

Stability regions (blue shades bounded by black contour) for Euler and trapezoidal methods

As an example of using implicit time differencing in a PDE for numerical stability, consider some methods for the diffusion equation  $\psi_t = a\psi_{xx}$  using centered space differencing. In particular, we consider 3 methods of the form:

$$\frac{\phi_j^{n+1} - \phi_j^n}{\Delta t} = a \left[ c \delta_x^2 \phi_j^n + (1 - c) \delta_x^2 \phi_j^{n+1} \right], \quad c = \begin{cases} 1, & \text{Forward Euler} \\ 0, & \text{Backward Euler} \\ 1/2, & \text{Trapezoidal} \end{cases}$$

in which the space derivative is respectively evaluated at time n (forward Euler), n + 1 (backward Euler) and using a trapezoidal time average.

Since each method is linear and constant-coefficient, its spatial eigenfunctions have the form  $\phi_j \propto \exp(ikx_j)$ . Substituting this into the centered space derivative, we find that

$$\delta_{x}^{2}\phi_{j} = \frac{\phi_{j+1} - 2\phi_{j} + \phi_{j-1}}{\Delta x^{2}} = \frac{e^{ik\Delta x} - 2 + e^{-ik\Delta x}}{\Delta x^{2}}\phi_{j} = -\frac{2(1 - \cos k\Delta x)}{\Delta x^{2}}\phi_{j}$$

Hence, for this wavenumber, if we define

$$\sigma(k) = -\frac{2a(1 - \cos k\Delta x)}{\Delta x^2}$$

then

$$\frac{\phi_j^{n+1} - \phi_j^n}{\Delta t} = \sigma(k) \left[ c\phi_j^n + (1-c)\phi_j^{n+1} \right]$$

which is in the standard form of an amplification equation. Hence, if we use forward-Euler time differencing (the FTCS method), the stability limit on wavenumber k is

$$\sigma(k)\Delta t = -\frac{2a\Delta t(1-\cos k\Delta x)}{\Delta x^2} > -2$$

For this to apply for all wavenumbers k, for which  $0 < 1 - \cos k\Delta x < 2$ ,

$$\sigma_{\text{max}} \Delta t = -\frac{4a\Delta t}{\Delta x^2} > -2 \implies v = \frac{a\Delta t}{\Delta x^2} < \frac{1}{2}$$
 for stability of FTCS

Similar reasoning implies the BECS and trapezoidally time-differenced methods are stable for all wavenumbers at all timesteps.

The BECS method requires solving the tridiagonal system

$$(1 - a\Delta t \delta_x^2) \phi_i^{n+1} = -\nu \phi_{i-1}^{n+1} + \phi_i^{n+1} - \nu \phi_{i+1}^{n+1} = \phi_i^n,$$

In 1 space dimension, the tridiagonal system takes O(N) operations (flops) for a grid of N points, hence is of comparable computational expense per timestep as FTCS. Because the method is 1<sup>st</sup> order accurate in time (due to the forward time difference) vs. 2<sup>nd</sup> order in space (due to the centered space difference) the truncation error  $T = \alpha \Delta t + \beta \Delta x^2$ . The most efficient tradeoff between space and time differencing (we'll show later) is when the space and time truncation errors are comparable, i. e. if  $v = a\Delta t / \Delta x^2 = O(1)$ . Thus even though BECS has no stability limit on  $\Delta t$ , its accuracy does become compromised for  $v \gg 1$ .

Using trapezoidal time differencing (the 'Crank-Nicolson' method), we again can efficiently solve a tridiagonal system. Now the the truncation error  $T = \gamma \Delta t^2 + \beta \Delta x^2$  so efficiency mandates a much larger timestep  $\Delta t = O(\Delta x)$ , and numerical stability doesn't prevent us from doing this. Hence the C-N method is quite attractive and commonly used for diffusion problems.