Review

- Absolute Humidity Mass WV / Vol Air (g/m^3)
- Specific Humidity Mass WV / Mass Air (g/kg)
- Mixing Ratio Mass WV / Mass Dry Air (g/kg)
 - 1 kg = 1000 g
- Sat. Mixing Ratio Mass of WV in Sat. Environment / Mass of Dry Air (g/kg)
- Relative Humidity Mass of WV / Mass of WV in a Sat. Environment.

Vapor Pressure

- Water Vapor in air is a collection of water molecules which all have kinetic energy, and therefore temperature.
- Since all the molecules move, they all exert a pressure.
- So, the more the molecules of wv per volume...the higher the vapor pressure!

Vapor Pressure cont...

- Obeys the idea gas law
 - − e=ρRT
- Molecular weight of dry air
 - -29
- Molecular weight of water
 - -18
- Dry air is more dense than water vapor!
- Why the air feel more heavy when humid?
 - A physiology thing...

Evaporative Cooling

- Sweat Heat extracted from sweat, less heat in sweat means sweat cools, making us cooler.
 - Does this process work as efficiently in a more humid environment. (overhead drawing)
- Same process cools ocean...how?

Dew Point Temperature

- Temp a parcel of moist air must reach in order to become saturated
 - evaporation = condensation
- Good indicator of moisture in the air
- Large difference between T and Td means dry air
- See video
- Skew-T

Fig. 4-10, p. 91

Dew → T<0°C

How does dew and frost form?

- -Radiational Cooling at night
- -Air above cold surface cooled by conduction
- -Once temperature cools to the dew point, water vapor in air condenses on surfaces

Frost \rightarrow T<0°C

Fog

What is fog?

- Varieties of Fog
 - Radiation fog
 - Advection fog
 - Upslope fog
 - Valley fog
 - Evaporation fog

Radiation Fog

the bottom air until it reaches

saturation

Ingredients:

- -nighttime radiative cooling
- -moist air
- -calm winds

Air cools to dew point → condensation of water vapor on cloud condensation nuclei in atmosphere

as cooling continues.

Advection Fog

- Warm air moving over cold surface is cooled to saturation
 - What season is best for this?

Upslope Fog

Up-Slope Fog

Fog forms on slope.

Moist air flows toward slope.

As air rises with the terrain, it cools to condensation temperature.

Valley Fog

Valley Fog

Air cools at higher elevations.

Fog forms in valley.

Cold Air drains downslope into valley.

Cold air drainage reduces air temperature in valley to condesation point

Steam Fog

-cold, dry air over warm surface

- -vapor added to air
- -air becomes saturated if mixed and rises

Haze

 Vapor condenses onto condensation nuclei (soot, clay etc.) when relative humidity ~ 75%

Haze scatters white light

Clouds!!!

-Condensation occurs away from surface

- -10 major types of clouds Determined by:
 - -form/composition
 - -cloud base height

Major Cloud Types

Cirrus – wispy, fibrous

Stratus-sheet-like

Cumulus - puffy heaps

Cloud Types

-Height of cloud base for low, mid, and high clouds varies between tropical, mid-latitude, and polar regions

High Clouds

- -above 6km
- -mostly ice
- -thin clouds

Middle Clouds

- 2-6km
- -'alto' prefix
- -thicker clouds
- -mix of ice, liquid

Low Clouds

- -Below 2km
- -water
- -Sharp boundaries

Clouds with Vertical Development

- -cumulus
- -cumulonimbus

High Clouds

Cirrus Cirrostratus Cirrocumulus

- Cirrus- thin, mares' tails, move from west to east across sky
- Cirrostratus- thin, sheetlike, can cover sky, produce halos
- Cirrocumulus- small white puffs, can occur in rows

Middle Clouds

Altocumulus Altostratus

- Altocumulus- gray, puffy, wavy, may indicate thunderstorms
- Altostratus- gray, blue-gray, covers sky, sun dimly visible

Low Clouds

Nimbostratus

Stratus

Stratocumulus

- Nimbostratus- dark gray, light-moderate precipitation
- Stratus- uniform gray, covers sky, possibly mist or drizzle
- Stratocumulus- lumpy, in rows or patches, light to dark gray

Clouds with Vertical Development

Cumulonimbus

- Cumulus- cotton puff, flat base, lots of blue sky between
 - Fair weather cumulus, towering cumulus (showers)
- Cumulonimbus- thunderstorm cloud
 - Updrafts, anvil, hailstones, ice, rain, lightning, thunder, tornadoes

On weather maps..

- Isobar line of constant pressure
- Isoheight/Isohypse line of constant height
- Isotherm line of constant temperature
- Isotach line of constant wind speed

Isodrosotherm?
Isochalaz?

Surface Station Plot

Temp (°F) Pressure (mb)

Change in Pressure (mb)

Cloud cover

Use the number (9 or 10) that will give value closest to 1000 mb.