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Beginning of lecture was taken from pp. 2-4 of DFT notes, which discuss how the coefficients of the 
DFT are proportional to Riemann-sum approximations to the Fourier coefficients for the complex 
Fourier coefficients indexed –M/2 ≤ N < M/2, and discussed that if y(x) is L-periodic and has a p’th 
derivative that is piecewise continuous with bounded total variation, then the Fourier and DFT coeffs are 
O(KM

!( p+1) ), where KM = 2πM/L.  More detail: Chapter 4 of Trefethen, 2000, Spectral Methods in 
Matlab, SIAM Press. 

Efficiency of Fourier representation y(x) = ŷM
M =!"

"

# exp(2$iMx / L)  on periodic domain 0 < x < L = 1: 

Examples 
 
Step (p = 0): 
y(x) = sgn(x ! 0.5)  

ŷM = 2i
!M

, M odd  

 
 
Saw (p = 1): 
y(x) = 2x !1 ! 0.5  

ŷM = 2
! 2M 2 , M odd  

 
 
 
Swell  (p = ∞): 
y(x) = 1! 0.6cos(2! x)[ ]!1  

ŷM =
5
4
3! |M |  

 
 
 
 
 
To ‘prove’ the Fourier coeffs behave this way, we integrate the formula for ŷM by parts: 
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      … 
At each step, the boundary terms cancel to zero due to the periodic BC.  This can be repeated as often as 
y(x) is differentiable. By carrying it out p times and estimating the integral we obtain 
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y( p) (x)exp('iKM x)dx0
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If y(x) is infinitely differentiable: we can carry this integration by parts out indefinitely.  For any p,  the 
absolute value of the integrand is bounded and independent of KM, so the Fourier coefficients go to zero 
at least as fast as KM

-p.  Thus the Fourier coefficient must go to zero faster than any power of KM  
 
If y(p)(x) is piecewise continuously with bounded total variation (like the square wave with p = 0 or 
the sawtooth with p = 1), we can divide [0, L] into M subintervals (some of which may have zero 
length), each containing an equal fraction of the total variation.  In each segment, we separate y(p)(x) in 
the above integral into its mean value across the segment plus a small residual.  Summed over all the 
segments, and noting KM is proportional to M, each of these terms can be estimated to give a 
contribution O(KM

-1) to the integral so the Fourier coefficient is O(KM
-(p+1)).  

 
Fourier Spectral Method on 1D advection equation 

Consider: 
qt + cqx = 0 on 0 < x < L  
Periodic BCs 
IC: q(x, 0) = q0 (x)  
 

We find an approximate solution Q(x, t) using N Fourier modes: 
 

 Q(x, t) = N !1 q̂n
n=1

N

" (t)exp(iknx) ,   kn =
2!
L
[0,..., N

2
!1,! N

2
,...,!1] for n =1,...,N.

 
 
Using N equally spaced gridpoints xj = (j – 1)L/N we set  
 
 {q̂n (0)} = DFT{q0 (x j )}  
 
Using collocation, we insist on zero residual at the gridpoints: 
 
 0 = Rj (t) = Qt + cQx[ ](x j, t)  
 
Taking the DFT of the residual vector {Rj}, and evaluating the derivative on the RHS using the DFT: 
 

 0 = dq̂n
dt

+ icknq̂n ! dq̂n
dt

= "i!nq̂n, !n = knc for n =1,...,N     

    
We could solve this equation analytically, which would yield a solution whose accuracy is limited only 
by how well the DFT can represent q0(x): 
 
 q̂n (t) = q̂n (0)exp(!iknct)  
  

Q(x, t) = N !1 q̂n
n=1

N

" (t)exp(iknx) = N
!1 q̂n

n=1

N

" (0)exp(ikn x ! ct[ ]) # q0 (x ! ct)  

However, in a real problem this would not be possible (else we’d be solving the original PDE 
analytically), so in the next lecture we discuss good time-differencing methods for FS methods. 


