The stationary waves description

- stationary; zero frequency
- zonal wavenumbers 1-3
- span full range of latitudes; separate equatorial waves
- different in different hemispheres
- seasonally dependent
- winter waves extend into stratosphere

DJF Sea-level pressure ERA 40

Note strong land-sea contrasts: Low pressure over warm oceans; high pressure over continents and sea ice, an indication of thermally forced features

Close up of North Atlantic

DJF 500 hPa height ERA 40

DJF 250 hPa height and wind ERA 40

90°W

90°

180°

waves. In Large Scale Dynamical Processes in the Atmosphere, Academic Press, 1098.

J.M. Wallace, Climatological-mean stationary waves. In *Large Scale Dynamical Processes in the Atmosphere*, Academic Press, 1983.

J.M. Wallace, Climatological-mean stationary waves. In *Large Scale Dynamical Processes in the Atmosphere*, Academic Press, 1983.

I. M. Held, Theory of Stationary Eddies In *Large Scale Dynamical Processes in the Atmosphere*, Academic Press, 1983.

January 300 hPa Z*

Observations

J.M. Wallace, Climatological-mean stationary waves. In *Large Scale Dynamical Processes in the Atmosphere*, Academic Press, 1983.

Simulation

I. M. Held, Theory of Stationary Eddies In *Large Scale Dynamical Processes in the Atmosphere*, Academic Press, 1983.

I. M. Held, Theory of Stationary Eddies In *Large Scale Dynamical Processes in the Atmosphere*, Academic Press, 1983.

I. M. Held, Theory of Stationary Eddies In *Large Scale Dynamical Processes in the Atmosphere*, Academic Press, 1983.

I. M. Held, Theory of Stationary Eddies In *Large Scale Dynamical Processes in the Atmosphere*, Academic Press, 1983.

I. M. Held, Theory of Stationary Eddies In *Large Scale Dynamical Processes in the Atmosphere*, Academic Press, 1983.

The Stationary Waves Dynamics

- forced by mountains and land-sea thermal contrasts width of mountain range is important
- strongest in high latitude NH, winter
- poleward heat flux, upward EP flux centered ~60°N
- dispersion to lower latitudes at jet level
- interaction with transients not discussed here
- waves interact with polar night jet
- there also exist equatorially-trapped planetary waves