
Chapter 1 Notes

A Note About Coordinates

We nearly always use a coordinate
system in this class where the verti-
cal, k̂, is normal to the Earth’s sur-
face and the x-direction, î, points
to the east and the y-direction, ĵ,
points to the north.

î

k̂
ĵ

1.4.1 Pressure Gradient Force

Consider an air parcel/point in a field/volume of air δV = δxδyδz:

On side wall labeled A: we can express the pressure in a Taylor’s series expansion:

pA = p0 +
∂p

∂x

δx

2
+ higher order terms,

where p0 is the pressure at the middle of the volume.

The pressure force acting on the volume at A is then

FAx = −pAδyδz = −
(
p0 +

∂p

∂x

δx

2

)
δyδz

Likewise at B but the direction is opposite (note carefully all signs here):

FBx = pBδyδz =

(
p0 −

∂p

∂x

δx

2

)
δyδz

The net force in the x direction is:

Fx = FAx + FBx = −∂p
∂x
δxδyδz
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The mass of the parcel is m = ρδxδyδz, hence

Fx
m

= −1

ρ

∂p

∂x

And in 3D
F

m
= −1

ρ
∇p

1.4.2 Gravitational Force

g∗ is the gravitational force. It always points towards the center of mass, and it is propor-

tional to the inverse square of the distance above the center of mass:

g∗(z) =
−GM

(a+ z)2
r̂,

where a is Earth’s radius, z is the height above the surface, G is the gravitational constant,

M is Earth’s mass, and r̂ is a unit vector directed from the center of mass to the point where

the force is evaluated. Hence, the magnitude

g∗(z) =
GM

(a+ z)2
=
GM

a2

1

(1 + z/a)2
= g∗0

1

(1 + z/a)2

where g∗0 is the gravitational force at the surface. For the troposphere z ∼10 km and the

Earth approximate radius is a ∼ 104 km, so

g∗(z) ∼ g∗0
1

(1 + 10 km/104 km)2

and we can safely let g∗(z) = g∗0.

1.4.3 Viscous or Internal Frictional Force

Here I present the same concept as section 1.4.3 in Holton, but using a more geophysical

perspective. At this time we consider molecular viscosity alone. Viscosity due to turbulent

eddies, which is also a source of friction in the atmosphere, is covered in Chapter 5,

Consider a steady laminar (ie non turbulent) flow above the ground as shown in the figure.

Flow near the ground is analogous to flow in between Holton’s pair of plates in Fig 1.3, but

seems less complicated.
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Internal friction resists flow wherever there are flow gradients, and surface friction prevents

any flow of air parcels in contact with the ground. Usually there is a layer near the ground

with strong flow gradients. For flow that increases linearly with height, as shown in the

figure, the flow is at steady state. Within this “frictional layer”, friction at the upper and

lower edges of a fluid layer is in balance. At some height though there must be other force(s)

besides friction, such as a pressure gradient force, that results in flow to the right. Holton

accomplishes this with a moving horizontal plate.

Within the frictional layer, the tangential force per unit area, or “stress”, from friction is

written heuristically as

τ = µ
u(z)

z
, (1)

where µ is the dynamic coefficient of viscosity.

Although air parcels are moving to the right, random molecular motions take place in all

directions. When slower moving molecules from below change places (or collide) with more

rapidly moving molecules aloft, there is a net downward transport of x momentum, even at

steady-state. This momentum transport is the shearing stress. It exterts a drag force on the

surface.

For non-steady flow, u may not increase linearly with height. Hence, in the x-direction, the

vertical stress component of a parcel depends on the wind shear:

τzx = µ
∂u

∂z
. (2)

Acting on a fluid element,

pressure is a normal force per unit area and

stress is a tangential force per unit area,
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so

a pressure gradient yields a net force on the fluid element and

a stress gradient yields a net force on the fluid element.

Hence, we can recycle the derivation for the net force a parcel experiences in the presence of

a stress gradient as we did for a pressure gradient here. Compare Holton figures 1.4 and 1.1

and you should see that the force per unit mass is

Fzx
m

=
1

ρ

∂τzx
∂z

(3)

Now substitution from Eq (2) gives

Fzx
m

=
µ

ρ

∂2u

∂z2
. (4)

Of course we have only considered the z-direction shear of the u-wind. There are actually nine

possible combination of subscripts in total. Holton writes out all the possible combinations

in his Eq 1.5, and drops the mass m from previous sections by redefining F to be the force

per unit mass. We can rewrite Holton’s Eq 1.5 in compact vector notation as

Fr = ν∇2U, (5)

where ν = µ/ρ. Vertical wind shear is usually much larger than horizontal wind shear in the

atmosphere, so we can usually get away with just computing

Fr = ν
∂2V

∂z2
. (6)

Note upper case U is the 3D velocity vector while upper case V is only in the horizontal

plane.

The relative importance of friction can be estimated from the Reynold’s number:

Re =

∣∣∣∣∣DV

Dt

∣∣∣∣∣
/ ∣∣∣∣∣ν ∂2v

∂z2

∣∣∣∣∣ . (7)

where DV
Dt

is acceleration, which is typically about 10−3 m s−1. Soon you will compute the

order of magnitude for friction of typical atmospheric flows.

1.5 Non inertial Reference Frames and “Apparent Forces”

1.5.1 Centripetal Acceleration/ Centrifugal Force

Centripetal acceleration is
DV

Dt
= −ω2rr̂.
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(See Holton for a derivation)

Capital-D derivatives are material derivatives, which are derivatives taken along a path

following the motion. The math is no different from small-d derivatives, which are sometimes

called total derivatives. Total derivatives are more general for example you may be interested

in df/dt for f(T(t),P(t)):
df

dt
=
∂f

∂T

dT

dt
+
∂f

∂P

dP

dt
.

In fact, you have dealt with capital D derivatives for a long time, but nobody mentioned it.

Acceleration is always a material derivative.

A quick review of derivatives

d/dt and D/Dt are both “total derivatives”. There is no difference between capital and

lowercase d-derivatives. From the chain rule if w = f(x) and x = g(t) then

dw

dt
=
dw

dx

dx

dt

∂/∂t is a “partial derivative”, used to take derivatives of a multi-variate function with respect

to one variable Again the chain rule if w = f(x, y), x = g(t) and y = h(t) then

dw

dt
=
∂w

∂x

∣∣∣∣∣
y

dx

dt
+
∂w

∂y

∣∣∣∣∣
x

dy

dt
.

The vertical bar indicates what is held fixed while taking the partial derivatives, though the

vertical bars are usually not written explicitly.

The “exact differential” of w = f(x, y) is

dw =
∂w

∂x
dx+

∂w

∂y
dy

where we consider both ways dw can vary with respect to its dependent variables.

1.5.2 Gravitational Force

An object at rest on Earth but not at the poles is in an accelerating reference frame —

centripetal acceleration that is. Its apparent force is

FCe = Ω2RR̂

where R is the vector from Earth’s axis to the object.
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Imagine a perfectly spherical and frictionless Earth. Because of FCe, objects at rest on

this Earth would slip towards the equator. Earth is made of rocks that cannot sustain a

shear force, so rocks would slip towards the equator on a spherical Earth too! Rotation has

therefore caused Earth to change shape so that the tangential component of g∗ at the surface

exactly balances the tangential component of FCe. This is very fortunate for students of

atmospheric sciences!

g∗ true gravity Always points towards the center of mass
so it not everywhere normal to Earth’s sur-
face. It also varies with latitude on the
surface.

g = g∗ + Ω2RR̂ convenient gravity normal to the surface. It varies with lati-
tude on the surface

Now imagine Earth is the shape it is, still frictionless, but not rotating. Put an object at

the north pole (NP) and give it a shove southward. Because the Earth is not a sphere, g∗

has a component that is tangent to the surface, and pulls the object back towards the NP.

Because the Earth is frictionless, it overshoots and we get simple harmonic motion:

DR

Dt
+ Ω2R = 0.

It actually doesn’t matter if the Earth were rotating, we would still get the same motion

from the fixed reference frame because the Earth merely slides around underneath the object,

which doesn’t notice. Formally this is because the object has no angular momentum at the

start and the frictionless Earth imparts no torque. From the rotating reference frame, this

object appears to make circles every 12 hours. This is almost impossible to visualize from

Fig 1.7, so I’ll put some animations on the web to help.

It is convenient to define the “geopotential” function φ: ∇φ = −g. Because g = −gk̂,

φ = φ(z) and dφ/dz = g.

1.5.3 The Coriolis Force and Curvature Effect

It is possible and perhaps even simpler to derive Holton’s Eq 1.10a and b by setting the time

derivative of the total angular momentum component along Earth’s axis equal to zero:

D

Dt
[R(ΩR + u)] = 0, (8)

which can be written

2ΩR
DR

Dt
+ u

DR

Dt
+R

Du

Dt
= 0 (9)
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or
Du

Dt
= −(u+ 2ΩR)

R

DR

Dt
. (10)

With R = (a+ z) cosφ,
DR

Dt
= cosφ

Dz

Dt
− (a+ z) sinφ

Dφ

Dt
.

Making the substitutions Dz/Dt = w and aDφ/Dt = v and recognizing that z << a, gives

Du

Dt
≈ −2wΩ cosφ+ 2vΩ sinφ+

uv tanφ

a
− uw

a
. (11)

This equation is a combination of Holton’s Eq 1.10a and b for the general case of a displace-

ment (ie an impulse that imparts an initial velocity) in the meridional or vertical. The first

two terms are the Coriolis force and the last two are the curvature effect, both for the x̂

direction only.

The Coriolis Force and the curvature effect in ŷ and ẑ directions arise from the influence of

east-west motions on the centrifugal force. The net force per unit mass in the ~R direction

owing to velocity component u is

~F (u) =
(

Ω +
u

R

)2
~R− Ω2 ~R =

(
2uΩ +

u2

R

)
R̂. (12)

With R̂ = −ŷ sinφ + ẑ cosφ and approximating R ≈ a cosφ from the start∗, the force can

be broken into ŷ and ẑ components. If no other forces are acting, the acceleration is equal

to this force alone (ie Fy(u) = Dv/Dt):

Dv

Dt
= −2Ωu sinφ− u2

a
tanφ (13)

and
Dw

Dt
= 2Ωu cosφ− u2

a
. (14)

*We cannot make the approximation a+z ≈ a right away in the derivation of Du/Dt because

it is operated on by D/Dt, and D(a+ z)/Dt = Dz/Dt.

For synoptic-scale motions u << ΩR so we can usually ignore the curvature terms (the terms

with a in the denominator), and w << u so the first term in Du/Dt is negligible. Normally

the vertical component of the Coriolis force is much smaller than gravity, so it is ignored

too. In summary then (
Du

Dt

)
Co
≈ 2Ωv sinφ = fv (15)

and (
Dv

Dt

)
Co
≈ −2Ωu sinφ = fu. (16)
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One final note. Once an objects begins to move in a particular direction, the Coriolis force

and curvature effects produce a force to the right of the motion in the northern hemisphere.

For example, an initial nudge in the x̂ direction will create departures in the ŷ and ẑ direc-

tions. Hence equations for Du/Dt, Dv/Dt, and Dw/Dt are coupled and generally may not

be used in isolation (unlike the example in Holton on page 18).

1.6.1 Hydrostatic Equation

Hydrostatic Balance (for atmosphere at rest p = p(z)):

g = −1

ρ

dp

dz

Later we will show that it is a good approximation for synoptic scale motions too, when

p = p(x, y, z, t):

g = −1

ρ

∂p

∂z

Substitution from the ideal gas law and integrating gives the hypsometric equation:

Φ(z2)− Φ(z1) = go(Z2 − Z1) = R
∫ p1

p2
Td ln p

The average temperature defined for ln p vertical coordinate is

< T >=
∫ p1

p2
Td ln p

[∫ p1

p2
d ln p

]−1

(17)

can be used to define a “scale height” H = R < T > /go, which is typically about 8 km.

Now the hypsometric equation can be written:

ZT = Z2 − Z1 = H ln(p1/p2) (18)

or starting at Z1 = 0, p1 = po, Z2 = Z, p2 = p:

p(Z) = poe
−Z/H

Sample Problem (useful for working homework 2)

In an atmosphere with constant lapse rate

dT

dz
= −γ

so T = To− γz, where we have let Z1 = 0, Z2 = Z and To be the temperature at the ground.

For p1 = po, p2 = p, and assuming g = go (so z = Z), what is p(z)?
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First use hydrostic balance and the ideal gas law to write

dp

dz
= − pg

RT

We must first be sure to have only p’s, z’s, and constants on the right, OR we must rewrite

the derivative on the left to match the variables on the right, namely replace dz with dT

somehow. One way will be worked in class according to democratic vote. You can fill in the

other method on your own.

What is the difference between between < T > (see Eq 1) and T̄ where

T̄ =

∫ Z2
Z1
Tdz

(Z2 − Z1)
?

Obviously there is no difference if T is a constant, so let’s show how the averages differ for

a constant lapse rate (i.e., constant temperature gradient with height) atmosphere. First

T̄ =

∫ Z
0 (To − γz)dz

Z
= To − γZ/2

We can get < T > from Eq 17

< T >= −Zg
R

/
ln(p/po)

which appears pretty different, although we shall see below these equations give numbers

that are similar for typical conditions.

We find they differ, but why? We can recycle from the previous page:

T

To
=

(
p

po

)Rγ/g

to find T (ln p):

T = To exp

[
Rγ

g
ln

p

po

]
which is exponential in ln p, while T(z) is linear in z. The exponent decreases with -ln p but

the e-folding value is very large, so it appears fairly linear for reasonable values of γ. For

the figure below, po=1000 hPa, Z=10 km, To = 280 K, and γ = 10K/km (ie the lapse rate

for a dry atmosphere, a moist one has an even smaller γ and therefore T (ln p) is even more

linear.)
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1.6.2 Pressure as a vertical coordinate - isobaric coordinates

Often pressure is used as a vertical coordinate in the atmosphere When this is the case, we

need to re-express the horizontal pressure gradient force in terms of a derivative of something

at constant pressure instead. Hence for the x-component we want to write

PGFx = −1

ρ

∂p

∂x

∣∣∣∣∣
z

in terms of
∂z

∂x

∣∣∣∣∣
p

This is most easily done by considering the sketch:
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and recognizing that (
δz

δx

)
p

=

[
(po + δp)− po

δx

]
z

/[
(po + δp)− po

δz

]
x

or
∂z

∂x

∣∣∣∣∣
p

= − ∂p

∂x

∣∣∣∣∣
z

/
∂p

∂z

∣∣∣∣∣
x

Substitute from the hydrostatic equation: ∂p
∂z

= −ρg and rearranging gives

PGFx = −1

ρ

∂p

∂x

∣∣∣∣∣
z

= − ∂Φ

∂x

∣∣∣∣∣
p

So we can swap coordinates from p(x, y, z, t) to Φ(x, y, p, t) in isobaric coordinates

and happily no density appears in “PGF” on right
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