

- Both Sun and Earth behave as blackbodies (absorb 100% incident radiation; emit radiation at all wavelengths in all directions)
- Earth receives energy from sun in the form of shortwave radiation with peak in the visible (λ = 0.4 0.7 μm)
- Earth emits energy to space in the form of longwave radiation in the infrared (λ = 5-20 μ m) \rightarrow function of Earth's temperature

Total Solar Radiation Received By Earth

• Solar constant for Earth: 1368 W m-2 (Note: 1 W = 1 J s-1)

• Solar radiation received top of atmosphere unit area of sphere = (1368) x (π r_e²)/(4 π r_e²) = 342 W m⁻²

A No-Atmosphere Earth

- \bullet Assume 30% of incoming solar energy is reflected by surface (albedo of surface = 0.3)
- Energy absorbed by surface = 70% of 342 W m^{-2} = 239.4 W m^{-2}
- · Balanced by energy emitted by surface
- Stefan-Boltzmann law: Energy emitted = σ T⁴ :(σ =5.67 x 10⁻⁸ W m⁻² K⁻⁴)
- 239.4 W m⁻² = $\sigma T^4 \rightarrow T = 255 \text{ K (-18°C)}$
 - → much less than average temperature of 288 K (15°C)
- · What is missing?
 - → Absorption of terrestrial radiation by the atmosphere

Aerosol direct and indirect effects

IPCC, 2007

Radiative Forcing and Temperature Change

•Increasing the abundance of a greenhouse gas by Δm corresponds to an increase in Δf of the absorption efficiency, and an initial decrease in IR radiation emitted to space (by $\Delta F)$

- •Response of system to energy imbalance: \rightarrow T₀ and T₁ increase
- \rightarrow may cause other greenhouse gases to change
- ightarrow T₀ and T₁ may increase or decrease depending on internal climate feedbacks
- ightarrow $\Delta f
 ightarrow \Delta T
 ightarrow$ etc... ightarrow Ultimately, the system gets back in balance
- Radiative forcing is only a measure of initial change in outgoing terrestrial radiation
- -Climate models (GCMs) indicate $~\Delta T_{surface}=\lambda~\Delta F$ where λ (climate sensitivity parameter) ranges from 0.3 to 1.4 K m 2 W 3 depending on the GCM

Positive Feedback

Effect enhances cause

- \rightarrow increase effect
- \rightarrow boom!!!

Ex: Water vapor feedback

Ex: warmer → melting land ice → lower albedo → further warming

Negative Feedback

Negative feedback

Effect suppresses cause

- Cause -→ Effect
- → decrease effect → "self-regulation"
- suppress

Example: warmer → more clouds → higher albedo → cooling effect (negative feedback)

Feedbacks

• water vapor feedback: positive.

- ice-albedo feedback: positive or negative?.
 cloud feedbacks: positive or negative? potentially large (clouds can reflect solar radiation or absorb IR radiation depending on their height, thickness and microphysical properties) Largest uncertainty in current estimates of climate change.
- •land surface feedback: positive or negative? (surface albedo affect, CO₂ fertilization, soil moisture)

GLOBAL WARMING POTENTIAL (GWP):

foundation for climate policy

The GWP measures the integrated radiative forcing over a time horizon Δt from the injection of 1 kg of a species X at time t_o relative to CO_2 :

$$GWP = \int_{t_{0}+\Delta t}^{t_{0}+\Delta t} \Delta F_{1 \log X} dt$$

$$\int_{t_{0}+\Delta t}^{t_{0}+\Delta t} \Delta F_{1 \log X} dt$$

Gas	Lifetime	fetime GWP for time horizon		
	(years)	20 years 100 years 5 years		rs 500
CO ₂	~100	1	1	1
CH ₄	12	63	23	7
N ₂ O	114	279	300	158
CFC-12 (CF ₂ CI ₂)	100	10340	10720	5230
HFC-134a (CH ₂ FCF ₃)	14	3580	1400	400
SF ₆	3200	15290	22450	32780