ATMS 458: Practice Problems on Measures of Composition

- 1. The OH radical has an average number density that is nearly constant with altitude at $\sim 1 \times 10^6$ molec cm⁻³. Does the mixing ratio change with altitude? To check determine what the OH mixing ratio is at the surface: P ~ 1 atm, T ~ 288 K? Now calculate the mixing ratio at 10 km altitude: P ~ 0.260 atm, T ~ 220 K.
- 2. Over the oceans, sea salt aerosols can affect visibility and marine clouds. If the typical number concentration of 10 μm diameter particles is 10 per cm³, what is the mass concentration (density = 2 g cm⁻³) of sea salt? What is the volume mixing ratio of sea salt (cm³ of sea salt per cm³ of air) in units of parts per billion?
- 3. CO₂ is ~380 ppm throughout the atmosphere. What is the partial pressure of CO₂ at the surface? Does the partial pressure of CO₂ vary with altitude?
- 4. Methane has a constant mixing ratio throughout the troposphere of 1.76 ppm. If the total pressure as a function of altitude can be calculated by P(z) = P(z=0)*exp(-z/H) where H = 7.4 km, calculate the atmospheric column of methane in units of molecules per cm².