

Course Goals

This class will provide an overview of atmospheric chemistry and the fundamental underpinnings so that you will be able to:

- Understand quantitatively how emissions, transport, chemistry and deposition impact atmospheric chemical composition
- Explain the chemical and physical mechanisms behind ozone depletion, air pollution and acid rain from the molecular to the global scale
- 3) Critically evaluate and participate in public discussions of air pollution and climate change

Course Related Activities

(see course website for more information)

http://www.atmos.washington.edu/academics/classes/2011Q2/558/

Lectures/Discussions

Board-work, power point, problem solving, recent literature. Lectures are for you, not me. Please interact!

Problem Sets (not graded) and Exams

Mix of "pencil and paper" and MATLAB based exercises – I will randomly ask students to provide solution method in class. Exams directly based on problem sets and lecture material.

Final Projects

Choose a topic from class for further investigation, write a 5-10 pg report, and give a 15 minute presentation

Course Overview

- Weeks 1-2: Fundamentals
 Measures of atmospheric composition, chemical kinetics, reaction
 mechanisms, photochemistry, lifetimes.
- •Weeks 3-5: Stratospheric Chemistry Stratospheric ozone, catalytic loss cycles and CFCs, polar ozone loss, mid-latitude ozone loss, Montreal Protocol
- Weeks 6-8: Tropospheric Chemistry
 Oxidizing capacity of the atmosphere, air pollution, acid rain
- •Week 9: Atmospheric Chemistry and Climate Biogeochemical cycles, chemistry-climate feedbacks
- ·Week 10 and finals week: Student Presentations

Goal of Atmospheric Chemistry

To develop a detailed understanding of the chemical and physical processes which control the amounts and spatial and temporal distributions of atmospheric constituents.

Why?

- ❖The atmosphere plays a critical role in Earth's energy balance (climate)
- ❖Protects/Sustains life at the surface
- ❖Couples land,oceans, equator and poles
- Human activity changes its composition

What is Atmospheric Chemistry?

Atmospheric chemistry is the study of the factors controlling the amounts and types of chemical species that make up the atmosphere.

- $\boldsymbol{\cdot}$ The "atmosphere" and the chemical species in it, are one and the same.
- \bullet This course will highlight the fact that this fluid is a collection of $\it interacting$ atoms and molecules.
- These interactions result in important phenomena which occur on local, regional, and global spatial scales, and over a wide range of temporal scales: seconds to years.
- You are likely very familiar with several phenomena: urban smog, the stratospheric ozone hole, acid rain, the greenhouse effect, just to name a few.

How Do We Begin?

Describe the general physical characteristics

mass, temperature, vertical extent, motions

Determine the major and minor components

describe absolute and relative amounts

Develop a physical-chemical framework to:

predict how a species evolves in time and space

Apply this framework to answer:

Why is Earth's atmosphere mainly N_2 , O_2 , H_2O , and CO_2 ?

How and where are humans affecting this composition?

What are the implications of such changes?

Measures of Atmospheric Composition

Reading: Chapter 1 in text

How do we describe the amounts of chemical constituents in the atmosphere?

Describing Amounts

Reading: Chapter 1 in text

The atmosphere contains gases (mostly) and some liquids/solids - aerosols and clouds.

All gases can

All gases can be described by ideal gas law
$$P_X = (n_X/V)RT$$

$$P_{total} = \Sigma(P_X)$$

Aerosols and clouds need:

Size, Number, Composition, and Phase State

mass and volume of particles per volume of air

Average Composition as Mixing Ratios

	GAS	MIXING RATIO	Mixing Ratio is a mole fract (Moles X/Total Moles)
		(dry air)	(Moles X/ I of all Moles)
		[mol mol ⁻¹]	
	Nitrogen (N2)	0.78	· Air also contains variable
	Oxygen (O2)	0.21	vapor (10 ⁻⁶ -10 ⁻² mol mol ⁻¹) aerosol particles
	Argon (Ar)	0.0093	i i
1	Carbon dioxide (CO ₂)	365×10 ⁻⁶	 Trace gas mixing ratio unit 1 ppmv = 1×10⁻⁶ mol mol 1 ppbv = 1×10⁻⁹ mol mol
се	Neon (Ne)	18×10 ⁻⁶	1 pptv = 1×10 ⁻¹² mol m
es	Ozone (O ₃)	(0.01-10)×10-6	
	Helium (He)	5.2×10 ⁻⁶	
	Methane (CH ₄)	1.7×10 ⁻⁶	
- (Krypton (Kr)	1.1×10 ⁻⁶	

Related Measures of Composition

Mixing Ratio

$$C_X = \frac{\text{moles of X}}{\text{total moles of air}}$$

•Constant w.r.t. changes in air density

Number Density

$$N_X = \frac{\text{\# molecules of X}}{\text{unit volume of air}}$$

proper measure for

 N_X and C_X are related by the ideal gas law:

$$N_{\scriptscriptstyle X} = N_{\scriptscriptstyle air} C_{\scriptscriptstyle X} = \frac{N_{\scriptscriptstyle Avag} P_{\scriptscriptstyle air}}{RT} C_{\scriptscriptstyle X}$$

Also define the mass concentration (g cm⁻³ of air):

$$\rho_X = \frac{\text{mass of X}}{\text{unit volume of air}} = \frac{M_X N_X}{N_{Avag}} = \frac{(g / mol)(molec / cm^3)}{(molec / mol)}$$

Not to be confused with the density of a substance (g cm⁻³ of substance)

• The mixing ratio of CO₂ is currently ~ 380 ppm throughout the atmosphere, what is its partial pressure?

Visibility Reduction by Aerosols (Haze)

clean day

moderately polluted day

Acadia National Park (Northeastern Maine)
http://www.hazecam.net/

Kinetics and Photochemistry

Reading: Chapter 9 in text

Rate laws for homogeneous gas-phase reactions

- Unimolecular
- •Bimolecular
- $A + B \rightarrow C + D$
- Termolecular
- ·Rate constants

Photolysis Rate Constants $A + hv \rightarrow C + D$

- ·Solar radiation spectrum and bond breaking
- ·Actinic flux, absorption cross sections, quantum yields

Mechanisms and Overall Reactions

Rate of reaction at any time, t, is the slope of the tangent to curve describing change in concentration with time A + B → C + D **The slope of the tangent to curve describing change in concentration with time A + B → C + D **The slope of the tangent to concentration with time A + B → C + D **The slope of the tangent to concentration to concentration with time Rates can change w/time because reactant concentrations can change w/time. d[A]/dt = d[B]/dt = -d[C]/dt = -d[D]/dt (by mass conservation)

Energy Requirements Affect Rates							
Life by Requirements Affect Rules							
Reaction rate constants are often functions of Temperature due to energy requirements							
Potential Energy AB^* T_1 AB^* T_1 $C+D$							
Reaction							
Progress							
Energy barriers are common: higher T gives higher energy collisions, increasing the probability of a reaction							

Rate Expressions for Gas-phase Reactions

Unimolecular:
$$A \longrightarrow B$$

First order process $-\frac{d[}{d}$

$$-\frac{d[A]}{dt} = k^{T} [A] = \frac{d[B]}{dt}$$

Lifetime = 1/k; k has units of s^{-1}

Examples - decomposition: $N_2O_5 \rightarrow NO_3 + NO_2$ photolysis: $O_3 + hv \rightarrow O_2 + O$

Bimolecular:
$$A + B \longrightarrow C$$
 $-\frac{d[A]}{dt} = k^{II}[A][B] = -\frac{d[B]}{dt} = \frac{d[C]}{dt}$

Molecular: $A + B \rightarrow C - \frac{1}{dt} = k^{T}[A][B] = \frac{1}{dt} = \frac{1}{dt}$ k^{II} , bimolecular rate constant, has units of cm³ molec⁻¹ s⁻¹

Example- OH + CH₄
$$\rightarrow$$
 H₂O + CH₃

Special cases:

1. B=A, rate law becomes 2nd Order in [A]

2. [B]>>[A] rate law becomes pseudo-first order in [A]

Termolecular: $A + B + M \longrightarrow C + M$

M is total air number density

AKA: Pressure dependent bimolecular reactions

Termolecular (Pressure Dependent) Reactions

A bimolecular reaction which requires activated complex to be stabilized by collisions with surrounding gas molecules "M"

1.
$$A + B \rightarrow AB^*$$

1.
$$A + B \rightarrow AB^*$$
 k_1
2. $AB^* \rightarrow A + B$ k_2

$$\frac{d[C]}{dt} = k_3 [AB*][M]$$

3.
$$AB^* + M \rightarrow C + M^*$$

4. $M^* \rightarrow M + heat$

$$k_3$$
 dt 31 IL 3 IL 4 IL 3 IL 4 IL 4 IL 6 IL 6

Assume lifetime of AB* very short, reacts as soon as its formed (quasi steady state approximation):

$$\frac{d[AB^*]}{dt} \approx 0 \approx k_1[A][B] - k_2[AB^*] - k_3[AB^*][M]$$

$$[AB^*]_{t} = \frac{k_1[A][B]}{k_2 - k_3[M]} \longrightarrow \frac{d[C]}{dt} = \frac{k_3k_1[A][B]}{k_2 - k_3[M]}[M]$$

Questions

OH is produced in the atmosphere by the reaction of an energetically "hot" oxygen atom (we'll talk about why its "hot" later) with H2O

$$H_2O + O^* \rightarrow 2OH$$

- 1. What is the rate expression for the loss of O* by this reactive process?
- 2. What is the rate expression for the production of OH by this reactive process?

Radiation and Photochemical Processes

Questions:

- ·How does radiation interact with molecules?
- What determines the products and rates of photolysis
- How do radical and non-radical species react together?
 At what rate?

Energy from the sun drives the chemistry of the atmosphere through the production of radicals.

Radical = atom or molecule with an unpaired electron = very reactive!

Two Important Photolysis Reactions

1) Photolysis of ${\cal O}_2$ leads to production of ozone in stratosphere

$$O_2 + hv \rightarrow O + O$$
 [wavelengths<240 nm] $O + O_2 + M \rightarrow O_3 + M$

 h_V = energy from one photon; M = unreactive 3rd body (N₂ or O_2)

2) Photolysis of O_3 leads to production of the hydroxyl radical

 O_3 + $hv \rightarrow O(^1D)$ + O_2 [wavelengths<310 nm] $O(^1D)$ + $H_2O \rightarrow OH + OH$

Beer-	Lambert Law
dL I I ₀	Attenuation of radiation proportional to thickness and concentration $\frac{dI}{I} = -\sigma(\lambda) \text{ n dL}$ $\sigma = \text{absorption cross-section [cm²/molecule]}$ $n = \text{concentration of absorber [molecules/cm³]}$ $dL = \text{thickness [cm]}$ $\frac{dI}{I} = \int_{0}^{L} \sigma \text{ n dL}$ $I = I_0 \exp[-\sigma \text{ n L}]$

Radicals

- Gases in atmosphere are present at low concentrations → collisions between molecules are infrequent and reactions which proceed at fast rates generally involve at least one radical species

 Radical = chemical species with an unpaired electron in outer (valence) shell
- How do you know whether species is a radical? Generally odd number of electrons in outer shell (exception: oxygen)

Element	# e-	Valence e-	Molar mass (g/mol)	Lewis symbol	Orbitals
Hydrogen	1	1	1	H•	1s
Carbon	6	4	12	·Ç•	1s ² 2s ¹ 2p _x 1 2p _y 1 2p _z 1
Nitrogen	7	5	14	N	1s ² 2s ² 2p _x ¹ 2p _y ¹ 2p _z ¹
Oxygen	8	6	16	: <u>0</u>	1s ² 2s ² 2p _x ² 2p _y ¹ 2p _z ¹
Oxygen	8	6	16		1s ² 2s ² 2p _x ² 2p _y ²

Ground state O(3P) Excited state O(1D)

e- occupy different orbitals of a sub-shell before doubly occupying any one of them

		Pe	ric	od	ic	T	ab	le	0	f 1	the	2 (Ξle	m	en	ts		
hydropin H			-		-	-		-	-	roto		-						He
Li Li	Be		Chemical symbol									Ne						
Na	Mg					٨	lass	s (a	mu)	-			ΑI	Si	P	S	ČΙ	Ar
"K	Ča		Sc	Ti	V	Cr	Mn	Fe	Co	Ni Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr		39 Y	Źr	Nb	Mo	Tc	Ru	Rh.	Pd	Ag	Čd	ľn	Sn	Sb	Τe	53	Xe
Cs Cs	Ba	57-70 *	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	## Lr Rf Db Sg Bh Hs Mt UunUuuUub Uuq																
	[partial] and [partial part																	
*Lanthanide series La Ce Pr Nd Pm Sm Eu Gd 65 05 05 05 05 05 05 05 05 05 05 05 05 05																		
**Actinide series Ac Th Pa																		
	Image from: http://www.bpc.edu/mathscience/chemistry/images/periodic_table_of_elements.jpg																	

Questions

1. At a single location on the ground, the photolysis of NO_2 begins earlier in the morning than the photolysis of O_3 . Why might this temporal difference exist?

Equilibrium (Henry's Law) (applicable to dilute solutions, such as cloud droplets)

 $[X] = H_x P_x$

[X] → equilibrium concentration of X in solution (mol L-1) P_v → gas-phase equilibrium

pressure of X (atm)

H_x → Henry's law constant (mol L⁻¹

Gas	$H~(\mathrm{mol}~\mathrm{L}^{-1}~\mathrm{atm}^{-1})$	Reference'
O ₂	1.3×10^{-3}	Loomis, 1928
NO	1.9×10^{-3}	Loomis, 1928
C ₂ H ₄	4.9×10^{-3}	Loomis, 1928
NO,"	1×10^{-2}	Schwartz and White, 1983
O ₁	$(0.82-1.3) \times 10^{-2}$	Briner and Perrottet, 1939
N ₂ O	2.5×10^{-2}	Loomis, 1928
CO2b	3.4×10^{-2}	Loomis, 1928
SO ₂ ^b	1.22	Maahs, 1982
HONO*	49	Schwartz and White, 1981
NH ₃ "	62	Van Krevelen et al., 1949
H ₂ CO	6.3×10^{3}	Blair and Ledbury, 1925
H ₂ O ₂	$(0.7-1.0) \times 10^{5}$	Martin and Damschen, 1981
	1.4×10^{5}	Yoshizumi et al., 1984
	$6.9 \times 10^{4 d}$	Hwang and Dasgupta, 1985
HNO ₃	2.1×10^{5}	Schwartz and White, 1981
HO ₂	$(1-3) \times 10^3$	Schwartz, 1984b
OH	30	Golden et al., 1990; Hanson et al., 1992
PAN	5	Holdren et al., 1984
CH ₃ SCH ₃	0.48-0.56	Ducey et al., 1984

Finlayson-Pitts & Pitts, p 151, Chemistry of the upper and lower atm

Heterogeneous Reactions

Reactions on the surface of aerosol particles are often represented as a 1st order loss processes: $d[X]/dt = -k_{het}[X]$

Reaction probability: γ (unitless, 0-1)

= probability that a molecule impacting an aerosol surface undergoes reaction (measured in lab.)

Net loss of gas due to aerosol reaction (first-order loss):

$$-\frac{d[X]}{dt} = \left(\frac{a}{D} + \frac{4}{D^{\gamma}}\right)^{-1} A[X]$$

a = radius of aerosol [cm]

D_q = gas-phase molecular diffusion coefficient of X [cm²/s]

 υ = mean molecular speed of X in the gas-phase [cm/s]

A = aerosol surface area per unit volume of air [cm²/cm³]

[X] = gas phase concentration of X [molec/cm³]

Applicable to both solid and liquid aerosols

Kinetic and Photochemical Data

NASA/JPL: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies

http://jpldataeval.jpl.nasa.gov/index.html

IUPAC (International Union of Pure and Applied Chemistry) Gas Kinetic Data Evaluation

http://www.iupac-kinetic.ch.cam.ac.uk/

Quantifying change

Reading: Chapter 3 in text

Goal of Atmospheric Chemistry

Concept 1: Mass Balance

Concept 2: Lifetime

Spatial and Temporal Scales of Change

Gases trapped in ice show changes over millenial and annual timescales.

CO₁(2) year 200

Chemical change occurs on time scales ranging from <1 second to >millennia

Goal of Atmospheric Chemistry

To develop a detailed understanding of the chemical and physical processes which control the amounts, and spatial and temporal distributions of atmospheric constituents.

 $\frac{\partial [X]}{\partial t} = - \underbrace{\nabla \cdot F}_{\text{Chemical production}} \underbrace{\begin{array}{c} \text{Chemical loss} \\ \text{loss} \\ \text{Ot} \end{array}}_{\text{Chemical production}}$

Flux divergence (flux out minus flux in)

Deposition

TYPES OF SOUR	RCES
Natural Surface: terrestrial and marine highly variable in space and time, influenced by	
eg. oceanic sources estimated by measuring lo using a model for gas-exchange across interfac	
Natural In situ: eg. lightning (NO ₂) N ₂ → NO ₂ , volcanoes (SO ₂ , → generally smaller than surface sources on gl material is injected into middle/upper troposphe	lobal scale but important b/c
Anthropogenic Surface: eg. mobile, industry, fires	20 NO . 00) fee U0 and EU
→ good inventories for combustion products (C Anthropogenic In situ: eg. aircraft, tall stacks	O, NO _x , SO ₂) for US and EU
Secondary sources: tropospheric photochemistry	
Injection from the stratosphere : transport of products transported into troposphere (strongest at midlatitudes, i	

TYPES OF SINKS

Wet Deposition: falling hydrometeors (rain, snow, sleet) carry trace species to the

- surface
 in-cloud nucleation (depending on solubility)

 - scavenging (depends on size, chemical composition)
 Soluble and reactive trace gases are more readily removed.
 - →Generally assume that depletion is proportional to the conc (1st order loss)

Dry Deposition: gravitational settling; turbulent transport particles > 20 μm → gravity (sedimentation) particles < 1 μm → diffusion → rates depend on reactivity of gas, turbulent transport, stomatal resistance

and together define a deposition velocity (v_d)

$$F_d = v_d C_x$$

Gases: vary with srf and chemical nature (eg. 1 cm/s for SO₂)

chain-terminating rxn: $OH \bullet + HO_2 \bullet \rightarrow H_2O + O_2$ change of phase: $SO_2 \rightarrow SO_4^{2c}$ (gas \rightarrow dissolved salt)

Dry Deposition

Acids (and other gas molecules) are taken up by surfaces, i.e. ground, buildings, plants (also respiration)

Factors that govern dry deposition rates:

- →Level of atmospheric turbulence
- → Chemical properties of depositing species
 - →Nature of surface itself

Gravitational Settling

Diam. (μm) Time to Fall 1 km 0.02 228 y 36 y 0.1 1.0 328 d 10 3.6 d 100 1.1 h 1000 4 m 5000 1.8 m

from M.Z. Jacobson "Atmospheric Pollution"

Terminal settling velocity:

$$v_{_{t}} \propto \frac{D_{_{p}}^{^{2}}}{\mu}$$

 D_p = diameter of particle μ = viscosity of air

Only particles smaller than 10 μm reach the global atmosphere

Question (mass balance)

1. Atmospheric CO_2 is increasing at an average rate of ~3 ppm/yr. Net sources of CO_2 (primarily from fossil fuel burning and deforestation) add ~8 PgC/yr of CO_2 . If we were to "stabilize" the CO_2 concentration, by how much would we have to cut our emissions?

Hints:

The atmosphere contains 1.8 x 10^{20} moles 12 g C / mole CO_2 $10^{15} \rm g$ / $\rm Pg$

Questions (lifetime)

- 1. CO_2 is removed from the atmosphere by photosynthesis and physical dissolution into the oceans. Photosynthesis by the biosphere leads to the uptake of \sim 60 Pg C/yr of atmospheric CO_2 . What is the atmospheric lifetime of CO_2 w.r.t. uptake by the biosphere? What does this calculation suggest about "fixing global warming"?
- Recall that fossil fuel burning and deforestation net add 8 Pg C/yr of CO₂. Given the measured atmospheric growth rate of CO₂ (~3ppm/yr), and that there's ~380 ppm CO₂, derive a second estimate of the atmospheric lifetime of CO₂. Does this approach seem valid?

1. Choose the most appropriate modeling strategy for the following problems (1-box, n-box, plume/column model): a. exchange of a uniformly mixed greenhouse gas between the stratosphere and troposphere b. production of ozone downwind of an urban area c. the abundance of a moderately reactive emission like carbon monoxide 2. Suppose operators of a 1-box model of Seattle's urban "air shed" predicted that the concentration of pollutant emitted downtown was going to rise to a unhealthy level only in the U-District. Should you believe them, why or why not?