If $\sigma=0$ [a4|dt=0], $a_t=1=e^{\sigma\Delta t}$ as expected for the physical mode, but a = -1 = an undamped computational mode. This reflects "even-old" decoupling in the leapfrog scheme for 0=0:

$$s_0 = \phi^{N-1}$$
 $s_0 = \phi^2 = \phi^4 \cdots$

$$\phi^1 = \phi^3 = \phi^5 \cdots$$

Now consider oscillations o = - (w. Now $a_{phys} = a_{+} = -(\omega \Delta t + (1 - (\omega \Delta t)^{2})^{\frac{1}{2}}$ $\Rightarrow |a_{phys}|^{2} = (\omega \Delta t)^{2} + (1 - (\omega \Delta t)^{2})^{2} = 1$ if 100 At/ < 1 =) aphys = ei Ophys

where Ophys = - 2151 [WAF] Similarly a comp = elocomp. where Ocomp = -TT - Ophys

Q= O 'W=const. Error in initializing ϕ' is never damped => 2 At oscillation = combnfational

20

19.5

20

As wo of Ophys > O and Ocomp - T. (2 At oscillation). Thus, the physical mode is stable for $|\omega \Delta t| \leqslant 1$

... but the computational mode is still undamped @

Method 1: Odd-even average every N (say 100) timesteps.

then...
$$\phi^{N+\frac{1}{2}} = \phi^{N-\frac{1}{2}} + 2\Delta t F(\phi^{N})$$
, $n = 1,...,N$
 $\phi^{N+\frac{1}{2}} = \frac{1}{2}(\phi^{N} + \phi^{N+\frac{1}{2}})$
 $\phi^{N} = \phi^{N+\frac{1}{2}} - \frac{\Delta t}{2}F(\phi^{N+\frac{1}{2}})$
 $\phi^{N+\frac{1}{2}} = \phi^{N+\frac{1}{2}} + \frac{\Delta t}{2}F(\phi^{N+\frac{1}{2}})$

... and repeat. Accuracy + stability depend on N.
This approach is still 2nd order accurate

Method 2: Asselin filter

$$\phi^{n+1} = \overline{\phi}^{n-1} + 2\Delta t F(\phi^n)$$

$$\overline{\phi}^n = \phi^n + 3 \left(\phi^{n+1} R \phi^n + \overline{\phi}^{n-1}\right)$$
(a diffusive smoother, which preferentially filters the highest frequencies).

Stability analysis =)
$$A_{phys} = 1 - (\omega \Delta t - \frac{(\omega \Delta t)^2}{2(1-\gamma)} + O((\omega \Delta t)^4)$$
=) only first-order accurate!
$$A_{comp} = 1 - 23 + O(\Delta t^2)$$

$$A_{comp} = 1 - 23 + O(\Delta t^2)$$

=) computational mode damped. Typically X=0.05 is a good compromise between minimizing transcation error and adequately damping the computational mode. However, the nonlinear pendulum example on previous shows there is still significant damping at tl21 = 18-20, unlike with plain leapfrog which still has undamped amplitude (though the 2st oscillation is clear). A RK4 scheme with the same st would hardly produce any numerical damping (though one with 4st does worse than the Asselin-Leapfrog in this ease).

Lastly: The computational mode grows when or<0 (physical decay) =) Don't use (eapfrog when there is a damped mode!

Synopsis of time-differencing methods

Method	Order	Levels	Stages	Max	Max	Comments
				$\sigma_i \Delta t$	$\sigma_r \Delta t$	
Forward	1	2	1	0	2	Simple, poor stability
Backward	1	2	1	8	∞	Good stability for diffusion
						terms. Implicit.
Trapezoidal	2	2	1	∞	∞	Accurate. Stable (but less
						than backward). Implicit.
Leapfrog	2	3	1	1	0	Good for waves, but must
						filter computational mode
AB3	3	4	1	0.71	0.56	Stable and accurate for
						oscillations
RK4	4	2	4	2.82	2.82	Stable, highly accurate for
						oscillations

Space differencing

We now return to the effect of space-differencing errors on an example PDE, the advection equation.

$$\Gamma \left[\dot{A} \right] = \frac{gf}{gh} + c \frac{gx}{gh} = 0. \tag{*}$$

In general, if we use a pith order accurate time-differencing scheme and an inth order accurate space-differencing scheme, the LTE would be of the form $c_{\downarrow}(DE)^{p} + c_{\chi}(\chi\chi)^{q} + H.O.T$. To focus on space-differencing let us assume $\Delta E \rightarrow O$, i.e. we assume perfect time-differencing with no error (the "semi-discrete" idealization). We assume our FDA

$$\int \left[\phi_{1} \right] = \sum_{l=-l}^{\infty} \langle l \phi_{1+l} \rangle \left[\begin{cases} l & \text{order} \\ \text{occoracy} \end{cases} \right]$$

By Taylor expansion, since $D[\psi] = \frac{\partial \psi}{\partial x} + O(\Delta x^m)$, we must have $\alpha_k^0 S = O(\frac{\Delta}{\Delta x})$ and $D[\psi(x_1,t)] = \sum_{k=-k_1}^{k+2} \alpha_k \left\{ \psi + \lambda \Delta x \frac{\partial \psi}{\partial x} \dots + \frac{(m+1)!}{(m+1)!} \frac{\partial^{m+1}\psi}{\partial x^{m+1}} + \frac{(k+2)!}{(m+2)!} \frac{\partial^2 x^{m+2}\psi}{\partial x^{m+2}} \right\}$ $= \left(\frac{\partial \psi}{\partial x}\right) + \alpha_k \left(\frac{\partial x}{\partial x}\right)^m \left(\frac{\partial x}{\partial x}\right)^m + \sum_{k=-k_1}^{m+2} \left(\frac{\partial x}{\partial x}\right)^{m+2} \frac{\partial^2 x}{\partial x} + \sum_{k=-k_1}^{m+2} \left$

Thus the LTE of the semi-discrete in x-approximation to the advection eqn (x) is $L[\psi] = \frac{3U}{3L} + cD[\psi] = c \left\{ a \frac{3^{m+1}\psi}{3^{m+2}} + b \frac{3^{m+2}\psi}{3^{m+2}} \dots \right\}$ and the modified equation is

ā ith gisbersion relation
$$\frac{9f}{9h} + c \frac{9x}{9h} = c \left\{ a \frac{9x_{m+1}}{3_{m+1}h} + p \frac{9x_{m+5}}{3_{m+5}h} \right\}$$

$$- i\omega + ick = c \left\{ \alpha (ik)^{m+1} + b (ik)^{m+2} \right\}$$

$$\omega = ck + c\alpha i^{m+2} \alpha k^{m+1} + cb i^{m+3} k^{m+2}$$

Note that if m is odd, the leading error term in a is imaginary, i.e. (for a stable method) numerical dissipation, white...

if m is even, the leading error term in w is real (numerical dispersion) with a secondary dissipation term. This is true regardless of method.