From Lect. 19, the Fourier coefficients for the spectral soln to advection equation obey:

$$\frac{d\hat{q}_n}{dt} = -i\omega_n \hat{q}_n, \quad \omega_n = k_n c, \quad k_n = \frac{2\pi}{L} [0, ..., \frac{N}{2} - 1, -\frac{N}{2}, ..., -1] \text{ for } n = 1, ..., N.$$

We can solve this set of equations using one of the previously discussed timedifferencing methods. To decide which method might be optimal, suppose we use a q'th order accurate time differencing method. Fourier spectral (FS) methods can evaluate the space derivative operator very accurately. For instance, if the space derivative error decays exponentially with $N = L/\Delta x$, the overall solution error for a smooth initial condition after some finite integration time T will be

$$\varepsilon = ae^{-\alpha N} + b\Delta t^q \tag{E}$$

where a and b are coefficients that depend on T and the initial condition. The computation will take $T/\Delta t$ timesteps, each taking $O(N \log N)$ flops. An efficient approach is to choose $a \exp(\alpha N)$ and $b\Delta t^q$ to be $O(\epsilon)$. Hence it is most efficient to pair a FS method with an accurate time-differencing method such as RK4 for which the desired accuracy can be achieved with a relatively large timestep Δt .

Stability of FS+RK4 on the advection equation

The RK4 stability limit for oscillations is

$$\omega_{\text{max}} \Delta t < 2.82$$

The highest frequency that must be stepped forward is:

$$\omega_{\text{max}} = \max_{n} |\omega_n| = c\pi N/L = c\pi/\Delta x$$

Thus the FS+RK4 method is stable if

$$c\Delta t/\Delta x < 2.82 / \pi \approx 0.9$$

Unlike for the finite difference and finite volume methods we discussed, it may not be most efficient to use a timestep close to the stability threshold. For instance, if c = L = 1, the desired error $\varepsilon \sim 10^{-8}$ and all the coefficients in the error formula are assumed to be O(1), we might choose

$$N \approx \left|\log \varepsilon\right| = \left|\log 10^{-8}\right| \approx 20 \Rightarrow \Delta x = N^{-1} = 0.05$$

 $\Delta t \approx \varepsilon^{1/4} = 10^{-2} \implies c\Delta t/\Delta x = 0.2$ (much smaller than stability threshold).

Plotting a Fourier spectral solution between gridpoints

Even with a coarse grid spacing, a DFT can give a remarkably accurate representation of a smooth function. It can be useful to plot that representation between grid points:

$$q(x) = N^{-1} \sum_{n=1}^{N} \hat{q}_n e^{iK_n x}$$

While we could just define a set of gridpoints and do this sum at each gridpoint, there is a convenient shortcut that uses the DFT. Let us define a uniform fine grid with N_f gridpoints, where N_f is a multiple of N.

$$x_i^f = (i-1)\Delta x_f, \quad \Delta x_f = L/N_f, \quad i = 1,...,N_f$$

Then we can calculate the vector qf of values $q_i = q(x_i^f)$ on the fine grid as the IDFT of the vector of wavenumbers \hat{q}_n padded with zeros for all of the newly added wavenumbers. This is implemented with the Matlab call qf = interpft(q, Nf) where q is the N-vector of coarse-grid values and qf the N_f -vector of fine grid values.

Matlab script for spectral method for advection eqn.

% Numerically calculate soln. to advection eqn. dq/dt + dq/dx = 0 on % domain 0 < x < 1 with periodic BCs using spectral method with RK4

```
N = 8; % Number of modes
nu = 0.25; % Courant number
L = 1; % Domain size
x = L*(0:(N-1))/N; % x-gridpoints [1xN]
dx = L/N;
M = [0:(N/2-1)(-N/2):(-1)];
k = 2*pi*M/L; % Wavenumbers [1xN].
q0 = 1./(4+3*\cos(2*pi*x/L)); % Initial condition
tf = 1; % Final time
dt = nu*dx; % Timestep
nt = round(tf/dt); % Number of timesteps to take
ghat = fft(q0); % Initial Fourier expansion coeffs [1xN].
for it = 1:nt
 % March forward dqhat/dt = -Shat using RK4
 % where Shat is DFT of S(q) = dq/dx
 d1 = -dt*1i*k.*qhat;
 d2 = -dt*1i*k.*(qhat + 0.5*d1);
 d3 = -dt*1i*k.*(qhat + 0.5*d2);
 d4 = -dt*1i*k.*(qhat + d3);
 ghat = ghat + (d1 + 2*d2 + 2*d3 + d4)/6; % New ghat
end
q = ifft(qhat); % Numerical q at tf [1xN]
Nf = 256; % Number of plotting points
xf = (0:(Nf-1))*L/Nf;
gf = interpft(g,Nf); % Numerical solution on plotting grid
q0f = 1./(4+3*\cos(2*pi*xf/L)); % Initial condition
plot([xf L],[q0f q0f(1)],'b-',[x L],[q q(1)],'r+',[xf L],[qf qf(1)],'r-')
```


Spectral method for scalar advection eqn. - square wave initial condition

$$q(x,0) = \text{sign}(0.25 - |x - 0.4|), 0 < x < 1$$

- There are 'Gibbs oscillations' near the discontinuities when q(x,0) is truncated to N complex Fourier modes, with maximal overshoots of around 20%. The oscillations are compressed to a smaller region for larger N, but are not diminished in amplitude.
- The high wavenumbers now decrease much more slowly in amplitude than for smooth initial conditions.
- For this problem, if we time-differenced perfectly, the numerical solution at the grid-points would be exact at all times despite the oscillations in between. However, the RK4 time-differencing scheme creates errors in the phase speeds of each wavenumber which increase with $|\omega_n \Delta t|^4$ (where here frequency $\omega_n = K_n$). For large Δt , the phase-speed errors can be significant for the highest wavenumbers. The result is that the Gibbs oscillations start spreading to the gridpoint values as well.
- Since the numerical phase speed of high wavenumbers is too slow, the square wave doesn't propagate quite as fast as it should.

Error convergence (compared to FV methods)

L19]. We did the time differencing on the Fourier coeffs quit.

However, a precisely equivalent approach (called the pseudospectral method) would be: to work in terms of gridpoint values Q;

and set.

 $\frac{\partial Q_j}{\partial t} = -S_j(\vec{Q}) \qquad S(q) = \bar{u}q_x$

where S; is evaluated using spectral approximations to derivatives:

This is a system of coupled ODEs in the Q; which we can solve using RK4, AB3, leapfrog, etc. For this particular problem, this involves extra work (1 DFT/1 IDFT per timestep) but can be very attractive if S(q) has nonlinearities or x-dependent coeffs.

Pseudospectral (PS) method for KdV egn.

 $\frac{\partial f}{\partial \partial J} = -\partial J$

where to and Sj: (1) fight = DFT {Qj}

(3)
$$S^{1} = P S^{1}(d^{2})^{1} + (d^{2} \times x)^{1}$$

We use our favorite home-differencing scheme to solve. Note that for the highest wavenumbers, the $\frac{d^3}{dx^3}$ term brings in a factor $({}_1K_n)^3$, so we can imagine that if we worked in Fourier space,

$$\frac{d\hat{q}_n}{dt} = stoff + (ik_n)^3 \hat{q}_n$$

$$= stoff + i\omega_n \hat{q}_n , \quad \omega_n = -k_n^3$$

Thus for RK4 the stability limit is

$$2.82 > \max_{n} |\omega_{n} \Delta t| = \max_{n} |K_{n}^{3} \Delta t| = \max_{n} |(\frac{\pi N}{L})^{3} \Delta t|$$
i.e. $\Delta t < \Delta t_{c} = \frac{2.82}{\pi^{3}} (\frac{L}{N})^{3} \approx 0.09 (\Delta x)^{3}$

This is a severe restriction if we have lots of modes, but there is not a good work around (BDF, for backward differencing formula) methods are an option, but even then, if we use a much larger At than this we will lose accuracy. Example shown has $\Delta t = 0.05 \Delta x^3$.

This Kallegn has "soliton" nonlinear traveling wave solns

 $q(x,t) = \alpha \operatorname{sech}^2 b(x-ct)$, $b = {\binom{\alpha}{2}}^{\frac{1}{2}}$, $c = -2\alpha$ good for testing the PS method in action. In addition, solitons interact with phase shifts as they collide; this can also be simulated.

Pseudospectral method for KdV soliton Matlab script ps_KdV_RK4.m

```
N = 32; % Number of Fourier modes
 L = 16; % Domain size
 C = .05; % Nondimensional timestep parameter (gives dt = 0.05 for L/N=1)
 dt = C*(L/N)^3; % Timestep limit from qxxx term
 x = L^{*}(0:(N-1))/N; \% x-gridpoints [1xN]
 a = 2; % soliton amplitude
 b = sqrt(a/2); % inverse of soliton width
 xm = 0.25*L; % initial soliton center point
 q = a*sech(b*(x-xm)).^2;
 for it = 1:nt
  d1 = -dt*S KdV(q,L);
  d2 = -dt*S KdV(q + 0.5*d1,L);
  d3 = -dt*S KdV(q + 0.5*d2,L);
  d4 = -dt*S KdV(q + d3,L);
  q = q + (d1 + 2*d2 + 2*d3 + d4)/6; % q marched forward dt
 end
function S = S KdV(q,L)
N = length(q);
 qhat = fft(q);
 M = [0:(N/2-1)(-N/2):(-1)];
 k = 2*pi*M/L; % Wavenumbers [1xN].
 qx = real(ifft(1i*k.*qhat));
 qxxx = real(ifft(-1i*k.^3.*qhat));
 S = 6*q.*qx + qxxx;
                             KdV soliton at t = 1using PS/RK4
       2
                                                                Gridpoints
                                                                PS
      1.5
                                                                Exact
                                                                Initial
      0.5
       0
```

• Note slight dispersive ripples for 11 < x < 15 due to under-resolution of IC

6

-0.5 ^{_}0

• Solution stable for C = 0.10 but not C = 0.11 (compare to theoretical limit $C_{max} = 0.09$)

8

10

12

14

16

• Max Courant number $6q_{max}\Delta t/\Delta x = 12(.00625)/(0.5) = 0.15 < v_{max} = 2.82/\pi = 0.9$ so the dispersive term, not the nonlinear term, is what limits timestep. For a larger-amplitude soliton we could run into CFL problems with this timestep (as well as resolution problems with this number of modes.)

Pseudospectral two-soliton solution Matlab script ps_KdV_2soliton.m

- N = 32 develops nonlinear instabilities due to underresolution of interacting solitons.
- This instability persists for a much smaller Δt , so not due to CFL or linear dispersion
- Neither individual soliton is numerically unstable with N = 32 at this Δt .