Goal of Atmospheric Chemistry Concept 1: Mass Balance Concept 2: Lifetime

Questions

- 1. CO_2 is lost from the atmosphere by photosynthesis and physical dissolution into the oceans. Photosynthesis by the biosphere leads to the uptake of \sim 60 Pg C/yr of atmospheric CO_2 . What is the atmospheric lifetime of CO_2 w.r.t. uptake by the biosphere? What does this calculation suggest about "fixing global warming"?
- 2. Fossil fuel burning and deforestation are the major anthropogenic sources of CO_2 to the atmosphere. Together, they add 8 Pg C/yr of CO_2 . Given the measured atmospheric growth rate of CO_2 (2ppm/yr), derive a second estimate of the atmospheric lifetime of CO_2 .

Steady-State: When is it the case? $\frac{dm}{dt} = S - km \implies m(t) = m(0)e^{-kt} + \frac{S}{k}(1 - e^{-kt})$

Steady state
$$m(\infty) = S/k$$

Steady state $m(\infty) = S/k$
 $m(t)$
 $m(t)$

Question

- The concentration of a species which is in steady state never changes.
 - True or False?

Today: Models

Reading: Chapter 3 and 5 in text

One-box Models

Multi-box Models

Moving the Box Model

Chemical Transport Model (CTM)

TYPES OF SOURCES	
Natural Surface: terrestrial and marine highly variable in space and time, influenced b eg. oceanic sources estimated by measuring le using a model for gas-exchange across interfa	ocal supersaturation in water and
Natural In situ: eg. lightning (NO _x) N ₂ → NO _x , volcanoes (SO ₂ , → generally smaller than surface sources on g material is injected into middle/upper troposph	lobal scale but important b/c
Anthropogenic Surface: eg. mobile, industry, fires → good inventories for combustion products (0	CO, NO _x , SO ₂) for US and EU
Anthropogenic In situ: eg. aircraft, tall stacks	
Secondary sources: tropospheric photochemistry	
Injection from the stratosphere: transport of products transported into troposphere (strongest at midlatitudes,	

TYPES OF SINKS

Wet Deposition: falling hydrometeors (rain, snow, sleet) carry trace species to the surface
• in-cloud nucleation (depending on solubility)

- scavenging (depends on size, chemical composition)
 Soluble and reactive trace gases are more readily removed
- →Generally assume that depletion is proportional to the conc (1st order loss)

Dry Deposition: gravitational settling; turbulent transport particles > 20 µm → gravity (sedimentation) particles < 1 µm → diffusion
→ rates depend on reactivity of gas, turbulent transport, stomatal resistance and together define a deposition velocity (v_d)

$$F_d = v_d C_x$$

Typical values v_d:
Particles:0.1-1 cm/s
Gases: vary with srf
and chemical nature
(eg. 1 cm/s for SO₂)

chain-terminating rxn: $OH \bullet + HO_2 \bullet \rightarrow H_2O + O_2$ change of phase: $SO_2 \rightarrow SO_4^{2-}$ (gas \rightarrow dissolved salt)

Dry Deposition

Acids (and other gas molecules) are taken up by surfaces, i.e. ground, buildings, plants (also respiration)

Factors that govern dry deposition rates:

- →Level of atmospheric turbulence
- → Chemical properties of depositing species
 - →Nature of surface itself

Gravitational Settling

Diam. (μm) Time to Fall 1 km 0.02 228 y 36 y 0.1 1.0 328 d 10 3.6 d 100 1.1 h 1000 4 m 5000 1.8 m

from M.Z. Jacobson "Atmospheric Pollution"

Terminal settling velocity:

$$v_{_{t}} \propto \frac{D_{_{p}}^{^{2}}}{\mu}$$

 D_p = diameter of particle μ = viscosity of air

Only particles smaller than 10 μm reach the global

atmosphere

1. Choose the most appropriate modeling strategy for the following problems (1-box, n-box, plume/column model): a. exchange of a uniformly mixed greenhouse gas between the stratosphere and troposphere b. production of ozone downwind of an urban area c. the abundance of a moderately reactive emission like carbon monoxide 2. Suppose operators of a 1-box model of Seattle's urban "air shed" predicted that the concentration of pollutant emitted downtown was going to rise to a unhealthy level only in the U-District. Should you believe them, why or why not?