Stratospheric Chemistry

READING: Chapter 10 of text

*Mid-latitude Ozone Chemistry (and depletion)

Polar Ozone Destruction (the Ozone Hole)

Stratospheric O,: Overview
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Stratospheric Ozone: Motivating Questions

1. What are the natural production and loss
mechanisms for stratospheric O3?

2. What is the effect of anthropogenic emissions on
stratospheric ozone, both past and future?

3. What are the mechanisms responsible for the
drastic ozone decreases in the Antarctic?

4. What role, if any, does the stratospheric aerosol
layer play in the gas-phase chemistry of the
stratosphere?

Stratospheric Ozone—a brief history

1840's Ozone first discovered and measured in air by Schonbein who
named it based on its smell.

1880-1900's: Hartley postulates the existence of a layer above the
troposphere, where ozone is responsible for the absorption of solar UV
between 200 and 300 nm.

1913: Fabry and Buisson used UV measurements to estimate that if
brought down to the surface at STP, O; would form a layer ~ 3 mm thick.

1920-25: Dobson first shows that T(z) in stratosphere not constant but
increases with z and implicates O3 absorption. Makes first extensive set
of O3 column measurements with his spectrophotometer

1930: Chapman proposed that O; continually produced in a cycle
initiated by O, photolysis.

The Chapman mechanism

[R1] O,+hv->20 A< 240 nm
[R2] O+0,+M > 0;+M
[R3] O;+hv>0,+0 A< 310 nm
[R4] O+0;-> 20,
Odd oxygen family
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Mass balance for [O]:

dl[j?]=2joz[/{]+ joa[oa]_kz [Oz][o][M ]—k%][()] ~0
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Odd Oxygen Family: O,

[0 = [O] + [O5] = [O,]
Mass balance for [O,]; L[dotx] =2jo,[0,]-2k,[0,][0]
*[O;] controlled by s/ow net production and loss via
O, + hv (R1)and O + O; (R4)

NOT by fast production and loss of O; from O + O,
(R2) and O3 + hv (R3)
*Effective O; lifetime = 1,
Tox = [0,1/2k,[0][0;] = 1/ 2k,[O]
* In upper stratosphere 1, short enough steady-
state can be assumed: 2k,[0,] = 2k,[0][0]
[03] = (K;Ka/K3Kg)!72 CopNg; 32

(where Cy, = [mole/mole] and N ;. = air number density [cm-3]
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Questions

1. Why do ozone concentrations peak ~20 km
altitude?

2. Where would you expect the highest ozone
concentrations o be (equator vs. poles)?

3. The original Chapman mechanism included a fifth
reaction:

0+0+M>0,+M

What would be the effect of this reaction on
ozone? Where would it be most important?




What's missing from the Chapman mechanism?
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Brewer-Dobson circulation
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= Rising tropospheric air
with low ozone

= B-D circulation
transports O; from tropics
to mid-high latitudes
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What's missing from the Chapman mechanism?
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Catalytic chemical cycles

Alitudes >30 k X+0; > X0+ 0,

Ituades > m

(need O) XO+0 > X+0,
Net: O + O; > 20,

X+0;>X0+0,
XO+0,>X+20,
Net: O, + O, > 30,

Altitudes < 30 km

Catalysts:
X = OH, NO, ¢l, Br




Hydrogen oxide (HO,) radical family

HO, = H + OH + HO, From troposphere
and CH, oxidation
= Initiation: H,O + O('D) > 20H

= Propagation through cycling of HO, radical family
(example):
OH + 03> HO, + 0,
HO,+ 05> OH + 20,
Net: 205> 30,

= Termination (example):
OH + HO, > H,0 + 0,

|H0x is a catalyst for O; loss but not the only one...

HO, sources in the stratosphere

0, +hv > O(D)+ O,
OD)+M>0+M
0+0,+M>0;+M

Small fraction of O(*D) 1/15,000 (25 km) reacts with H,0,
CH,, or H, to form HO,:
H,0 + O(*D) - 20H
CH, + O(*D) > OH + CH,4
H,+0(D) > OH+H
H,0 ~ 3-6 ppmv; CH, ~1-1.5 ppmv; H, ~ 0.5 ppmv

Stratospheric OH Profile
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Satellite observations of H,O and OH in the stratosphere

45

3 40
s >
£ =
g c
=
: 34
> =
i -
=~ 20

Eu L |

AURA, MLS, Feb 15 2007. £ 1115 CH gty %
http://mls.jpl.nasa.gov/data/gallery.php . o T T T T

00 BOG 120, 150, 240

Nitrogen oxide (NO,) radical family
NO, = NO + NO,

- Initiation N,O + O('D) >2NO
+ Propagation

NO + O3 > NO, + O, NO + O3> NO, + O,

NO,+hv > NO + O NO, + 0 > NO + 0,
O0+0,+M>0;+M
Null cycle Net O; + O > 20,

+ Termination Recycling

NO, + OH+M > HNO; + M [HNO,+ hv > NO, + OH
NO, + NO, + M > N,O5 + M [ N,O5 + hv >NO, + NO,

Biological source of N,O in the troposphere
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Cycling of NO, and NO,
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What have we learned about NO,?

*Production:
N,O + O(!D) - well understood natural source

sLoss: via transport from stratosphere to
troposphere. Residence time for air in stratosphere is
1-2 years. Loss rate well constrained

=Cycling: Oj loss related to NO,/NO, ratio.

NO, catalytic cycle reconciled Chapman theory with
observations..1995 Nobel Prize




Human Influence on Stratospheric NO,
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Questions

1. Of the ozone loss mechanisms we have examined so far, can
any operate at hight?

2. A minor oxidation pathway for NO is
HO, + NO -> OH + NO,

What is the net effect of this reaction on ozone?

Anthropogenic perturbations to stratospheric ozone

X+0,> X0 +0,
X0+0>X+0,
Net: O + O; > 20,

Catalysts:
X =OH < increasing CH, from troposphere
X =NO < increasing N,O from troposphere, supersonic fleet
X =Cl, Br €« Chlorofluorocarbons (CFCs) - Freons




“wonder gas” CFCs were invented in 1928
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Use of CFCs increases rapidly

Chlorofluorocarbons (CFCs)

Used as refrigerants and as
propellants in spray cans

Non-toxic, non-flammable,
stable gases that are easily
compressed.

Thought to be ideal...due to
safety and durability.

"Aerosol” Spray Cans: NOT SAME AS ATMOSPHERIC
AEROSOL PARTICLES

Chlorofluorocarbons (CFCs)

Examples:
Methane CFcl1 CFC12

bl
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Chlorofluorocarbons and Halons

Halocarbon= halogen-containing organic compounds

99
Halocarbon
I 99 CFC-114 containing C,
. et Cland F

1" oA —
3_ Halon 1211 Br containing

halocarbon

CATALYTIC CYCLES FOR OZONE LOSS:

Chlorine (ClOx = Cl + ClO) radicals

+ Initiation:
CCI5F + hv > CCI,F + Cl wavelengths<230 nm
CCl,F + hv > CFCI + Cl ol ]
. 3 loss rate:
+ Propagation: a0
Cl+0;> ClO + 0, do,]_
clo+0>cl+0, t

Net: O+ O > 20, Chain length > 10 (103 in
upper stratosphere)

+ Termination: Recycling:
Cl+CH, > HCl + CH, HCl + OH > €l + H,0
€lo +NO, + M > CIONO, + M CIONO, + hv = ClO + NO,

Molina & Rowland, 1974 ..1995 Nobel Prize

—2k[Clo][0]

Cycling of ClO, and Cl,
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Vertical distribution of O, catalytic loss cycles
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Early Warning Signs

S_tllatos_])ﬁ_éric sink for chlorofluoromethanes :

chlorine atomc-atalysed destruction of ozone
Mario J. Molina & F. S. Rowland

Department of Chemintry, Usiversity of Californds, Irvime, Califormia 93664

Nature, June 28, 1974

Molina, Rowland, and Crutzen win Nobel Prize in 1994

CCI3F measurements in 1971: cruise from England to Antactica
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Coupling Between HO,, NO,, and CIO, Cycles

What is the effect of increasing stratospheric NO,
on the rate of ClO,-catalyzed ozone loss?

Give an example of how HO, and NO, are coupled.

How might an increase in OH affect CIO, cycles?
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