Coordinate Systems

e To describe the z
location in space of a
point in a fluid, a
coordinate system is (XoYoZo)
used. y

e A commonly used %0
coordinate system is 0
the rectangular, or Yo
X,Y,z system (also
known as Cartesian).

e Rectangular coordinates are often used to
describe motions of the atmosphere or ocean,
even though the earth is a sphere.

e In so doing, one assumes that the x-y plane is
tangent to the surface of the spherical earth.

e General convention for use of rectangular
coordinates:

x is a measure of distance from some origin and
increases toward the east.

y is a measure of distance from some origin and
increases toward the north.

z is zero at surface of earth and increases upward.




Fundamental Mathematical Concepts and
Operations

e Fundamental state variables such as wind speed,
temperature and pressure are functions of (i.e., depend
upon) the independent variables (X, y, z, t).

e For example, atmospheric pressure can be expressed as
a function of space and time:

P=P(x,y,1z1)

Derivatives

Assume AX represents a small distance in the x direction.

The quotient A— represents the slope.
AX
The derivative of a function f (X) is defined as
df _ f(x+Ax)— f(x)
dx Ax—0 AX

In the limit (as AX goes to 0), this becomes the slope at a point and
this is the derivative (df /dX), or the gradient or rate of change.




Partial Derivatives

With standard derivatives, our function varied in one dimension.
However, some variables such as temperature vary not only in time,
but also in space: T (X, Y, z,t)

The partial derivative of T with respect to x will tell us how fast T
changes as we move in the x direction and is defined as follows:

T i T(x+AX,Y,2,t)-T(X,y,2,1)
OX  Ax—0 AX

Similarly,
T _im T(X,y+Ay,z,t)-T(X,y,z,t)
ay Ay—0 Ay

Chain Rule Of Differentiation

Assume: Then:

f=1~f(u,v) of of ou 8f ov
u=u(x,y) oX  Ou OX avax
v=Vv(X,y) of of au af oV

oy oudy vy




More ldentities

OX OX OX Order of partial differentiation

does not matter.
Q(ﬂ
oy \ OX
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Expansion of Total Derivative

it f=1f(x,y,z,t) then

ﬂ_af of dx afdy of dz
dt ot ax dt ay dt az dt

dx dy dz
But U=—, V=—, W=
dt ' dt dt
u = west-east component of fluid velocity

v = south-north component of fluid velocity
w = vertical component of fluid velocity




u \" W
ﬂ_ﬂjﬁf dx+af dy\ of (dz
dt ot ox\dt/ oy\dt) oz\dt

Euler’s relation (expansion of total derivative):

df of of of of
— =—4+U—+V—+W—
dt ot ox oy oz

A B C D E

Term A: Total rate of change of f following the fluid motion
Term B: Local rate of change of f at a fixed location

Term C: Advection of f in x direction by the x-component flow
Term D: Advection of f in y direction by the y-component flow

Term E: Advection of f in z direction by the z-component flow

Total Derivative vs. Local Derivative

Total derivative is the temporal rate of
change following the fluid motion.
Example: A thermometer measuring
changes as a balloon floats through
the atmosphere.

Local derivative is the temporal rate of
change at a fixed point. Example: An
observer measures changes in
temperature at a weather station.




Advection Terms

pr
Assume that thin lines are contours of 13 X
a scalar quantity f and thick arrows )
indicate the fluid motion. We wish to low < high
evaluate the advection term  5f A Cc
u— —_—
OX

, of of -

At point A: U>0-2->0—-u—>0 =» Transportfrom low to high:
' " Ox “negative advection of 7
of of _

AtpointB: U=0, Fv >0—>u Fv =0 =» “neutral advection of 7~

AtpointC: U< 0,ﬂ >0>u ﬂ <0 =p Transport from high to low:
OoX OX “positive advection of 7

Taylor Series

A function f(x) can be computed by Taylor expansion given the
values of the function and its derivatives at a point x,:

(%) 2 £"(%) 3
o (x=x, )" + 2 (X=X ) +...

F(0= 100)+ 310

n=1

F(X)=f()+ f /(o Nx =)+

A truncated Taylor series can be used to approximate 7(x).




