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A question of efficiency

Suppose

I The vertical grid spacing is 300 m.

I The speed of sound is 300 m s−1.

I A fully explicit time differencing approximation to the full
compressible governing equations will require the time step to
be no larger than roughly 1 second.
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Strategies to increase efficiency

If acoustic waves are of no importance, efficiency can be gained by

I Filtering them from the governing equations.
I Boussinesq, Anelastic or Pseudo-incompressible equations

I Numerical solution via the projection method

I Choosing a numerical method that treats the terms
responsible for sound wave propagation efficiently.

I Semi-implicit methods
I Splitting methods
I The approximation of (high frequency) sound waves is wildly

inaccurate
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The Projection Method
Boussinesq context
Solution procedure

The Semi-Implicit Method
Large time steps and poor accuracy
The oscillation equation
The shallow-water equations
Stratified flow

Splitting Methods
Complete operator splitting
Partial operator splitting

Summary
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Boussinesq context
Solution procedure

Boussinesq equations

∂v

∂t
+∇P = F ≡ −v · ∇v + bk,

db

dt
+ N2w = 0,

∇ · v = 0.

Here

I P is the Boussinesq pressure potential

I b is buoyancy

I N is the Brunt-Väisälä (buoyancy) frequency
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Boussinesq context
Solution procedure

Integrate momentum equation over ∆t

∫ tn+1

tn

∂v

∂t
dt = −

∫ tn+1

tn

∇P dt +

∫ tn+1

tn

F(v, b) dt

Define P̃n+1 such that

∆t∇P̃n+1 =

∫ tn+1

tn

∇P dt;

P̃ is not the pressure at any particular time.

vn+1 − vn = −∆t∇P̃n+1 +

∫ tn+1

tn

F(v, b) dt.
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Boussinesq context
Solution procedure

Update the velocities in two steps

1) Compute ṽ, defined such that

ṽ = vn +

∫ tn+1

tn

F(v, b) dt.

Recall

vn+1 − vn = −∆t∇P̃n+1 +

∫ tn+1

tn

F(v, b) dt.

2) After evaluating P̃, complete the update

vn+1 = ṽ −∆t∇P̃n+1.
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Boussinesq context
Solution procedure

Evaluating P̃

From ∇ · vn+1 = 0 and

vn+1 = ṽ −∆t∇P̃n+1,

P̃n+1 satisfies

∇2P̃n+1 =
∇ · ṽ
∆t

.

Specification of boundary conditions for this Poisson equation can
be an nontrivial detail.
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Boussinesq context
Solution procedure

Interpretation as a projection

The operation
vn+1 = ṽ −∆t∇P̃n+1,

projects the partially updated velocities ṽ onto the subspace of
non-divergent velocity fields.

This projection has no influence on the time truncation error.
Similar methods can also be used to integrate related sound-proof
systems

I The anelastic equations

I The pseudo-incompressible equations
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Large time steps and poor accuracy
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The shallow-water equations
Stratified flow

Semi-discrete approximations to the advection equation

Suppose the time derivative in

∂ψ

∂t
+ c

∂ψ

∂x
= 0

is approximated by leapfrog time differencing as

φn+1 − φn−1

2∆t
+ c

(
∂φ

∂x

)n

= 0.

Dale Durran Time Differencing: Physically Insignificant Fast Waves



The Projection Method
The Semi-Implicit Method

Splitting Methods
Summary

Large time steps and poor accuracy
The oscillation equation
The shallow-water equations
Stratified flow

Leapfrog phase speed

Wave solutions of the form

φn(x) = e i(kx−ωn∆t)

have phase speed

clf =
ω

k
=

arcsin(ck∆t)

k∆t
.

Stability requires

I ω real

I |ck∆t| < 1
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Large time steps and poor accuracy
The oscillation equation
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Trapezoidal phase speed

Using trapezoidal time differencing (over 2∆t)

φn+1 − φn−1

2∆t
+

c

2

[(
∂φ

∂x

)n+1

+

(
∂φ

∂x

)n−1
]

= 0

Solutions have phase speed

ct =
ω

k
=

arctan(ck∆t)

k∆t
.

I Unconditionally stable

I Phase speed reduced relative to that of the leapfrog solution
by the factor cos(ω∆t)
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Phase speed as a function of wavelength
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Phase speed of leapfrog (dotted) and 2∆t-trapezoidal (dashed) approximations to the advection equation when

c∆t/∆x = 1/π (LF1 and T1), and for the trapezoidal solution when c∆t/∆x = 5/π (T5).
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A prototype ODE

dψ

dt
+ iωHψ + iωLψ = 0

Suppose the high frequency forcing exceeds that of the low
frequency forcing |ωL| < |ωH |.

Approximate as

φn+1 − φn−1

2∆t
+ iωH

(
φn+1 + φn−1

2

)
+ iωLφ

n = 0
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Large time steps and poor accuracy
The oscillation equation
The shallow-water equations
Stratified flow

Stability condition

Solutions of the form exp(−iωn∆t) exist provided

sin(ω∆t) = ωH∆t cos(ω∆t) + ωL∆t. (1)

Stable when
(ωL∆t)2 ≤ 1 + (ωH∆t)2.

I Always satisfied when |ωL| < |ωH |.
I Always satisfied when |ωL∆t| < 1.

I Same criterion is obtained if ωH = 0
I The terms approximated implicitly have no impact on stability
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Large time steps and poor accuracy
The oscillation equation
The shallow-water equations
Stratified flow

Linearized one-dimensional shallow-water system

∂u

∂t
+ U

∂u

∂x
+ g

∂η

∂x
= 0,

∂η

∂t
+ U

∂η

∂x
+ H

∂u

∂x
= 0,

I U and u(x , t) are the mean and perturbation fluid velocity

I H and η(x , t) are the mean and perturbation fluid depth
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Large time steps and poor accuracy
The oscillation equation
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Numerical operator notation

Finite difference over interval n∆t

δnt f (t) =
f (t + n∆t/2)− f (t − n∆t/2)

n∆t

Averaging operator over interval n∆t

〈f (t)〉nt =
f (t + n∆t/2) + f (t − n∆t/2)

2
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Large time steps and poor accuracy
The oscillation equation
The shallow-water equations
Stratified flow

Semi-discrete approximation

Semi-implicit approximation

δ2tu
n + U

dun

dx
+ g

〈
dηn

dx

〉2t

= 0,

δ2tη
n + U

dηn

dx
+ H

〈
dun

dx

〉2t

= 0.

I Advection is leapfrog.

I Pressure gradient and divergence is trapezoidal over 2∆t.
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Large time steps and poor accuracy
The oscillation equation
The shallow-water equations
Stratified flow

Semi-discrete dispersion relation

sinω∆t = Uk∆t ±
√

gHk∆t cosω∆t

I Same form as (1) for the oscillation equation

I Always stable if flow is subcritical (|U| <
√

gH)
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Large time steps and poor accuracy
The oscillation equation
The shallow-water equations
Stratified flow

Nonlinear one-dimensional shallow-water system

∂u

∂t
+ (U + u)

∂u

∂x
+ g

∂η

∂x
= 0,

∂η

∂t
+ (U + u)

∂η

∂x
+ (H + η)

∂u

∂x
= 0.

Semi-discrete approximation is

δ2tu
n + (U + un)

dun

dx
+ g

〈
dηn

dx

〉2t

= 0,

δ2tη
n + (U + un)

dηn

dx
+ H

〈
dun

dx

〉2t

+ ηn dun

dx
= 0.

I Nonlinear part of the divergence is leapfrog.
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Influence on stability

How does explicit differencing of a portion of the divergence
influence stability?

I Linearize about a basic state at rest with non-zero
perturbation displacement η.

I Stability requires |η| < H, which seems easy to satisfy.

I Local phase speed
√

g(H + η cannot exceed the reference
phase speed

√
gH by more than

√
2.
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Application to continuously stratified flow

Hydrostatic internal gravity waves propagate at the same speed as
a shallow-water gravity wave of the appropriate equivalent depth.

The horizontal phase speed of hydrostatic internal gravity waves is
proportional to the Brunt-Väisälä frequency.

I Compare
√

gH and N/`.

The ratio of the local mean N in the polar regions of the earth’s
atmosphere to that in mid-latitudes can easily exceed

√
2.

Choose the reference-state stratification as isothermal.
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Compressible Boussinesq system

Boussinesq system with prognostic equation for pressure retained.

dv

dt
+∇P = bk,

db

dt
+ N2w = 0,

dP

dt
+ c2

s∇ · v = 0.

(Simple system supporting both sound and gravity waves.)
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Semi-implicit formulation

vn+1 + ∆t∇Pn+1 = v̂ ≡ vn−1 −∆t
[
∇Pn−1 − 2bnk + 2vn · ∇vn

]
Pn+1 + c2

s ∆t∇ · vn+1 = h ≡ Pn−1− c2
s ∆t

[
∇ · vn−1 + 2vn · ∇Pn

]
.

Substituting the divergence of the first into the second yields

∇2Pn+1 − Pn+1

(cs∆t)2
=
∇ · v̂
∆t

− h

(cs∆t)2

Compare with corresponding result from the projection method

∇2p̃n+1 =
∇ · ṽ
∆t

.
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Partial operator splitting
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Two fractional steps

A partial differential equation of the general form

∂ψ

∂t
+ L1(ψ) + L2(ψ) = 0,

may be approximated using two fractional steps as

φs = F1(∆t)φn,

φn+1 = F2(∆t)φs .

I Fi (∆t)φn approximates the action of the exact operator Li

mapping ψ(tn) to ψ(tn+1).
I If Li is a time-independent linear operator

ψ(t+∆t) = exp(∆tLi )ψ(t) =

(
I + ∆tLi +

(∆t)2

2
L2

i + . . .

)
ψ(t).
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Unequal time steps

Suppose L2 contains those terms responsible for the propagation of
waves moving a factor of M faster than those propagated by L1.

A first-order splitting (unless the operators commute) is

φn+1 = [F2(∆t/M)]M F1(∆t)φn.

A second-order (Strang) splitting is

φn+1 = [F2(2∆t/M)](M/2)F1(∆t) [F2(2∆t/M)](M/2) φn.
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A test case

Compressible 2D Boussinesq system

∂r

∂t
+ L1(r) + L2(r) = F(x , z , t),

where r =
(

u w b P
)T

and a nondivergent forcing is applied
to the momentum equations

F =
(
−∂Ψ

∂z
∂Ψ
∂x 0 0

)T
.

Here Ψ is a streamfunction with compact support.
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Advection step

Use linearly 3rd-order Runge-Kutta scheme and a large time step
to advance the advection operator

L1 =


v · ∇ 0 0 0

0 v · ∇ 0 0
0 0 v · ∇ 0
0 0 0 v · ∇


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Pressure gradient, divergence and buoyancy

Use a small time step and forward-backward differencing, except
for terms related to vertical propagation of sound waves, which are
trapezoidal to improve stability.

um+1 − um

∆τ
+
∂Pm

∂x
= −∂Ψm+ 1

2

∂z
,

wm+1 − wm

∆τ
+

∂

∂z

(
Pm+1 + Pm

2

)
− bm =

∂Ψm+ 1
2

∂x
,

bm+1 − bm

∆τ
+ N2wm+1 = 0,

Pm+1 − Pm

∆τ
+ c2

s

∂um+1

∂x
+ c2

s

∂

∂z

(
wm+1 + wm

2

)
= 0,
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More details

um+ 1 , n
    2

wm,n+ 1

             2

Δz

Δx

Pm,n  bm,n

um–  1 , n
     2

wm,n– 1

             2

I Centered 2nd-order spatial
differences on staggered mesh

I Approximation to exp(∆tL1) is
stable for |U|∆t/∆x < 1.73.

I Approximation to exp(∆τL2) is
stable and non-damping for
max(cs/∆x ,N)∆τ < 1.
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Spatially uniform U

-10 15
X (km)

-10 15
X (km)

Z 
(k

m
)

2.5

-2.5

Contours of (a) U + u and Ψ; (b) P and Ψ. No zero contour is drawn. Minor tick marks indicate the location of

the P points on the numerical grid. Only the central portion of the domain is shown.
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Vertically sheared U

(b)

-15 35
X (km)

-15 35
X (km)

(a)

Z 
(k

m
)

5

-5

(d)(c)

Z 
(k

m
)

5

-5

Contours of P and Ψ. Tick marks every 20 grid

intervals

(a) same ∆t and ∆τ

(b) Both ∆t and ∆τ halved
(c) Only ∆t halved
(d) Partially split: same ∆t
and ∆τ

In all cases U + u remains

correct at this time.
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Partial splitting

Include a piece of the advective forcing on every small time step.

um+1 − um

∆τ
+
∂Pm

∂x
= −U

∂un

∂x
− wn ∂U

∂z
,

wm+1 − wm

∆τ
+

∂

∂z

(
Pm+1 + Pm

2

)
− bm = −U

∂wn

∂x
,

bm+1 − bm

∆τ
+ N2wm+1 = −U

∂bn

∂x
,

Pm+1 − Pm

∆τ
+ c2

s

∂um+1

∂x
+ c2

s

∂

∂z

(
wm+1 + wm

2

)
= −U

∂Pn

∂x
.
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Spatially uniform U – revisited

-10 15
X (km)

-10 15
X (km)

Z 
(k

m
)

2.5

-2.5

Contours of (a) U + u and Ψ; (b) P (contoured using twice the interval as in the completely split case) and Ψ.
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Fixing the partially split method

The partially split method is unstable.

Yet it is widely used in many mesoscale models.

It can be stabilized using

I The Asselin time filter (used to prevent time-splitting in
leapfrog integrations) (Tatsumi, 1983)

I Damping the velocity divergence every small time step
(Skamarock and Klemp, 1992)
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Comparison of complete and partial splitting – revisited

(b)
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m
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-5

(d)(c)

Z 
(k

m
)

5

-5

Contours of P and Ψ. Tick marks every 20 grid

intervals. ∂U/∂z 6= 0.

(a) Complete splitting,
pressure noisy.

(b) Both ∆t and ∆τ halved
(c) Only ∆t halved
(d) Partially splitting: same
∆t and ∆τ as in (a)

Divergence damping does not

significantly improve the

completely split solutions.
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Projection method

The pressure P and divergence δ in the compressible Boussinesq
system satisfy

∂P

∂t
+ c2

s δ = −v · ∇P,

∂δ

∂t
+∇2P = −∇ · (v · ∇v) +

∂b

∂z
.

I Discard prognostic equation for P.

I Close 2nd equation by settting δ = 0, and solve Poisson
equation for P.

I Wide range of choices for integrating remaining terms
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Semi-implicit method

∂P

∂t
+ c2

s δ = −v · ∇P,

∂δ

∂t
+∇2P = −∇ · (v · ∇v) +

∂b

∂z
.

I Uses trapezoidal differencing for the left sides

I Solve Helmholtz equation for P.

I Leapfrog differencing for integrating remaining terms
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Test case with shear

Contours of P and Ψ as in previous.

-15 35
X (km)

-15 35
X (km)

Z 
(k

m
)

5

-5

Projection method Semi-implicit

Both the Projection and Semi-Implicit methods yield results similar
to that obtained with partial splitting and divergence damping.
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Complete splitting

During the small-time-step cycle, the divergence satisfies

∂2δ

∂t2
− c2

s∇2δ =
∂2b

∂t∂z
.

I The divergence propagates as an undamped wave, subject to
some modification by buoyancy forces.

I Divergence generated on the large time step is added to the
initial condition for δ at the start of each cycle, and builds
throughout the integration.

I Advection by constant U is a Galilean translation that does
not generate divergence.

I Divergence is generated when there is vertical shear.
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Partial splitting

I The divergence is almost zero at the start of the first small
step.

I Only small changes in δ are forced during a single large time
step.

I The divergence forced over each small step is similar to that
which would appear in an integration of the full compressible
system provided the amplitudes of the sound waves are small
compared to those of the slower modes.

I Divergence damping provides a feedback keeping sound-wave
amplitudes small.
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Iterative solvers versus small steps

I The Poisson equations arising in the Boussinesq system could
be solved by iteration.

I The inaccuracy of the completely split method suggests the
small step cycle does not constitute an iteration process
capable of arriving at the pressure that correctly projects the
evolving velocity field onto the nondivergent (or anelastic
equivalent) subspace.

I The partial splitting method succeeds because the forcing for
the divergence stays close to that actually associated with the
propagation of the slow modes.
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