
  20-1 

 
 

From Lect. 19, the Fourier coefficients for the spectral soln to advection equation obey:  
dq̂n
dt

= !i!nq̂n, !n = knc, kn =
2"
L
[0,..., N

2
!1,! N

2
,...,!1] for n =1,...,N.  

We can solve this set of equations using one of the previously discussed time-
differencing methods. To decide which method might be optimal, suppose we use a q’th 
order accurate time differencing method.  Fourier spectral (FS) methods can evaluate the 
space derivative operator very accurately.   For instance, if the space derivative error 
decays exponentially with N = L/Δx, the overall solution error for a smooth initial 
condition after some finite integration time T will be 

! = ae!"N + b"tq        (E) 
where a and b are coefficients that depend on T and the initial condition.  The 
computation will take T/Δt timesteps, each taking O(N log N) flops.  An efficient 
approach is to choose a exp(αN) and bΔtq to be O(ε).  Hence it is most efficient to pair a 
FS method with an accurate time-differencing method such as RK4 for which the 
desired accuracy can be achieved with a relatively large timestep Δt.    
  
Stability of FS+RK4 on the advection equation 
 
The RK4 stability limit for oscillations is 

!max!t < 2.82  
The highest frequency that must be stepped forward is: 

!max =maxn !n = c"N L =c" !x  

Thus the FS+RK4 method is stable if 
  c!t !x < 2.82 /! " 0.9  
Unlike for the finite difference and finite volume methods we discussed, it may not be 
most efficient to use a timestep close to the stability threshold.  For instance, if c = L = 1, 
the desired error ε  ~ 10-8 and all the coefficients in the error formula are assumed to be 
O(1), we might choose  

          N ! log! = log10"8 ! 20#$x = N "1 = 0.05  

          !t " !1/4 =10#2 $ c!t !x = 0.2  (much smaller than stability threshold). 
 

Plotting a Fourier spectral solution between gridpoints 
 

Even with a coarse grid spacing, a DFT can give a remarkably accurate representation of 
a smooth function.  It can be useful to plot that representation between grid points: 

q(x) = N !1 q̂n
n=1

N

" eiKnx  

While we could just define a set of gridpoints and do this sum at each gridpoint, there is a 
convenient shortcut that uses the DFT.  Let us define a uniform fine grid with Nf 
gridpoints, where Nf is a multiple of N. 

 xi
f = (i !1)"x f , "x f = L N f , i =1,...,N f   

Then we can calculate the vector qf of values qi = q(xi
f )  on the fine grid as the IDFT of 

the vector of wavenumbers q̂n padded with zeros for all of the newly added 
wavenumbers.  This is implemented with the Matlab call    qf = interpft(q,Nf)  
where q is the N-vector of coarse-grid values and qf the Nf-vector of fine grid values. 
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Matlab script for spectral method for advection eqn. 
 
% Numerically calculate soln. to advection eqn. dq/dt + dq/dx = 0 on 
% domain 0<x<1 with periodic BCs using spectral method with RK4 
 
  N = 8; % Number of modes 
  nu = 0.25;  % Courant number  
  L = 1;  % Domain size 
  x = L*(0:(N-1))/N;  %  x-gridpoints [1xN] 
  dx = L/N; 
  M = [0:(N/2-1) (-N/2):(-1)];   
  k = 2*pi*M/L;  % Wavenumbers [1xN].   
 
  q0 = 1./(4+3*cos(2*pi*x/L));  % Initial condition 
  tf = 1; % Final time 
  dt = nu*dx; % Timestep 
  nt = round(tf/dt); % Number of timesteps to take 
 
  qhat = fft(q0);  % Initial Fourier expansion coeffs [1xN]. 
  for it = 1:nt 
    % March forward  dqhat/dt = -Shat using RK4 
    % where Shat is DFT of S(q) = dq/dx 
    d1 = -dt*1i*k.*qhat;  
    d2 = -dt*1i*k.*(qhat + 0.5*d1); 
    d3 = -dt*1i*k.*(qhat + 0.5*d2); 
    d4 = -dt*1i*k.*(qhat + d3); 
    qhat = qhat + (d1 + 2*d2 + 2*d3 + d4)/6; % New qhat 
  end 
  q = ifft(qhat); % Numerical q at tf [1xN] 
 
  Nf = 256;   % Number of plotting points 
  xf = (0:(Nf-1))*L/Nf; 
  qf = interpft(q,Nf);  % Numerical solution on plotting grid 
  q0f = 1./(4+3*cos(2*pi*xf/L));  % Initial condition 
  plot([xf L],[q0f q0f(1)],'b-',[x L],[q q(1)],'r+',[xf L],[qf qf(1)],'r-')  
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Spectral method for scalar advection eqn. - square wave 

initial condition 
q(x,0) = sign(0.25 - |x - 0.4|), 0 < x < 1 

 

 
• There are ‘Gibbs oscillations’ near the discontinuities when q(x,0) is truncated to N 
complex Fourier modes, with maximal overshoots of around 20%.  The oscillations are 
compressed to a smaller region for larger N, but are not diminished in amplitude. 
• The high wavenumbers now decrease much more slowly in amplitude than for smooth 
initial conditions. 
• For this problem, if we time-differenced perfectly, the numerical solution at the grid-
points would be exact at all times despite the oscillations in between. However, the RK4 
time-differencing scheme creates errors in the phase speeds of each wavenumber which 
increase with |ωnΔt|4 (where here frequency ωn = Kn). For large Δt, the phase-speed errors 
can be significant for the highest wavenumbers. The result is that the Gibbs oscillations 
start spreading to the gridpoint values as well. 
• Since the numerical phase speed of high wavenumbers is too slow, the square wave 
doesn’t propagate quite as fast as it should.  
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Error convergence (compared to FV methods) 

Smooth IC                            Square-wave IC 
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Pseudospectral method for KdV soliton 
Matlab script ps_KdV_RK4.m 

   
  N = 32; % Number of Fourier modes 
  L = 16;  % Domain size 
  C = .05; % Nondimensional timestep parameter(gives dt = 0.05 for L/N=1) 
  dt = C*(L/N)^3; % Timestep limit from qxxx term 
  x = L*(0:(N-1))/N;  %  x-gridpoints [1xN] 
  a =  2; % soliton amplitude 
  b =  sqrt(a/2); % inverse of soliton width 
  xm = 0.25*L; % initial soliton center point 
  q = a*sech(b*(x-xm)).^2; 
  for it = 1:nt 
    d1 = -dt*S_KdV(q,L);  
    d2 = -dt*S_KdV(q + 0.5*d1,L); 
    d3 = -dt*S_KdV(q + 0.5*d2,L); 
    d4 = -dt*S_KdV(q + d3,L); 
    q = q + (d1 + 2*d2 + 2*d3 + d4)/6; % q marched forward dt 
  end 
 
function S = S_KdV(q,L) 
  N = length(q); 
  qhat = fft(q); 
  M = [0:(N/2-1) (-N/2):(-1)];   
  k = 2*pi*M/L;  % Wavenumbers [1xN].   
  qx = real(ifft(1i*k.*qhat)); 
  qxxx = real(ifft(-1i*k.^3.*qhat)); 
  S = 6*q.*qx + qxxx; 

 
• Note slight dispersive ripples for 11 <  x < 15 due to under-resolution of IC 
• Solution stable for C = 0.10 but not C = 0.11 (compare to theoretical limit Cmax = 0.09) 
•  Max Courant number 6qmaxΔt/Δx = 12(.00625)/(0.5) = 0.15 < νmax=2.82/π = 0.9 so the 

dispersive term, not the nonlinear term, is what limits timestep. For a larger-amplitude 
soliton we could run into CFL problems with this timestep (as well as resolution 
problems with this number of modes.)  
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Pseudospectral two-soliton solution 
Matlab script ps_KdV_2soliton.m  

 
• N = 32 develops nonlinear instabilities due to underresolution of interacting solitons.   
• This instability persists for a much smaller Δt, so not due to CFL or linear dispersion 
•  Neither individual soliton is numerically unstable with N = 32 at this Δt. 
 
 
 
 
 
 
 
 


