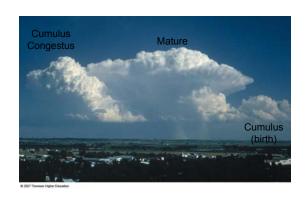

Thunderstorms and Tornadoes

- · Ordinary Air Mass Thunderstorms
- · Severe Thunderstorms
- Lightning
- Tornadoes

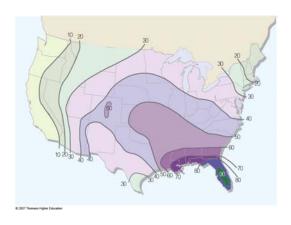
Thunderstorms and Tornadoes

- · Ordinary Air Mass Thunderstorms
 - Need
 - Lift
 - · low level moisture
 - · conditionally unstable atmosphere
 - The life cycle
- Severe Thunderstorms
- Lightning
- Tornadoes

Simplified life cycle of an ordinary air mass thunderstorm



Ordinary Thunderstorms form in low wind shear and live only 1-2 hours

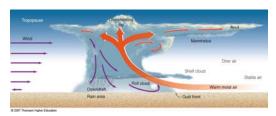

A Mature Ordinary (Air Mass) Thunderstorm

Air Mass Thunderstorms

Average No. of Days per year with thunderstorms

Thunderstorms and Tornadoes

- Ordinary Air Mass Thunderstorms
- · Severe Thunderstorms
 - Need
 - Lift
 - · low level moisture
 - · conditionally unstable atmosphere
 - · and strong vertical wind shear
 - Examples
 - Intense, long lived individual storms
 - Mesoscale Convective Complex (MCC)
 - Dry line severe storms (squall line)
- Lightning
- Tornadoes

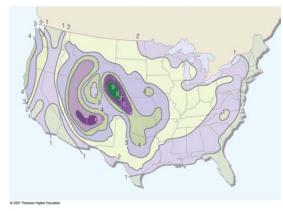

A shelf cloud (or arcus cloud) associated with an intense thunderstorm

© 2007 Thomson Higher Education

Cold dry air cP Warm dry air cT Dryline Warm moist air

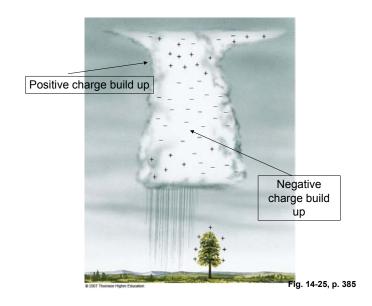

Anatomy of a Severe Thunderstorm

Wind shear helps keeps the updrafts and downdrafts separated.
Gust front associated with cold downdraft can help fuel storm.


Extreme wind, precip and large Hail can form in this situation

Mesoscale Convective Complex

... a huge area of heavy rainfall, thunderstorms severe downdrafts and hail


Average No. of days per year with hail

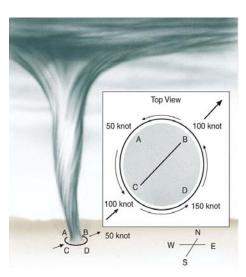
Movie of hail in woodson tx: http://www.youtube.com/watch?v=wZr8jXo1Uso

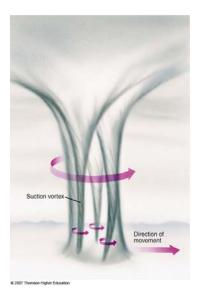
Thunderstorms and Tornadoes

- Ordinary Air Mass Thunderstorms
- Severe Thunderstorms
- Lightning
 - A large voltage potential is produced by charge separation
 - · ice crystals form from super cooled water
 - · Super cooled water freezes on contact with warmer graupel

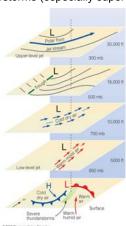
Anatomy of a cloud-to-ground lightning strike

Thunderstorms and Tornadoes

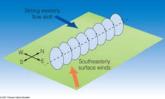

Tornadoes


- Form in a supercell: a very large (200km in diameter) isolated rotating thunderstorm in which is embedded an intense small scale (several km in diameter) mesocyclone

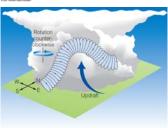
Elie, Manitoba F5 tornado on June 22, 2007



Movie of Tornadoes http://www.youtube.com/watch?v=43VoMesUd2Q

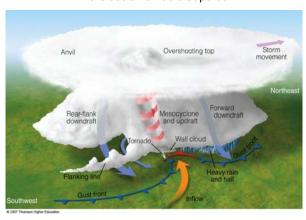


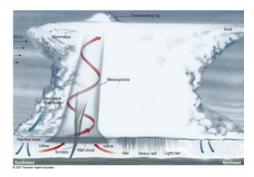
Conditions leading to the formation of some severe thunderstorms (especially supercells)


Energy for a tornado comes from spin (vorticity)

When the ambient wind has strong vertical shear and is caught in a convective updraft ...

Vorticity dynamics (or trailer parks?) cause a small scale, intense vortex to form: a tornado

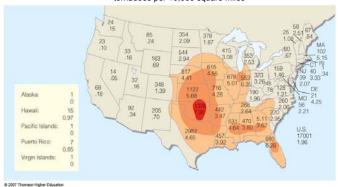

Tornadoes usually rotate cyclonical


anatomy of a tornado movie

http://esminfo.prenhall.com/science/geoanimations/animations/Tornadoes.html

The Classic Tornadic Supercell

Anatomy of a Tornado



Some of the features associated with a tornadobreeding supercell thunderstorm as viewed from the southeast. The storm is moving to the northeast

Tornado incidence by state.

The upper number shows the number of tornadoes reported by each state during a 25-year period.

The lower number is the average annual number of tornadoes per 10,000 square miles

Average number of tornadoes during each month in the United States.

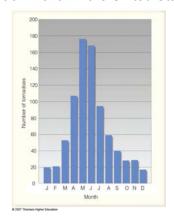


Fig. 14-34, p. 392

CALE	CATEGORY	HI/HH	KNOTS	EXPECTED DAMAGE
FO	Weak	40-72	35-62	Light: tree branches broken, sign boards damaged
FI		73-112	63-97	Moderate: trees snapped, windows broken
F2	Strong	113-157	96-136	Considerable: large trees uprooted, weak structures destroyed
E3		158-206	137-179	Severe: trees leveled, cars overturned, walls removed from building
F4	Violent	207-260	180-226	Devastating: frame houses destroyed
E5*		261-318	227-276	Incredible: structures the size of autos moved over 100 meters, steel-reinforced structures highly damaged

•TABLE 14.1	
Average Ann Deaths by D	ual Number of T ecade
DECADE	TORNADOES

DECADE	TORNADOES/YEAR	DEATHS/YEAR
1950-59	480	148
1960-69	681	94
1970-79	858	100
1980-89	819	52
1990-99	1,220*	56