Urban Air Pollution

- · Public Health and Environmental Concerns
 - Elevated levels of toxic compounds
 - Primary (directly emitted) and Secondary (formed in situ) Pollutants
- · Regional and Global Impacts
 - Atmospheric Chemistry and Composition
 - Climate

The Urban Smog Problem Smog - "Smoke" + "Fog" ·Coined due to reduced visibility associated with pollution episodes

Major components:
•"invisible": O₃, CO, SO₂
•"visible": PM (aerosols) + some gases (NO2)

Ingredients

- ·Sun (photochemistry) ·Stagnation •Emissions of NO_x, SO₂, PM and VOC
- Houston, TX Aug. 2000

Air Quality—Societal Problem Number of people in U.S. living in non-attainment areas NO₂ 03 (8-hour) 122.5 PM 10 so, Any NAAQS 100 Millions of People

Violating O₃ NAAQS US EPA National Ambient Air Quality Standards for O₃ *The avg-120 ppb *Bhr avg < 75 ppb* *To attain this standard, the 3-year average of the fourth-highest daily maximum 8-hour average ozone concentrations measured at each monitor within an area over each year must not exceed 0.075 ppm.

Chain Termination and HO_x Steady State

Generally: $P_{HOx} = L_{HOx}$

LOW NO_x: $L_{HOx} \sim 2k[HO_2]^2$ \longrightarrow $P_{HOx} \approx 2k[HO_2]^2$

** $HO_2 + HO_2 + M \rightarrow H_2O_2 + O_2 + M$

 $RO_2 + HO_2 \rightarrow ROOH$

 $OH + HO_2 \rightarrow H_2O + O_2$

High NO_x: $L_{HOx} \sim k[OH][NO_2] \longrightarrow P_{HOx} \approx k[OH][NO_2]$

**OH + NO₂ + M \rightarrow HNO₃ + M

 $RO_2 + NO + M \rightarrow RONO_2 + M$

**Typically most important reactions in each regime

Biogenic VOCs

Isoprene

 $+ OH \xrightarrow{O_2} RO_2$ Important source of peroxy radicals: enhance O_3 production

Many other reactive biogenic VOC: influence $P_{\rm O3}$ and aerosol mass

US isoprene emissions > than 45°N the sum of US anthropogenic hydrocarbon emissions

GEIA Isoprene Emissions In July, *Guenther, et al*

Chemical ingredients for photochemical smog

Trees cause more pollution than automobiles do." Ronald Reagan 1981

Also requires emissions from cars/industry!

Questions

- 1. A NO_x-emitting power plant wants to reduce its contribution to O_3 pollution in its immediate region. It asks you, an environmental consultant, if it should spend \$10 million dollars to cut its NO_x emissions by 20%. You find, by modeling O_3 production, that the immediate region is NO_x-saturated. How do you answer?
- 2. Even though some of the single largest NO_x emitters are located in the Tennessee Valley, O_3 production in this region is generally NO_x -limited. Why?
- 3. What time of year would you expect the fastest and slowest $P_{HOx}?$ Where would you expect the fastest $P_{HOx}\colon$ Arizona or South Carolina?
- 4. Is there a time of year NO_x -saturated O_3 production would be more likely, if so, when?