Acid Rain

READING: Chapter 13 of text;

- ${}^\bullet \textit{G}\text{as-Liquid}$ Partitioning and pH of "natural" rain
- •US Acid Rain Problem: Sulfur and NO_x oxidation
- $\boldsymbol{\cdot} \mathsf{Trends}$ in Emissions and Deposition

Guiding Questions:

What is acid rain?

What chemistry explains the low pH rain in the NE US?

How do the natural sources of acidity compare to anthropogenic ones?

Henry's Law Constants H₂SO₄ off scale Consult and preropolation of the law you have been a series of t

Question

We saw that natural (preindustrial) rainwater was slightly acidic, pH \sim 5.7, just from the dissolution of CO $_{2(g)}$.

 CO_{2(g)} is expected to double later this century. If there were no other anthropogenic acids, by how much would the pH of natural rainwater change?

Table 13-1 Median Concentrations of Ions (μ eq l^{-1}) in Precipitation at Two Typical Sites in the United States		
Ion	Rural New York State	Southwest Minnesota
SO ₄ ²⁻	45	46
\longrightarrow NO ₃ -	25	24
CI-	4	4
HCO ₃	0.1	10
Sum anions	74	84
→ H ⁺ (pH)	46 (4.34)	0.5 (6.31)
NH ₄ ⁺	8.3	38
Ca ² +	7	29
Mg ²⁺	1.9	6
Κ [∓]	0.4	2.0
Na+	5	14
Sum cations	68	89

SO₂ Oxidation in Cloud by H₂O₂

Henry's $SO_{2(g)} \longrightarrow H_2OSO_{2(aq)}$

 $H_2OSO_2 \longrightarrow H^+ + HSO_3^-$ Aqueous acid dissociation

Henry's

 $H_2O_{2(g)} \longrightarrow H_2O_{2(\alpha q)}$

Law

reaction

Aqueous $HSO_3^- + H_2O_2 + H^+ \longrightarrow 2H^+ + 5O_4^{2-} + H_2O$

What happens in remote regions where H₂O₂ is low?

50₂ Oxidation in Cloud by Ozone

Henry's $SO_{2(g)} \longrightarrow H_2OSO_{2(aq)}$ Law

H₂OSO₂ H+ + HSO₃- Aqueous acro dissociation

Aqueous acid

Aqueous acid HSO3- \longrightarrow H+ + SO32-

dissociation

Henry's $O_{3(g)} \subset O_{3(\alpha q)}$

Aqueous $O_3 + SO_3^2 \longrightarrow SO_4^2 + O_2$

reaction

Only important in remote regions or when cloud water pH > 6

Question

1. How is it that the ${\cal O}_3$ oxidation mechanism actually increases the acidity of precipitation?

Sulfate and Nitrate Wet Deposition Trends SULFATE WET DEPOSITION Before 1990 CAAA 1983-85 1992-94 1995-97 192-94 After 1990 CAAA 1992-94 1995-97

Cost-effectiveness of Acid Rain Program

- Costs = \$3 billion/year.
- Benefits = \$122 billion/year [PM→ human health; visibility; ecosystems]
- · 40-to-1 benefit/cost ratio

Costs of 1990 Clean air act amendment

- · Initially estimated to be ~\$10 billion /year
- · Actual costs ~\$1-2 billion/year
- → cap and trade is more economical than strict regulations. Scrubbers turned out to be cheaper than expected and unexpected gains from switching to low sulfur coal

Acid Rain Overview

Guiding Questions:

What is acid rain?

Precipitation (rain or fog) with a pH < ~ 5.5

What chemistry explains the low pH rain in the NE US?

Oxidation of Sulfur (SO $_2$) to H_2SO_4 primarily by in-cloud aqueous chemistry

Also, NO₂ + OH → HNO₃

How do the natural sources of acidity compare to anthropogenic ones?

Anthropogenic sources of sulfur and NO_{x} currently dominate the natural sources

Presentation Guidelines/Tips 1. Aim for a 10 minute presentation (allowing 2 minutes for questions) a. This isn't a whole lot of time—be judicious 2. Typical presentation contains: a. Title slide b. Introduction: define the problem and provide a "roadmap" or outline for your presentation c. Motivation: answer "why should we listen?" d. Content: What you did/learned and how does it relate to the course topics? e. Summary and Conclusions: What would be next? Presentation Guidelines/Tips 3. Try to make slides clear and concise a. This is 24 pnt font – smaller than this becomes hard to read b. 1 or 2 main points per slide c. Less text is better—more diagrams and figures 4. Speak loudly and clearly a. notecards are OK but try not to read from a script. Presentation Guidelines/Tips 5. Practice your presentation! 6. I will take a quick look if you want