
The Discrete Fourier Transform (Bretherton notes):

1 Definition

Let yn, n = 1, . . . , N be a sequence of N possibly complex values. The discrete Fourier transform (DFT) of

this sequence is the sequence Ym,m = 1, . . . , N , where

Ym =

N∑
n=1

yne
−2πi(m−1)(n−1)/N (1)

The inverse transform is

yn =
1

N

N∑
m=1

Yme
2πi(m−1)(n−1)/N (2)

Direct use of these formulas would require O(N2) flops to obtain the sequence Ym from the sequence yn, or

vice versa. However, when N is a power of 2, a very efficient algorithm called the fast Fourier transform (FFT)

can calculate the DFT in O(N logN) flops. The FFT can be generalized (with a little loss of efficiency) to all

N which can be factored into products of small primes (e. g. 2, 3, and 5). Because software packages use the

FFT algorithm whenever possible, the word FFT is often (loosely) used in place of DFT. In MATLAB, Y =

fft(y) calculates the DFT of the sequence y, and y = ifft(Y) calculates the inverse DFT of Y. MATLAB

uses the fast FFT algorithm only if N is a power of 2.

2 Relation to Fourier analysis

There are myriad uses of the DFT, ranging from highly accurate numerical differentiation to time series

analysis to digital filtering. From our perspective, the DFT is a tool for reconstructing and manipulating

a periodic function y(x) of some wavelength L, based on its values at the discrete set of N equally spaced

points

xn = (n− 1)L/N. (3)

The utility of the DFT is due to its close relation to the complex Fourier coefficients for y(x),

ŷM =
1

L

∫ L

0

y(x) exp(−ik(M)x)dx, M = 0,±1,±2, . . . (4)

1

where the wavenumber associated with Fourier coefficient M is

k(M) = 2πM/L (5)

Recall that y(x) can be reconstructed from its Fourier coefficients:

y(x) =

∞∑
M=−∞

ŷM exp(ik(M)x) (6)

It is a well known result of Fourier analysis that the Fourier coefficients ŷM tend to zero as |M | → ∞.

In particular, if y(x) is R times differentiable over the entire interval [0, L] then the Fourier coefficients can

be shown by successive integrations by parts to be O(|M |−(R+1)). Thus a periodic step function (which is

not continuous at the steps) has Fourier coefficients which are O(|M |−1), a sawtooth (which is continuous,

but whose derivative is not continuous at the teeth) has Fourier coefficients which are O(|M |−2), and an

infinitely differentiable function has Fourier coefficients which decay faster than any power of |M |. A good

approximation to y(x) can be obtained even when (6) is truncated to a finite range M = (-N/2, N/2), as

long as |ŷM |2 is sufficiently small (in practice, 10−6 of the largest Fourier mode amplitude is usually OK)

for all |M | > N/2. For smooth functions y(x), the required N can be small (10 or less). For a step function,

the required N may be very large.

The solid lines in the left panels of Figure 1 shows a step, sawtooth, and C∞ function periodic over [0, 1].

In the right panel, the exact (analytically derived) squared amplitudes of the Fourier coefficients are denoted

by ‘+’. This is called the Fourier power spectrum of y(x). The analytical form of the Fourier coefficients in

the three cases are:

Step: y(x) = sgn(x− 0.5) ←→ ŷM = 2i/(πM), M odd,

Sawtooth: y(x) = |2x− 1| − 0.5 ←→ ŷM = 2/(πM)2, M odd,

Swell: y(x) = (1− 0.6 cos(2πx))−1 ←→ ŷM = 1.25 · 3−M .

For the ‘swell’ function, the squared amplitudes of all Fourier coefficients for |M | > 6 are less that 10−6 of

the leading Fourier coefficient, so a very accurate representation of the swell can be obtained with only a

few Fourier modes.

2

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

Step function, N = 16

−10 −5 0 5 10
10

−4

10
−3

10
−2

10
−1

10
0

M

S
q
u
a
re

d
 a

m
p
lit

u
d
e

Fourier power spectrum

y(x)
y

i
y

N
(x)

yhat
DFT

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

x

Sawtooth, N = 16

−10 −5 0 5 10
10

−5

10
−4

10
−3

10
−2

10
−1

M

S
q
u
a
re

d
 a

m
p
lit

u
d
e

Fourier power spectrum

y(x)
y

i
y

N
(x)

yhat
DFT

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

x

1/(1 − 0.6 cos x), N = 16

−10 −5 0 5 10
10

−10

10
−5

10
0

10
5

M

S
q
u
a
re

d
 a

m
p
lit

u
d
e

Fourier power spectrum

y(x)
y

i
y

N
(x)

yhat
DFT

Figure 1: Left panels: Function y(x) (solid), grid points yi, and FFT-based interpolating function yN (x).
Right panels: Power spectrum of Fourier components (+) and of DFT (normalized by dividing DFT ampli-
tudes by N).

3

We can approximate the integral for each Fourier coefficient in (4) using a Riemann sum, noting that the

spacing between grid points xn is ∆x = L/N :

ŷM ≈ 1

L

N∑
n=1

y(xn) exp(−ik(M)xn)∆x

=
1

N

N∑
n=1

y(xn) exp(−i[2πM/L)][(n− 1)L/N]) (7)

= Ym/N, (8)

where

m = mod(M,N) + 1, (1 ≤ m ≤ N).

Thus, each Fourier coefficient ŷM can be approximated as 1/N times a corresponding element of the DFT,

Ym. This approximation will be good as long as the integrand only varies slightly in a grid spacing. This

requires that y(x) be a smooth function of x and that the exponential exp(ikMx) also not vary too much

between grid points, i. e. that |kM∆x| (= 2π|M |/N) � 1. If N has been chosen so that all the significant

Fourier modes have |M | � N/2, these Fourier coefficients will all be well approximated with the DFT.

Hence, to interpret the DFT in terms of the Fourier expansion of a continuous function, we associated

with the sequence of terms in the DFT

m = 1, 2, . . . , N (9)

a sequence of M ’s

Mm = 0, 1, 2, . . . , N/2− 1,−N/2, . . . ,−1, (10)

and a corresponding sequence of wavenumbers km = k(Mm) = 2πMm/L. Then

ŷM ≈ Ym/N (11)

y(x) ≈ yN (x) =

N/2−1∑
M=−N/2

(Ym/N) exp(ik(M)x) =

N∑
m=1

(Ym/N) exp(ikmx) (12)

The right panel of Figure 1 compares the amplitudes of the normalized DFT coefficients Ym/N to the

amplitudes of the corresponding exact Fourier coefficients ŷM . For the small M modes, the agreement is

extremely good. For larger M , the agreement is less good, especially when y(x) is not very smooth. The

4

chain-dashed line on the left panel of Figure 1 is the DFT-based approximation yN (x) to the original function

using N = 16 grid points. For the C∞ swell function, it is extremely good. For the step function, ‘ringing’

near the edges of the step is evident. In general, a DFT-based approximation is much more accurate for

smooth y(x); if y(x) is CR[0, L], max |yN (x)− y(x)| = O(N−R).

3 Noteworthy properties of the DFT

If y is the vectors of gridpoint values yi, then the DFT and inverse DFT can be written as matrix operators

Y = DFT (y) = N1/2Fy

y = IDFT (y) = N−1/2F †Y (13)

where Y is the DFT of y, and

Fmn = N−1/2 exp(−2πi(m− 1)(n− 1)) (14)

and F † is the conjugate transpose of F . It is easily verified that F is a unitary matrix (i. e. FF † = F †F = I).

From this representation it is easy to derive Parseval’s theorem

N∑
m=1

|Y 2
m|/N = Y†Y/N

= y†F †Fy

= y†y

=

N∑
n=1

|y2n|. (15)

The DFT obeys the convolution theorem

DFT(w ∗ y) = WmYm (16)

where

(w ∗ y)n =

N∑
p=1

wpyn−p (17)

is the convolution of w and y. A general linear filter with weights wp applied to a sequence yn has the form

y(f)n =

∞∑
p=−∞

wpyn−p = (w ∗ y)n (18)

5

If it is applied to a periodic sequence, the filter can efficiently be studied and implemented using a DFT.

Hence, the convolution theorem makes the DFT a fundamental tool in digital filtering.

The DFT has some easily derived symmetry properties that are sometimes employed to reduce the

required amount of storage or computation. If yn is real, then YN+1−m = YM∗. If in addition y(x) is an

even [odd] function of x (even: y(L− x) = y(x), odd: y(L− x) = −y(x)) then its DFT is real [imaginary].

4 Use of DFT for differentiation, integration and interpolation

We can approximate dy/dx at the gridpoints using the DFT. To do this, the following MATLAB algorithm

can be used (assuming L and N have already been defined);

Y = fft(y)

M = [0:(N/2-1) 0 (1-N/2):(-1)];

k = 2*pi*M/L;

dydx = real(ifft(1i*k.*Y))

For a real input vector y, the IDFT should be real to roundoff error; taking the real part just forces Matlab

to treat it as real. The N/2 + 1 entry of M is ambiguous; it could be regarded as a positive or a negative

wavenumber, so we simply ignore it for calculation of the derivative to keep the calculation symmetric

between positive and negative wavenumbers.

DFT-based differentiation of a periodic function can be written as matrix operator:

dydx = N−1/2F †iKY = N−1/2F †iKN1/2Fy = Dpsy (19)

where Dps = F †(iK)F is called the Fourier pseudospectral differentiation matrix, which is a real, full,

antisymmetric N × N matrix whose properties we will explore further later in this class. Here K is the

matrix diag(k), where k is the vector of wavenumbers defined above. Because F is a unitary matrix, higher-

order derivatives can be computed as Dp
ps = F †(iK)pF .

This algorithm is extremely accurate for smooth functions y(x) well resolved by the grid, but is less

accurate for functions with derivative discontinuities. This can be seen in Figure 2. The derivative of a

sawtooth function is the periodic step function shown at left. The DFT estimates of its derivative oscillate

6

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

x

d
y
/d

x

Sawtooth, N = 16

0 0.2 0.4 0.6 0.8 1
−10

−5

0

5

10

x

d
y
/d

x

1/(1 − 0.6 cos(2πx)), N = 16

Exact
DFT

Exact
DFT

Figure 2: Exact and DFT-computed derivative of [0, 1] periodic sawtooth and swell functions.

around the step function. In contrast, for the C∞ ‘swell’ function at right, the DFT gives an excellent

approximation to dy/dx at the gridpoints despite the small number of gridpoints used.

Since Lŷ0 is the integral I of y(x) over one wavelength [0, L], the first DFT coefficient (which is just the

sum of all the gridpoint values yi) also gives an excellent approximation to this integral:

I ≈ IN = LY1/N

For smooth functions, IN converges to I faster than any power of N , so only a few grid points are required

to get an excellent approximation. For instance, for the swell function with N = 16, IN = 1.2500 while

the exact integral, which can be done using complex variable theory, is I = 1/
√

1− 0.62 = 5/4, exactly the

same.

Finally, the DFT-based approximation yN (x) to the continuous function y(x) can be used for inter-

polation. The matlab function y =interpft(yn,Nintp) evaluates an interpolating function based on the

N -vector of values yn (assumed equally spaced through a wavelength) at Nintp grid points (also equally

spaced through a wavelength). This is done by taking the DFT of yn, filling out the middle of the resulting

vector with zeros to bring it to length Nintp, renormalizing by multiplying by Nintp/N , then taking an

inverse DFT.

7

−4 −2 0 2 4
−1

−0.5

0

0.5

1

x

d
y
/d

x

Gaussian over [−4, 4], N = 16

−10 −5 0 5 10
10

−10

10
−5

10
0

10
5

M
m

|Y
m

|2

DFT Power spectrum

Exact
DFT

Figure 3: Left: Exact derivative of y(x) = exp(−x2/2), and DFT-computed derivative with N = 16 grid
points, truncating domain to [-4, 4]. Right: Power spectrum of the DFT of y(x)

5 Use of DFT for localized functions on unbounded domains

Frequently, the DFT is used for approximating localized functions on the unbounded domain (−∞,∞). The

method is to restrict y(x) to a finite domain [X1, X2] which is chosen large enough so that y(x) is very

small (10−3 or less of its maximum value) outside this domain. Then y(x) is treated as periodic on this

domain. For example, we can use a DFT to numerically differentiate exp(−x2/2) in this manner (Figure

3). If we restrict the domain to [-4, 4] and take N = 16 grid points, dy/dx has only small errors at the grid

points (left) compared to the exact value −x exp(−x2/2) . The maximum error, 0.0013, occurs near x = -4,

suggesting that it is primarily due to the domain truncation. The power spectrum of the DFT (right) falls

off rapidly with |M | up through |M | = 6, then levels off. The leveling is due to the derivative discontinuity

in y(x) when interpreted as a periodic function on the truncated domain. In this example, enlarging the

domain somewhat would make y(x) so small at the boundary that the domain truncation effects could be

made totally negligible. To avoid degrading accuracy by increasing the grid spacing, correspondingly more

grid points (and hence a larger FFT) would be required. In this problem, the computational effort is minute,

but in other problems, an optimal choice of domain truncation may involve a tradeoff (for a given allowable

computational effort) between wanting a large domain and wanting a sufficiently fine grid spacing.

8

