This Week: Kinetics and Photochemistry

Reading: Chapter 9 of text and handout on numerical methods

Rate laws for homogeneous gas-phase reactions

- Unimolecular
- •Bimolecular
- $A + B \rightarrow C + D$
- ·Termolecular
- ·Rate constants

Photolysis Rate Constants $A + hv \rightarrow C + D$

- ·Solar radiation spectrum and bond breaking
- ·Actinic flux, absorption cross sections, quantum yields

Mechanisms and Overall Reactions

Chemical Kinetics (Reaction Rates)

Rate of reaction at any time, t, is the slope of the tangent to curve describing change in concentration with time

Rates can change w/time because reactant concentrations can change w/time. Note this is just the concept of mass balance

d[A]/dt = d[B]/dt = -d[C]/dt = -d[D]/dt (by mass conservation)

Rate Expressions for Gas-phase Reactions

Unimolecular: A → B First order process

$$-\frac{d[A]}{dt} = k^{I}[A] = \frac{d[B]}{dt}$$

Lifetime = 1/k; k has units of s^{-1}

Examples - decomposition: $N_2O_5 \rightarrow NO_3 + NO_2$

photolysis: $O_3 + hv \rightarrow O_2 + O$

Bimolecular: $A + B \longrightarrow C$ $-\frac{d[A]}{dt} = k^{II}[A][B] = -\frac{d[B]}{dt} = \frac{d[C]}{dt}$

MOIECUIAT: $A + B \rightarrow C$ $-\frac{1}{dt} = k^m [A][B] = -\frac{1}{dt} = \frac{1}{dt}$ k^{II} , bimolecular rate constant, has units of cm³ molec⁻¹ s⁻¹

Example- OH + CH₄ → H₂O + CH₃

Special cases:

1. B=A, rate law becomes 2nd Order in [A]

2. [B]>>[A] rate law becomes pseudo-first order in [A]

Termolecular: $A + B + M \longrightarrow C + M$

M is total air number density

AKA: Pressure dependent bimolecular reactions

Energy Requirements Affect Rates

Reaction rate constants are often functions of Temperature due to energy requirements

Reaction Progress

Energy barriers are common: higher T gives higher energy collisions, increasing the probability of a reaction

Termolecular (Pressure Dependent) Reactions

A bimolecular reaction which requires activated complex to be stabilized by collisions with surrounding gas molecules "M"

1.
$$A + B \rightarrow AB^*$$
 k_1

2.
$$AB$$
* → A + B

$$\frac{d[C]}{dt} = k_3 [AB^*][M]$$

3.
$$AB^* + M \rightarrow C + M^*$$

4. $M^* \rightarrow M + heat$

 $\frac{d[AB^*]}{dt} \approx 0 \approx k_1[A][B] - k_2[AB^*] - k_3[AB^*][M]$

$$\frac{\alpha_1 \cdot B}{dt} \approx 0 \approx k_1 [A][B] - k_2 [AB^*] - k_3 [AB^*][M]$$

$$[AB^*]_t = \frac{k_1[A][B]}{k_2 - k_3[M]} \longrightarrow \frac{d[C]}{dt} = \frac{k_3k_1[A][B]}{k_2 - k_3[M]}[M]$$

Termolecular Rate Constants: Examples

 $k_{\text{CIO+CIO}}$ and $k_{\text{O+O2}}$ have been scaled

Questions

OH is produced in the atmosphere by the reaction of an energetically "hot" oxygen atom (we'll talk about why its "hot" later) with $\rm H_2O$

$$H_2O + O^* \rightarrow 2OH$$

- 1. What is the rate expression for the loss of O^* by this reactive process?
- 2. What is the rate expression for the *production* of OH by this reactive process?
- 3. Typically [O*] is $<<1 \times 10^6$ molecules/cm³, while $[H_2O]$ in the troposphere can be $<1 \times 10^{15}$ molecules/cm³. If the bimolecular rate constant for the above reaction is 1×10^{-11} cm³ molec⁻¹ s⁻¹, what is a typical lifetime for $[O^*]$ w.r.t this reaction in the troposphere?

Questions

1. At a single location on the ground, the photolysis of NO_2 begins earlier in the morning than the photolysis of O_3 . Why might this temporal difference exist?

Questions 1. Which of the following are examples of first order reactions? a. Photolysis of stratospheric gases b. Dry deposition of gases to Earth's surface c. Uptake of CO₂ by plants