CHAPTER 6: GEOCHEMICAL CYCLES
THE EARTH: ASSEMBLAGE OF ATOMS OF THE 92 NATURAL ELEMENTS

+ Most abundant elements: oxygen (in solid earth!), iron (core),
silicon (mantle), hydrogen (oceans), nitrogen, carbon, sulfur...

« The elemental composition of the Earth has remained essentially
unchanged over its 4.5 Gyr history
— Extraterrestrial inputs (e.g., from meteorites, cometary
material) have been relatively unimportant
— Escape to space has been restricted by gravity

« Biogeochemical cycling of these elements between the different
reservoirs of the Earth system determines the composition of the
Earth’s atmosphere and the evolution of life

BIOGEOCHEMICAL CYCLING OF ELEMENTS:
examples of major processes
Physical exchange, redox chemistry, biochemistry are involved
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QUESTIONS

1. How do elements in the lithosphere get transferred to the atmosphere?

2. Imagine an early Earth with a weak Sun and frozen ocean ("snowball
Earth"). How would volcanic activity eventually warm the Earth and
cause melting of the ocean?
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i Carbon Dioxide (CO,) 370x10° (date: 2000)
human activity

Neon (Ne) 18.2x10°
Ozone (0,) 1 0.02¢10% to 10x10-0
Helium (He) 5.2x10%
Methane (CH,) 1.7x10
Krypton (Kr) 1.1x10®
Hydrogen (H,) 0.55x10%
Nitrous Oxide (N,0) 0.32x10°
Carbon Monoxide (CO) 0.03x10° to 0.3x10°¢
Chlorofluorocarbons 3.0x10°
Carbonyl Sulfide 0.1x10°

' Ozone has increased in the troposphere, but decreased in the stratosphere.
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OXIDATION STATES OF NITROGEN

N has 5 electrons in valence shell =9 oxidation states from -3 to +5

Increasing oxidation number (oxidation reactions)

-3 0 +1 +2 +3 +4 +5

NH, N, N,O NO HONO NO, HNO,
Ammonia Nitrous Nitric Nitrous acid | Nitrogen | Nitric acid
NH,* oxide oxide NO, dioxide | NO,-
Ammonium Nitrite Nitrate
RiN(R2)R3

Organic N

Decreasing oxidation number (reduction reactions) ‘

THE NITROGEN CYCLE: MAJOR PROCESSES
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QUESTION

1. What if denitrification shut off while N, fixation still operated? How
long would it take for the atmosphere to be depleted of N,?

N,O: LOW-YIELD PRODUCT OF BACTERIAL
NITRIFICATION AND DENITRIFICATION
Important as NH,"+3/20, = NO, + H,0 + 2 H"

» source of NO, radicals in stratosphere N~ 4 Org-C= N, + ...
* greenhouse gas N 2

IPCC
. [2007]
200 1400 80 800
PRESENT-DAY GLOBAL BUDGET
OF ATMOSPHERIC N,0
Natural 10(5-16)
Ocean 3(1-5)
Tropical soils 4(3-6)
Temperate soils 2(1-4) IPCC
pTre— o [2001]

Agricultural soils a0-15)

Livestock 21-3)

Industrial 1a-2

SINK (Tg Nyr) 12(9-16)

Photolysis and oxidation in stratosphere

ACCUMULATION (Tg N yr) 4(-5)

Although a closed budget can be constructed, uncertainties in sources are large!
N_O atm mass =5.13 10'6kg x 3.1 107 x28/29 = 1535 Tqg )




SULFUR CYCLE

Most sulfur is tied up in sediments and soils. There are large fluxes to the
atmosphere, but with short atmospheric lifetimes, the atmospheric S burden is
small.

SO,: Anthropogenic (fossil fuel combustion) source comparable to natural
sources (soils, sediments, volcanoes)

Sulfur is oxidized in the atmosphere: SO, ---->H,SO,
S(+1V) S(+VI)

Sulfate is an important contributor to
acidity of precipitation. Sulfuric acid has
alow P, and thus partitions primarily
to aerosol/aqueous phase

Strongly perturbed by human activities!

—. wedimandary cycle
CS Y

Oxidation states of sulfur

Increasing oxidation number (oxidation reactions) ‘

2 1 o v 6
H,S() CH,SSCHy(g) CH,SOCH,(g) 50, (0) H,50, (a0)
Hydrogen sulfide Dimethy disulfide Dimethy! sulfoxide Sulfur dioxide Sulturic acid
cs,() HSO, (ag) HSO,; (aq)
Carbon disulfide Bisulfite Bisulfate
CH,SCH, 50.2(aq) 50,7 (aq)
Dimethy sulfide (DMS) sulfite Sultate
ocs CH,SOH (aq)

Carbon sulfide Methane sulfonic acid

Decreasing oxidation number (reduction reactions) ‘

FAST OXYGEN CYCLE: ATMOSPHERE-BIOSPHERE

* Source of O,: photosynthesis
nCO,+nH,0 » (CH,0),+n0O,

« Sink: respiration/decay
(CH,0),+n0,=> nCO,+nH,0

O, lifetime: 5000 years

Photosynthesis
less respiration




...however, abundance of organic carbon in
biosphere/soil/locean reservoirs is too small to control
atmospheric O, levels
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SLOW OXYGEN CYCLE: ATMOSPHERE-LITHOSPHERE
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ATMOSPHERIC CARBON
Unreactive Carbon: CO,: GHG (more to follow...) (Typ~20 yrs)

Reactive Carbon: CH,: GHG, important in oxidant chemistry (t,,~9 yrs)
CO: important in oxidant chemistry (later...) (Typ~2 Mos)
NMHCs: source of CO, oxidant chemistry (t,p,~Sec-mos)
Black Carbon: radiatively important (t,p,~days)

CH, (C=-IV) CO (C=+lI) CO, (C=+IV)
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SOURCES OF ATMOSPHERIC METHANE

WETLANDS 2 90

180 ’LANDFILLS =

GLOBAL METHANE
SOURCES (Tg CH, yr?)

TERMITES

SINKS OF ATMOSPHERIC METHANE

I. Transport to the Stratosphere
Only a few percent, rapidly destroyed = BUT the most
important source of water vapor in the dry stratosphere

1. Oxidation o,
CH, + OH = CH,0,>CO + other products

Lifetime ~ 9 years

ATMOSPHERIC CH,: PAST TRENDS, FUTURE PREDICTIONS

Variations of CH, Concentration (ppbv)

Over the Past 1000 years IPCC [2001] Projections of Future

[Etheridge et al., 1998] CH, Emissions (Tg CH,) to 2050
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CH, and N,O from the EPICA (Antarctica) ice core

Wolff and Spahini, 2007

ATMOSPHERIC CO, INCREASE OVER PAST 1000 YEARS
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CO, from the EPICA (Antarctica) ice core

Siegenthaler et al., 2005

THE CURRENT CO, OBSERVATION NETWORK

GLOBALVIEW-CO2, 2008
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RECENT GROWTH IN ATMOSPHERIC CO,

Notice:
« atmospheric increase is ~50% of fossil fuel emissions
« large interannual variability

—— fossil fual emissions
annual atmospharic increase
—— manthly atmospheric increase (filtared)

PgClyr
F
1

Arrows indicate
El Nino events

e e e A
1960 1970 1980 1990 2000
Year




GLOBAL CO, BUDGET (Pg C yr)

19805 19905

Atmospheric increase 334001 32401
Emissions (fossil fuel, cement) 54103 63404
Ocean-atmosphere flux -19106 -17205
Land-atmosphere flux’ 02107 -14£0.7
“partitioned as follows:

Land-use change 1.7(06102.5) NA

Residual terrestrial sink -1.9{-381003) NA

IPCC [2001]

GLOBAL PREINDUSTRIAL CARBON CYCLE

ATMOSPHERE
615
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The carbon cycle can be viewed as a set of 10 60

“reservoirs” or compartments, each characterizing
aform of C (e.g. trees; rocks containing calcium
carbonate [limestone]).

50

The cycle of C globally is then represented as a
set of transfer rates between compartments.

DEEP OCEAN
26,000

The total amount of carbon in the atmosphere +
ocean + rocks that exchange with the
atmosphere/ocean is fixed by very long-term
geophysical processes.

Human intervention may be regarded as SEDIMENTS
manipulation of the rates of transfer between 90x10°

important reservoirs.

CARBON CYCLE ON LAND

*Photosynthesis:
CO, + H,0 + light & "H,CO" + O,
*Respiration:
"H,CO" + 0,2 CO, +H,0 + energy

Very little organic matter is stored, on average.

CARBON CYCLE IN THE OCEAN

«Dissolution/evasion
COygy + Hy0 + COyq¢qq = & 2HCO;
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CYCLING OF CARBON WITH TERRESTRIAL BIOSPHERE
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Time scales are short ® net uptake from reforestation is transitory

CO4(9) UPTAKE OF CO, BY THE OCEANS
ATMOSPHERE

K, =9x107M CO,;H,0 3= HCO, +H*

lt K, = 3x102 M atm-t
CO,H,0

N
N
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LIMIT ON OCEAN UPTAKE OF CO,

Equilibrium calculation  CONSERVATION OF ALKALINITY
for Alk = 2.25x10* M

The alkalinity is the excess positive charge
in the ocean to be balanced by carbon:

Alk = [Na*] + [K*] + 2[Mg?*] + 2[Ca?*]
- [CI1-2[s0] - [Br]

=[HCO4] + 2[CO;?]

It is conserved upon addition of CO,
=  uptake of CO, is limited by the
existing supply of CO;>

Increasing Alk requires dissolution of

sediments:
8.6
8.4 Ocean pH CaCO, *=, Ca%+COz>
8.2 _ _
100 200 300 400 500 ...which takes place over a time scale
pCO,, ppm of thousands of years
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EQUILIBRIUM PARTITIONING OF CO,
BETWEEN ATMOSPHERE AND GLOBAL OCEAN

Fraction of CO, in atmosphere (Equilibrium for present-day

ocean, pH=8.2):
Neoo(9) —003
Neoz(9) + Neoo (ad)

\
varies roughly as [H*]  moles

= only 3% of total inorganic carbon is currently in the atmosphere )

ButCO,(g)”» = [H]”» = F~
... positive feedback to increasing CO,

Pose problem differently: how does a CO, addition dN partition between
the atmosphere and ocean at equilibrium?

- dNco, (9) —
dNco,(9) +dNo, (aq)

= 28% of added CO, remains in atmosphere! Reflects large positive
feedback from ocean acidification by CO,

varies roughly as [H*]2

FURTHER LIMITATION OF CO, UPTAKE:
SLOW OCEAN TURNOVER (~ 200 years)

ATMOSPHERE
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Uptake by oceanic mixed layer only (V.= 3.6x1016 m3)
would give f=0.94 (94% of added CO, remains in atmosphere)
Residence time of water in the oceanic mixed layer is ~18 years.

EVIDENCE FOR LAND UPTAKEE
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QUESTIONS

1. There is concern that melting of polar icecaps could reduce deep
water formation and hence the transfer of CO, to the deep ocean.
Why? (Hint: temperature is not the only factor driving deep water
formation)

2. Upwelling of deep ocean water supplies high concentrations of
nutrients such as nitrogen to the surface ocean. What is the effect
of this upwelling on atmospheric CO,?

3. Former Alberta Premier Ralph Klein suggested that we all quit
breathing as a way to reduce CO, input to the atmosphere. Jamey
Heath, a spokesman for Greenpeace Canada, called it the "single
stupidest argument" he had ever heard against ratifying
Kyoto. Who's right? Why?
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