticity advection dominates.
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