
Dynamics of a zonally symmetric vortex

Cartesian geometry
f -plane
zonal wind is geostrophic
meridional wind is ageostrophic
eddy fluxes, diabatic heating, and friction are specified

We will be able to determine
   MMC (diagnostic)
   future evolution of wind and temperature fields



The governing equations

temperature is replaced by 
specific volume

MMC are represented by a 
stream function

Three equations
Three dependent variables
Boundary conditions
Initial conditions



the pressure gradient force (PGF) in the meridional plane

geostrophic 
equation

thermal wind equation:
the PGF is irrotational

eq pole

hypsometric 
equation



the displacement vector

Concept of a stretched membrane



It is helpful to think of the displacement vector as 
relating to a stretched membrane. If the flow were at 
rest so that the displacement were everywhere equal to 
zero the thickness of the membrane would be uniform.
Displacements act to thicken the membrane in some 
areas and thin it in others.



divergence 
induces thinning and convergence 

induces thickening



quasi-geostrophic 
potential vorticity

so membrane mass is a measure of potential vorticity!



“stiffness” of membrane with respect to 
horizontal and vertical displacements

Modulus of elasticity



the MMC vector

the forcing vector

The prognostic equation

Additional definitions



I’m skeptical. Can you give some evidence 
that all this mumbo jumbo makes sense?

It’s simple: consider a steady state....



for steady state 

i.e., the climatological-mean flow

from which we can deduce the existence of 
the Hadley and Ferrell cells



Are you convinced?

But we already knew that. 
What about the time varying case?



It’s simple.  Just eliminate the time derivative terms from 
the governing equations and solve for the MMC.  





This is how it works for the Ferrell cell in steady state.

At Point X both terms on the RHS exhibit maxima;   i.e., 
G + F  decreases with pressure
P + Q  increases with latitude

which yields

X



This is an elliptic equation, so where A(ψ) exhibits a 
maximum, ψ exhibits a minimum.



By convention 

so the MMC circulate counterclockwise around 



Note that with the vectorial notation we can 
sometimes infer the sense of the MMC without 
considering consider the elliptic equation.  In a 
case like this, where the curl of the forcing is 
obvious, the sense of the MMC is also obvious.



For the time-mean MMC, d/dt = 0 but the solution 
for ψ is generally valid .



There are four ways of inferring the MMC

1. direct measurement of [v]

2. vorticity balance  

3. total energy balance

4. eliminating time derivatives in governing equations

 

–

–

Before we proceed,  let’s have a brief review:



Four ways of inferring the MMC

1. direct measurement of [v] 

2. vorticity balance  

3. total energy balance

4. eliminating time derivatives in governing equations

 

–

–

it’s a small residual

doesn’t address the
time dependence

doesn’t address the
time dependence

assumes geostrophy



There are four analogous ways of inferring ω 
in QG system  

1. direct measurement of  

2. vorticity balance  

3. total energy balance

4. eliminating time derivatives in governing equations

 
the omega equation

it’s a small residual

doesn’t address the
time dependence

doesn’t address the
time dependence

assumes geostrophy

assumes geostrophy



Now here’s a vectorial interpretation of the 
elliptic equation for the MMC.  The zonal 
wind and thickness fields need to stay in 
thermal wind balance so

It follows that the curl of the tendency in     induced by 
the forcing vector must be balanced by the curl of the 
tendency induced by the MMC.  

can’t be twisted because it’s the gradient of a scalar



The solution for the MMC 
reduced to a statement about the 
curl of the pressure field! How 
can that be?

It’s simple. For 2D, zonally symmetric 
flow, the omega equation is the 
requirement that the zonal wind and 
temperature fields remain in thermal 
wind balance as they evolve. The 
MMC inferred from this equation 
ensure that they stay in thermal wind 
balance. 



But what about the evolution of the 
zonally symmetric flow?

I’m glad you asked. It’s simple. Once 
we’ve solved for the MMC we have 
everything we need to solve the 
prognostic equations





We can get insight into how the zonal flow evolves in 
response to the fluxes of heat and momentum by 
considering how the eddy fluxes of zonal momentum and 
temperature change the field of quasi-geostrophic 
potential vorticity q.  

If we know how q is changing in response to the forcing, 
we can recover the fields of u, T, and Φ. 

This is the so-called invertibility principle.



and note that the MMC are nondivergent and therefore 
do not have any effect on potential vorticity or 
membrane mass.

It follows that

Recall that



vorticity
forcing

static
 stability 
forcing

Interpretation of the forcing terms

meridional
pinching

vertical
 pinching



Eddy fluxes of momentum moving 
vorticity around in the meridional 
plane?   How can that be?

It’s simple. Held (JAS 1975) proved 
that G can also be interpreted as the 
poleward eddy flux of vorticity; i.e.,



You can prove it for yourself.  Start 
with the expression for G in either of 
its forms and transform it into the 
other form. Following Held (1975) 
you will need to assume that the flow 
in the eddies is nondivergent; i.e., that 



                       That’s awesome! 
Is there an analogous expression for the 
poleward flux of potential 
vorticity               ?

As a matter of fact, there is. 
Allow me to explain.



can be interpreted as 
the poleward eddy flux of static stability



So to summarize,

vorticity
flux

static stability 
flux



Excuse my ignorance, but I don’t see how 
the poleward flux of static stability can 
change the zonal wind field.

It’s simple if we use the membrane 
as an analog for potential vorticity



Define G*, an imaginary momentum forcing that 

would change the zonal momentum field at exactly 
the same rate as the vertical stretching or pinching of 
the membrane due to the poleward heat fluxes       

equivalent 
momentum flux 

forcing

heat flux 
forcing



So 

vorticity
flux

static stability 
flux

or

and



So is that all we need to know?

Well, not quite.  The bottom 
boundary condition is important too. 
But before we deal with that, let’s 
apply what we’ve learned in a 
situation in which the boundary 
conditions don’t matter.



transient 
eddies

stationary
waves



transient 
eddies

stationary
waves



u



G+
G*–

tendency for cancellation

is small

is small

equator pole

heat fluxes

momentum fluxes

heat fluxes are undercutting the 
meridional temperature gradient.



The eddy forcing vector
is mainly nondivergent

G+G–

and cancelled by
the induced MMC

P+P–



G+G–

P+P–

The momentum and heat fluxes are driving the flow out of 
thermal wind balance, increasing the vertical wind shear 
while weakening the meridional temperature gradient.   
The MMC won’t let that happen.



That’s right. But what if the 
momentum flux were equatorward 
rather than poleward?

Fluxes running wild and inducing 
MMC, yet nothing happens to the 
mean flow?



Exactly!

All hell breaks loose?



G–
G*–

tendency for reenforcement

is equatorward

easterly acceleration



in this case the eddy forcing 
vector is mainly irrotational.  
The membrane thickens at 
X and thins at Y

G–G+

P+P–

X Y

in effect, membrane mass moves equatorward, 
consistent with                                < 0. 

The easterly acceleration occurs midway between X and  Y, 
where the forcing is strongest.



in this case there is little or 
no eddy-induced MMC 
because the forcing field is 
nearly irrotational

G–G+

P+P–

The zonal flow isn’t being forced away from thermal 
wind balance. The vertical shear and the meridional 
temperature gradient are both being forced to 
decrease.



Believe it or not, it does, 
every winter in the stratosphere!

First you prescribe a distribution of 
eddy fluxes supposedly based on 
climatology. Then you reverse the 
sign of the momentum fluxes.  
Reversing fluxes..  how could this be?
Does it happen in nature?



For week after week, the patterns resemble the climatology. 
The so-called polar night jet is even stronger than in the 
climatology (~50 m/s at 10 hPa) and temperatures over the 
polar cap region approach –80°C, the threshold for the 
formation of polar stratospheric clouds. The poleward eddy 
heat fluxes are strong, but the tendencies that they induce 
are almost exactly cancelled by the MMC.

Then every so often (on average once or twice per winter) 
the momentum fluxes reverse and within a few days, the polar 
vortex moves off the pole and weakens while temperatures 
over the polar cap region rise by 50°C or more.



They’re awesome! 

Especially the animations showing 
the potential vorticity field.

But they’re no longer on the web site



I’m intrigued with the bottom 
boundary condition. Can you 
tell us more about that?

It’s those heat fluxes that 
we talked about earlier



Eq Pole

Imagine the situation depicted above.
No momentum fluxes, friction, or diabatic heating.
Heat fluxes not varying with height.

The heat fluxes extend all the way to the top and 
bottom boundaries where the vertical component of 
the MMC has to vanish.



Eq Pole

To satisfy this constraint it is necessary to invoke a 
boundary-forced component of the solution.

We allow potential vorticity (membrane mass) to 
accumulate in reservoirs the top and boundaries as 
prescribed by the forcing vectors (left).

This is equivalent to moving membrane mass from left to 
right along the bottom boundary (right).



Because of the inherent stiffness of the membrane, mass 
must also move meridionally within some finite depth, as 
determined by the modulus of elasticity and there are 
associated vertical displacements of the membrane.

The poleward flux of potential vorticity induces a westerly 
acceleration on and just above the bottom boundary, as indicated.

The associated vertical velocities weaken the meridional 
temperature gradient just above the bottom boundary

WC



Bearing in mind that the induced zonal wind and 
temperature tendencies are both weakening with distance 
from the top and bottom boundaries, the induced changes 
are consistent with geostrophy.

Above the bottom boundary,            and            are both 
weakened by the poleward heat flux on the boundary.  



Exactly! The poleward heat 
flux at the bottom boundary, in 
combination with the heat 
fluxes in the interior and their 
induced MMC, weaken the 
meridional temperature 
gradient and vertical wind 
shear from the ground up.

Smells like barotropification.



You have. The geostrophic 
temperature advection at the 
bottom boundary plays an 
equivalent role in the quasi-
geostrophic system and it is 
central to the theory of 
baroclinic instability.

I think I’ve smelled this before.



Do the heat fluxes really extend 
down to the bottom boundary?

Yes, they do. Note the maximum at the top 
of the boundary layer.



How do you expect us to remember 
all this stuff?

Let’s do a few exercises to help it sink in.



Here’s the climatology. Now what would happen 
if we abruptly double the strength of [u*v*]?



OK. Now let’s do the same with [v*T*]? What 
happens?



Note how the MMC always act to oppose the 
forcing.  

Kind of like the way I behave in class.



Yet in the very act of opposing the forcing, 
they change the field that isn’t being forced 
in the sense that is geostrophically 
consistent with the forcing.

In both the above examples, the system does change in 
response to the forcing but, thanks to the MMC, it does 
so in a geostrophically consistent way.

These conclusions apply equally well regardless of 
with the forcing is due to eddy fluxes, diabatic 
heating, or friction.


