
 20-1

From Lect. 19, the Fourier coefficients for the spectral soln to advection equation obey:
dq̂n
dt

= !i!nq̂n, !n = knc, kn =
2"
L
[0,..., N

2
!1,! N

2
,...,!1] for n =1,...,N.

We can solve this set of equations using one of the previously discussed time-
differencing methods. To decide which method might be optimal, suppose we use a q’th
order accurate time differencing method. Fourier spectral (FS) methods can evaluate the
space derivative operator very accurately. For instance, if the space derivative error
decays exponentially with N = L/Δx, the overall solution error for a smooth initial
condition after some finite integration time T will be

! = ae!"N + b"tq (E)
where a and b are coefficients that depend on T and the initial condition. The
computation will take T/Δt timesteps, each taking O(N log N) flops. An efficient
approach is to choose a exp(αN) and bΔtq to be O(ε). Hence it is most efficient to pair a
FS method with an accurate time-differencing method such as RK4 for which the
desired accuracy can be achieved with a relatively large timestep Δt.

Stability of FS+RK4 on the advection equation

The RK4 stability limit for oscillations is

!max!t < 2.82
The highest frequency that must be stepped forward is:

!max =maxn !n = c"N L =c" !x

Thus the FS+RK4 method is stable if
 c!t !x < 2.82 /! " 0.9
Unlike for the finite difference and finite volume methods we discussed, it may not be
most efficient to use a timestep close to the stability threshold. For instance, if c = L = 1,
the desired error ε ~ 10-8 and all the coefficients in the error formula are assumed to be
O(1), we might choose

 N ! log! = log10"8 ! 20#$x = N "1 = 0.05

 !t " !1/4 =10#2 $ c!t !x = 0.2 (much smaller than stability threshold).

Plotting a Fourier spectral solution between gridpoints

Even with a coarse grid spacing, a DFT can give a remarkably accurate representation of
a smooth function. It can be useful to plot that representation between grid points:

q(x) = N !1 q̂n
n=1

N

" eiKnx

While we could just define a set of gridpoints and do this sum at each gridpoint, there is a
convenient shortcut that uses the DFT. Let us define a uniform fine grid with Nf
gridpoints, where Nf is a multiple of N.

 xi
f = (i !1)"x f , "x f = L N f , i =1,...,N f

Then we can calculate the vector qf of values qi = q(xi
f) on the fine grid as the IDFT of

the vector of wavenumbers q̂n padded with zeros for all of the newly added
wavenumbers. This is implemented with the Matlab call qf = interpft(q,Nf)
where q is the N-vector of coarse-grid values and qf the Nf-vector of fine grid values.

 20-2

Matlab script for spectral method for advection eqn.

% Numerically calculate soln. to advection eqn. dq/dt + dq/dx = 0 on
% domain 0<x<1 with periodic BCs using spectral method with RK4

 N = 8; % Number of modes
 nu = 0.25; % Courant number
 L = 1; % Domain size
 x = L*(0:(N-1))/N; % x-gridpoints [1xN]
 dx = L/N;
 M = [0:(N/2-1) (-N/2):(-1)];
 k = 2*pi*M/L; % Wavenumbers [1xN].

 q0 = 1./(4+3*cos(2*pi*x/L)); % Initial condition
 tf = 1; % Final time
 dt = nu*dx; % Timestep
 nt = round(tf/dt); % Number of timesteps to take

 qhat = fft(q0); % Initial Fourier expansion coeffs [1xN].
 for it = 1:nt
 % March forward dqhat/dt = -Shat using RK4
 % where Shat is DFT of S(q) = dq/dx
 d1 = -dt*1i*k.*qhat;
 d2 = -dt*1i*k.*(qhat + 0.5*d1);
 d3 = -dt*1i*k.*(qhat + 0.5*d2);
 d4 = -dt*1i*k.*(qhat + d3);
 qhat = qhat + (d1 + 2*d2 + 2*d3 + d4)/6; % New qhat
 end
 q = ifft(qhat); % Numerical q at tf [1xN]

 Nf = 256; % Number of plotting points
 xf = (0:(Nf-1))*L/Nf;
 qf = interpft(q,Nf); % Numerical solution on plotting grid
 q0f = 1./(4+3*cos(2*pi*xf/L)); % Initial condition
 plot([xf L],[q0f q0f(1)],'b-',[x L],[q q(1)],'r+',[xf L],[qf qf(1)],'r-')

 20-3

Spectral method for scalar advection eqn. - square wave

initial condition
q(x,0) = sign(0.25 - |x - 0.4|), 0 < x < 1

• There are ‘Gibbs oscillations’ near the discontinuities when q(x,0) is truncated to N
complex Fourier modes, with maximal overshoots of around 20%. The oscillations are
compressed to a smaller region for larger N, but are not diminished in amplitude.
• The high wavenumbers now decrease much more slowly in amplitude than for smooth
initial conditions.
• For this problem, if we time-differenced perfectly, the numerical solution at the grid-
points would be exact at all times despite the oscillations in between. However, the RK4
time-differencing scheme creates errors in the phase speeds of each wavenumber which
increase with |ωnΔt|4 (where here frequency ωn = Kn). For large Δt, the phase-speed errors
can be significant for the highest wavenumbers. The result is that the Gibbs oscillations
start spreading to the gridpoint values as well.
• Since the numerical phase speed of high wavenumbers is too slow, the square wave
doesn’t propagate quite as fast as it should.

 20-4

Error convergence (compared to FV methods)

Smooth IC Square-wave IC

 20-5

 20-6

Pseudospectral method for KdV soliton
Matlab script ps_KdV_RK4.m

 N = 32; % Number of Fourier modes
 L = 16; % Domain size
 C = .05; % Nondimensional timestep parameter(gives dt = 0.05 for L/N=1)
 dt = C*(L/N)^3; % Timestep limit from qxxx term
 x = L*(0:(N-1))/N; % x-gridpoints [1xN]
 a = 2; % soliton amplitude
 b = sqrt(a/2); % inverse of soliton width
 xm = 0.25*L; % initial soliton center point
 q = a*sech(b*(x-xm)).^2;
 for it = 1:nt
 d1 = -dt*S_KdV(q,L);
 d2 = -dt*S_KdV(q + 0.5*d1,L);
 d3 = -dt*S_KdV(q + 0.5*d2,L);
 d4 = -dt*S_KdV(q + d3,L);
 q = q + (d1 + 2*d2 + 2*d3 + d4)/6; % q marched forward dt
 end

function S = S_KdV(q,L)
 N = length(q);
 qhat = fft(q);
 M = [0:(N/2-1) (-N/2):(-1)];
 k = 2*pi*M/L; % Wavenumbers [1xN].
 qx = real(ifft(1i*k.*qhat));
 qxxx = real(ifft(-1i*k.^3.*qhat));
 S = 6*q.*qx + qxxx;

• Note slight dispersive ripples for 11 < x < 15 due to under-resolution of IC
• Solution stable for C = 0.10 but not C = 0.11 (compare to theoretical limit Cmax = 0.09)
• Max Courant number 6qmaxΔt/Δx = 12(.00625)/(0.5) = 0.15 < νmax=2.82/π = 0.9 so the

dispersive term, not the nonlinear term, is what limits timestep. For a larger-amplitude
soliton we could run into CFL problems with this timestep (as well as resolution
problems with this number of modes.)

 20-7

Pseudospectral two-soliton solution
Matlab script ps_KdV_2soliton.m

• N = 32 develops nonlinear instabilities due to underresolution of interacting solitons.
• This instability persists for a much smaller Δt, so not due to CFL or linear dispersion
• Neither individual soliton is numerically unstable with N = 32 at this Δt.

