The Ice Ages

- The Ice Ages lasted 2.7 Myr BP to about 10,000 yrs ago

- Large Ice sheets covered Northwestern Europe and Northern North America
- Due to orbitally induced changes in northern hemisphere summer insolation
 - Ice volume changes are coordinated with CO$_2$ changes (shift of carbon between atmosphere and oceans)

What does an ice age look like?

Last Glacial Maximum Conditions

- Ice sheet extent:
 - Over Canada, this ice sheet was up to 5 km thick
 - Global sea level was **125 meters lower** than today!
 - Greenland 25°C colder, tropics 4°C colder

Geologic Evidence For the Ice Ages

- Moraines, erratic, pollen records, etc
- Ocean sediments
 - Oxygen Isotopes in shells of organisms in deep sea provide evidence of glacial ice amount
 - Waxes and wanes of ice correspond to changes in insolation (orbit around sun)
- Ice core records
 - Oxygen isotopes record local temperature
 - Air bubbles provide record of CO$_2$ and other gases
 - Remarkable correlation between local temperature and CO$_2$
- Cause of glacial cycles
 - Trigger involves changes in summer insolation in northern hemisphere due to orbital changes
 - Ice-albedo and water vapor feedbacks are important
 - CO$_2$ is coordinated with the changes in ice volume, but it is a minor feedback to the Ice Ages (mainly responsible for SH cooling)

Vocabulary: Isotopes

- an atom (or element) is defined by number of protons
 - H(1), C(6), O(8), Pb(82)
- atomic mass: number of protons plus neutrons
 - H normally 1+0 = 1
 - C normally 6+6 = 12
 - O normally 8+8 = 16
- isotope: same element, different atomic mass
 - 1H (normal), 2H (deuterium), 3H (tritium; radioactive)
 - 12C (normal), 13C, 14C (radioactive)
 - 16O (normal), 18O
Isotopic Evidence

- ^{16}O vs ^{18}O
 - "light" (normal)
 - "heavy"
- Evaporation selects for "light"
- Condensation (precipitation) selects for "heavy"

^{18}O in ocean sediments records glacial ice volume: More "light" water in ice-sheets means remaining ocean water is "heavier".

^{18}O in ice-cores indicates local temperature: Colder conditions means more precipitation en route so "lighter" snow.

3 Million Year Record of Global Ice Volume

Oxygen Isotope Concentration in Shells of Organisms Growing in the Deep Ocean

- Early on, 40,000 year cycles dominated
 - Obliquity having a direct effect
- More recently, 100,000 year cycles have been most prevalent

CO$_2^*$, CH$_4^*$ and Temperature in Vostock Antarctica

*CO$_2$ and CH$_4$ are well mixed in the atmosphere, so this is also a global record of CO$_2$ & CH$_4$.

Temperature is positively correlated with CO$_2$ and methane, and negatively correlated with ice volume.
CO₂ *, CH₄ * and Temperature in Vostock Antarctica

*CO₂ and CH₄ are well mixed in the atmosphere, so this is also a global record of CO₂ & CH₄

Theory of the Ice Ages:

Orbital induced insolation changes and global ice volume

CO₂ *, CH₄ * and Temperature in Vostock Antarctica

- Starting about 1,000,000 yrs ago, roughly 100,000 year cycles
 - Much more rapid warming, slow & steady cooling
 - Most recent glacial period terminated at the “Last Glacial Maximum” (LGM), 20k yrs ago
 - Holocene (H) started ~ 10k yrs ago

“Strong summer insolation peaks pace rapid deglaciation”
Brief History of Orbital Theory of the Ice Age Cycles

- Agassiz (1840)
 - Summarized geologic evidence for an ice age
- Adhemar (1842)
 - First to attribute an ice age to orbital changes of Earth around Sun
 - Highlighted precession and # of hours of daylight
- Croll (1864)
 - Postulated less winter insolation was key to having an ice age: high eccentricity & winter hemisphere near aphelion promoted ice accumulation
 - Theory dropped when prediction of timing of glacial conditions didn’t match evidence
- Milankovitch (1911)

Reasons for Glacial Cycling

- Changes in solar input in the NH summer drive the ice age cycles (Kopen, Milankovitch)
 - Reduced summer insolation would mean less winter snow melt
 \(\rightarrow \) would eventually grow ice sheets
 - Increased summer insolation \(\rightarrow \) more snow melt \(\rightarrow \) easier to shrink ice sheets
 - N. Hem. matters more b/c there’s more land there

- Albedo and CO\textsubscript{2}/methane are positive feedbacks
 - Play important role in setting amplitude of changes

Milankovitch (1911)

- Koppen suggested to M. that summer insolation was the key to the ice ages
 - Winter: too cold to get much accumulation
 - Summer: low-insulation summers produce less melt in Fall and Spring, allowing winter snow to persist.

- M. calculated summer insolation at 65N vs time

- At the time, proxy data did not support predicted timing of glacial vs interglacial conditions

- New data from ocean sediment cores (and new data methods) clearly showed the ice ages went in cycles, and matched pretty well with summer insolation at 65N

Orbital Theory: Trigger and Feedback Mechanism

Ice-albedo feedback

- Global mean temperature
 - Intensity of summer insolation at high northern latitudes

- Planetary albedo
 - Growth of continental ice sheets

 Trigger with feedback causes ice-sheets...
 to grow and keep growing
 or
 to melt and keep melting

- Other feedbacks are needed to explain the magnitude of the changes.
- Greenhouse gases (e.g. CO\textsubscript{2} and CH\textsubscript{4}) seem to be involved.