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Stability regions (blue shades bounded by black contour) for Euler and trapezoidal methods



As an example of using implicit time differencing in a PDE for numerical stability, consider some methods for
the diffusion equation y, = ay _ using centered space differencing. In particular, we consider 3 methods of the

form:

wl am 1, Forward Euler
7 A 7 = 0[055(1)7 +(1- C)5f¢;l+l ], c=< 0, Backward Euler
1

1/2, Trapezoidal

in which the space derivative is respectively evaluated at time » (forward Euler), n + 1 (backward Euler) and
using a trapezoidal time average.

Since each method is linear and constant-coefficient, its spatial eigenfunctions have the form ¢; < exp(ikx;) .
Substituting this into the centered space derivative, we find that
50 = G —20,+9,, _ "M =247 b =— 2(1—coskAx)¢
x7j Ax2 sz J sz J
Hence, for this wavenumber, if we define
3 2a(1 —coskAx)

o(k)= A

then

¢;+l - ¢jn n n+l
= o(k) e +(1-c)p™ ]

which is in the standard form of an amplification equation. Hence, if we use forward-Euler time differencing
(the FTCS method), the stability limit on wavenumber £ is
2aAt(1—coskAx) o

o(k)At =— v 2
For this to apply for all wavenumbers £, for which 0 <1 — cos kAx <2,
O A =— 4aA2t >—-2 = v= a_A; < 1 for stability of FTCS
Ax® 2

Similar reasoning implies the BECS and trapezoidally time-differenced methods are stable for all wavenumbers
at all timesteps.

The BECS method requires solving the tridiagonal system
(1-adt? )9 =—vey'! +9]" — vl = ;.

In 1 space dimension, the tridiagonal system takes O(V) operations (flops) for a grid of N points, hence is of
comparable computational expense per timestep as FTCS. Because the method is 1% order accurate in time (due
to the forward time difference) vs. 2™ order in space (due to the centered space difference) the truncation error
T =oAt+ Bsz. The most efficient tradeoff between space and time differencing (we’ll show later) is when
the space and time truncation errors are comparable, i. e. if v = aAt /Ax* = O(1). Thus even though BECS has
no stability limit on A¢, its accuracy does become compromised for v>>1.

Using trapezoidal time differencing (the ‘Crank-Nicolson” method), we again can efficiently solve a tridiagonal
system. Now the the truncation error 7' = YAt >+ BAx” so efficiency mandates a much larger timestep At =

O(Ax), and numerical stability doesn’t prevent us from doing this. Hence the C-N method is quite attractive and
commonly used for diffusion problems.



