From Lect. 19, the Fourier coefficients for the spectral soln to advection equation obey:

44, _ -iw,q,, ©,=kc, k = 2—ﬂ[O,...,E—l,—ﬂ,...,—l] forn=1,..,N.
dt L 2 2
We can solve this set of equations using one of the previously discussed time-
differencing methods. To decide which method might be optimal, suppose we use a ¢’th
order accurate time differencing method. Fourier spectral (FS) methods can evaluate the
space derivative operator very accurately. For instance, if the space derivative error
decays exponentially with N = L/Ax, the overall solution error for a smooth initial
condition after some finite integration time 7 will be

e=ae™ ™ +bAt’ (E)

where a and b are coefficients that depend on 7 and the initial condition. The
computation will take 7/At timesteps, each taking O(N log N) flops. An efficient
approach is to choose a exp(aN) and bA#? to be O(e). Hence it is most efficient to pair a
FS method with an accurate time-differencing method such as RK4 for which the
desired accuracy can be achieved with a relatively large timestep At.

Stability of FS+RK4 on the advection equation

The RK4 stability limit for oscillations is
0, At <282

The highest frequency that must be stepped forward is:
., =max|m,|=crN/L=cn/Ax

m;

Thus the FS+RK4 method is stable if

cAt/Ax<2.82/m=09
Unlike for the finite difference and finite volume methods we discussed, it may not be
most efficient to use a timestep close to the stability threshold. For instance, ifc=L =1,
the desired error € ~ 10”® and all the coefficients in the error formula are assumed to be
O(1), we might choose

N =[logé|=[logl0™*|=20 = Ax=N"' =005
At=e" =107 = cAt/Ax =0.2 (much smaller than stability threshold).

Plotting a Fourier spectral solution between gridpoints

Even with a coarse grid spacing, a DFT can give a remarkably accurate representation of
a smooth function. It can be useful to plot that representation between grid points:

N
q(x)=N"'3 g™
n=1

While we could just define a set of gridpoints and do this sum at each gridpoint, there is a
convenient shortcut that uses the DFT. Let us define a uniform fine grid with Ny
gridpoints, where Nyis a multiple of V.

x/ =({-DAx,, Ax,=L/N,, i=1..N,
Then we can calculate the vector qf of values g, = g(x/) on the fine grid as the IDFT of
the vector of wavenumbers ¢, padded with zeros for all of the newly added

wavenumbers. This is implemented with the Matlab call gf = interpft(q,Nf)
where q is the N-vector of coarse-grid values and qf the N~vector of fine grid values.
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Matlab script for spectral method for advection eqn.

% Numerically calculate soln. to advection eqn. dg/dt + dg/dx = 0 on
% domain 0<x<1 with periodic BCs using spectral method with RK4

N = 8; % Number of modes

nu = 0.25; % Courant number

L =1; % Domain size

x = L*(0:(N-1))/N; % x-gridpoints [1xN]
dx =L/N;

M =[0:(N/2-1) (-N/2):(-1)];

k =2*pi*M/L; % Wavenumbers [ 1xN].

q0 = 1./(4+3*cos(2*pi*x/L)); % Initial condition
tf = 1; % Final time

dt = nu*dx; % Timestep

nt = round(tf/dt); % Number of timesteps to take

ghat = fft(q0); % Initial Fourier expansion coeffs [1xN].
for it = 1:nt

% March forward dghat/dt = -Shat using RK4

% where Shat is DFT of S(q) = dq/dx

d1 = -dt*1i*k.*qhat;

d2 = -dt*1i*k.*(ghat + 0.5*d1);

d3 = -dt*1i*k.*(ghat + 0.5*d2);

d4 = -dt*1i*k.*(ghat + d3);

ghat = ghat + (d1 + 2*d2 + 2*d3 + d4)/6; % New ghat
end
q = ifft(ghat); % Numerical q at tf [1xN]

Nf=256; % Number of plotting points

xf'=(0:(Nf-1))*L/Nf;

qf = interpft(q,Nf); % Numerical solution on plotting grid

q0f = 1./(4+3*cos(2*pi*xf/L)); % Initial condition

plot([xf L1,[q0f qOf(1)1,'b-\[x L1,[q q(1)], "+, [xf L1,[af qf(1)],'r-)

Spectral method, RK4, di/dx = 0.25,t =1
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Spectral method for scalar advection eqn. - square wave
initial condition
q(x,0) =s1gn(0.25-x-04]),0<x<1

Power spectrum of a, with k™2 fit curve

Spectral ringing of a square wave IC, N =32 .
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* There are ‘Gibbs oscillations’ near the discontinuities when ¢(x,0) is truncated to N
complex Fourier modes, with maximal overshoots of around 20%. The oscillations are
compressed to a smaller region for larger N, but are not diminished in amplitude.

* The high wavenumbers now decrease much more slowly in amplitude than for smooth
initial conditions.

* For this problem, if we time-differenced perfectly, the numerical solution at the grid-
points would be exact at all times despite the oscillations in between. However, the RK4
time-differencing scheme creates errors in the phase speeds of each wavenumber which
increase with |0,At|* (where here frequency o, = K,). For large At, the phase-speed errors
can be significant for the highest wavenumbers. The result is that the Gibbs oscillations
start spreading to the gridpoint values as well.

» Since the numerical phase speed of high wavenumbers is too slow, the square wave
doesn’t propagate quite as fast as it should.
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Error convergence (compared to FV methods)

Smooth IC Square-wave IC
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Pseudospectral method for KdV soliton
Matlab script ps. KdV_RK4.m

N = 32; % Number of Fourier modes
L =16; % Domain size
C =.05; % Nondimensional timestep parameter(gives dt = 0.05 for L/N=1)
dt = C*(L/N)"3; % Timestep limit from gxxx term
x = L*(0:(N-1))/N; % x-gridpoints [1xN]
a= 2; % soliton amplitude
b = sqrt(a/2); % inverse of soliton width
xm = 0.25*L; % initial soliton center point
q = a*sech(b*(x-xm))."2;
forit= l:nt
dl =-dt*S_KdV(q,L);
d2 =-dt*S KdV(q+ 0.5*d1,L);
d3 =-dt*S KdV(q+ 0.5*%d2,L);
d4 = -dt*S_KdV(q +d3,L);
q=q+(dl +2*d2 + 2*d3 + d4)/6; % q marched forward dt
end

function S=S KdV(q,L)
N = length(q);
ghat = fft(q);
M =[0:(N/2-1) (-N/2):(-1)];
k =2*pi*M/L; % Wavenumbers [1xN].
gx = real(ifft(11*k.*qghat));
qxxx = real(ifft(-11*k.”3.*ghat));
S = 6*q.*qx + qxxx;

KdV soliton at t = 1using PS/RK4
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* Note slight dispersive ripples for 11 < x <15 due to under-resolution of IC

* Solution stable for C =0.10 but not C = 0.11 (compare to theoretical limit C,,,, = 0.09)

» Max Courant number 6¢,,,xAt/Ax = 12(.00625)/(0.5) = 0.15 < v,,=2.82/t = 0.9 so the
dispersive term, not the nonlinear term, is what limits timestep. For a larger-amplitude
soliton we could run into CFL problems with this timestep (as well as resolution
problems with this number of modes.)
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Pseudospectral two-soliton solution
Matlab script ps KdV_2soliton.m

Interacting KdV solitons, PS, N=64 Interacting KdV solitons, PS, N=32
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» N =32 develops nonlinear instabilities due to underresolution of interacting solitons.
+ This instability persists for a much smaller A¢, so not due to CFL or linear dispersion
* Neither individual soliton is numerically unstable with N = 32 at this At¢.
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