Tropospheric Chemistry

READING: Chapter 11 of text

- ·Tropospheric OH source and sinks (CO and CH_4)
- ·Sources and Sinks of the OH sinks: CO and CH4
- ·Stayin Alive: The OH Titration Problem

1. How would a thinning of the stratospheric ozone layer affect the source of OH in the troposphere?

Questions

- 2. How would adding sulfur to the stratosphere for geoengineering affect the tropospheric OH source?
- 3. How might global warming affect the source rate of OH in the troposphere?

Questions

- 1. NO also reacts with O_3 (as in the stratosphere) to produce NO_2 . In fact, the rate of conversion of NO to NO_2 is dominated by this reaction in the troposphere. What is the effect of this reaction on O_3 production?
- Loss of NO_x in the troposphere takes place by NO₂+OH→HNO₃, same as in the stratosphere. What is the effect of this reaction on tropospheric ozone?

Question

Anthropogenic activity has lead to the increase of $NO_{\rm x}$, CO, and CH_4 emissions, with roughly factors of 2-4 increases of each over pre-industrial times. How have these changes affected OH concentrations?

"Active" (gas-phase) halogen species: Br₂, Br, BrO, HOBr (similar for Cl and I, also BrCl) soluble in water Production of reactive halogens from e.g. Br-(aq) and CH₃Br occurs via photochemical oxidation reactions. Exact production mechanisms are not always well-understood.

Oxidation of Alkanes High reactivity of Cl with hydrocarbons CH₄ + Cl → HCl + CH₃ Halogens may influence the oxidation capacity of the atmosphere through their impacts on oxidant concentrations (e.g. O₃) and as direct oxidants them selves (e.g. reducing the lifetime of CH₄). Understanding of halogen chemistry and their role in the chemical budgets of other trace gases in the atmosphere is only beginning to emerge, and is an active area of research!