
1

Coordinate Systems

• To describe the 
location in space of a 
point in a fluid, a 
coordinate system is 
used.

• A commonly used 
coordinate system is 
the rectangular, or 
x,y,z system (also 
known as Cartesian). x
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• Rectangular coordinates are often used to 
describe motions of the atmosphere or ocean, 
even though the earth is a sphere.

• In so doing, one assumes that the x-y plane is 
tangent to the surface of the spherical earth.

• General convention for use of rectangular 
coordinates:
x is a measure of distance from some origin and 

increases toward the east.
y is a measure of distance from some origin and 

increases toward the north.
z is zero at surface of earth and increases upward.
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Fundamental Mathematical Concepts and 
Operations

• Fundamental state variables such as wind speed, 
temperature and pressure are functions of (i.e., depend 
upon) the independent variables (x, y, z, t).

• For example, atmospheric pressure can be expressed as 
a function of space and time:
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Derivatives

Assume       represents a small distance in the x direction.  

The quotient represents the slope.

The derivative of a function           is defined as 

In the limit (as       goes to 0), this becomes the slope at a point and 
this is the derivative (          ), or the gradient or rate of change. 
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Partial Derivatives

With standard derivatives, our function varied in one dimension.
However, some variables such as temperature vary not only in time, 
but also in space: 

The partial derivative of T with respect to x will tell us how fast T 
changes as we move in the x direction and is defined as follows:

Similarly,
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Chain Rule Of Differentiation

Assume:
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More Identities
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Order of partial differentiation 
does not matter.

Expansion of Total Derivative
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If then

But

u = west-east component of fluid velocity
v = south-north component of fluid velocity
w = vertical component of fluid velocity
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A EDCB

Euler’s relation (expansion of total derivative):

Term A: Total rate of change of f following the fluid motion

Term B: Local rate of change of f at a fixed location

Term C: Advection of f in x direction by the x-component flow

Term D: Advection of f in y direction by the y-component flow

Term E: Advection of f in z direction by the z-component flow

Total Derivative vs. Local Derivative

Total derivative is the temporal rate of 
change following the fluid motion. 
Example: A thermometer measuring 
changes as a balloon floats through
the atmosphere.

Local derivative is the temporal rate of 
change at a fixed point. Example: An 
observer measures changes in 
temperature at a weather station.
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Advection Terms
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Assume that thin lines are contours of 
a scalar quantity f and thick arrows 
indicate the fluid motion. We wish to 
evaluate the advection term
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At point A:

At point B:

At point C:

Transport from low to high:
“negative advection of f”

Transport from high to low:
“positive advection of f”

“neutral advection of f”

Taylor Series
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A function f(x) can be computed by Taylor expansion given the 
values of the function and its derivatives at a point x0:

A truncated Taylor series can be used to approximate f(x).


