Solid earth

- $\begin{tabular}{ll} \bullet \mbox{ Volcanoes: sulfur compounds (SO$_2$, H_2S, COS$), particles, H_2O, CO_2$, $HCl...$ \\ \end{tabular}$
- Rocks (radiogenic): Helium (decay of uranium and thorium), Argon (decay potassium-40), radon (decay of uranium-238)

Figure 13. Eruption of Mount Pinatubo in the Phillipines i 1991. This type of explosive eruption injects large amounts of material into the stratosphere to altitudes of greater than 30 km.

Biological sources

- e.g.: Biological source of ${\rm CH_4}\!\!:$ swamps, rice paddies, termites, ruminants

Size of Sources

Point Source: very localized source

for example: +Smoke stacks,

+Industrial facility

+single tail pipe

Distributed (area) Source:

sources cover a wider area

for example:

+cluster of point sources (cars in city)

+rice paddies emitting methane

Random Walk "Drunken Walk" net distance Man diffuses from one light to the other

Brownian Motion / Random Walk

Gas molecules are always in motion and collide with each other (Brownian motion)

→ ~ 1 billion collision per second

⇒ They can reach a certain place in a random walk. They <u>diffuse</u> to that place.

(Molecular) Diffusion

Gas molecules move randomly in all directions These movements lead to mixing until all gases are equally distributed

2 separated gases

TI

This never happens

Turbulence Swirls lead to a mixing until all gases are equally distributed (turbulent diffusion). Turbulence is much more efficient (faster) than molecular diffusion 2 separated gases This never happens

Convection / Vertical Transport

Warm air rises / cold air sinks

- Lofts pollutants from surface away from people
- Precipitation often forms → rain out soluble pollutants
- If escape rain, pollutants enter heights with stronger winds → transported over long distances

Dry adiabatic lapse rate

 Γ : decrease of temperature with altitude

a dry air parcel lifted in the atmosphere cools 10°C per km of altitude

in a dry atmosphere the temperature drops 10°C per km of altitude

Saturated adiabatic lapse rate

 $\Gamma_{\text{S}} \sim 5~^{\circ}\text{C/km}$

dry adiabat

An air parcel with a relative saturated adiabat humidity of 100% lifted in the atmosphere cools 5°C per km of altitude.

> In an atmosphere with a rel. humidity of 100% the temperature drops 5°C per km of altitude.

Example: Hot Air Ballon

Density of air decrease (increases) with increasing (decreasing) temperature

In the balloon air temp. is much higher than outside

- → air in balloon has lower density than outside
- → balloon will rise (additional weight keeps it floating)

Atmospheric Stability Neutrally stable case: Temp. of air parcel is equal to temp. of surrounding air at all heights. \rightarrow parcel floats $\Gamma = \gamma$ Temperature

Inversion layer, Los Angeles, Dec. 19, 2000

Mark Z. Jacobson

Visibility web cam: http://www.pscleanair.org/airq/visibility/default.aspx

Smoke Trapped in Inversion After Fire Menlo Park, California (June, 2001)

Mark Z. Jacobson

_	_	