Winter Quarter 2014

Atmospheric Sciences 532: Atmospheric Radiation I

Instructor: Stephen Warren, Room 524 ATG, tel. 543-7230 sgw@uw.edu

office hours to be arranged

COURSE OUTLINE

1. Introduction.

Composition and thermal structure of Earth's atmosphere

Vertical distribution of greenhouse gases

Solar and terrestrial radiation spectra

Distribution of solar radiation with season and latitude

2. Fundamentals of radiation

Radiation nomenclature and units: radiance, irradiance, intensity, flux, absorption coefficients, emissivity, optical depth, Beer's law

Radiative transfer equation

Blackbody radiation laws: Planck, Kirchhoff, Stefan-Boltzmann, Wien, Rayleigh-Jeans

Local thermodynamic equilibrium (LTE); non-LTE. Einstein relations, statistical equilibrium equation

Solution of longwave radiative transfer equation (Schwarzschild's equation)

Radiative equilibrium temperature distribution

Describe models for project

3. Absorption and emission of radiation by gases

Kinetic theory of gases

Molecular energy levels; electronic, vibrational, rotational transitions.

Spacing of lines.

Spectra of carbon dioxide, ozone, and water vapor. Water-vapor continuum.

Line shapes: natural, Doppler, pressure (collision) broadening.

Absorption by non-overlapping Lorentz lines: equivalent width

4. Absorption by bands of spectral lines.

Frequency-averaging of transmission. Band models; k-distributions

Pressure-averaging of transmission.

Angular-averaging of transmission. Exponential integrals, diffusivity factor

5. Applications

Radiation and climate

Remote sensing

ASSIGNMENTS

Homework: approximately 8 problem sets. 65% Term project, 35%

The term project is to use an existing longwave radiative-transfer model to compute infrared radiation fluxes and cooling rates in the atmosphere. The model will be used to examine the effects of changing temperature and humidity profiles, and the vertical distribution of greenhouse gases (CO_2 , O_3 , CH_4 , . . .) and the effect of clouds at various heights.

TEXTBOOKS (on reserve in Chemistry library)

Thomas, G.E., and K. Stamnes, 1999: Radiative Transfer in the Atmosphere and Ocean. Cambridge Univ. Press.

Petty, G.W., 2006: A First Course in Atmospheric Radiation. Sundog Publishing.

Liou, K.N., 2002: An Introduction to Atmospheric Radiation, second edition. Academic Press.

Bohren, C.F., and E.E. Clothiaux, 2006: Fundamentals of Atmospheric Radiation. Wiley.

Houghton, J.T., 2002: The Physics of Atmospheres, third edition. Cambridge Univ. Press.

REFERENCE BOOKS (also on reserve in Chemistry library)

Barrow, G.M., 1962: Introduction to Molecular Spectroscopy. McGraw-Hill.

Goody, R.M., and Y. Yung, 1989: Atmospheric Radiation, second edition. Oxford Univ. Press.

Menzel, D.H. (Ed.), 1966: Selected Papers on the Transfer of Radiation. Dover.

Paltridge, G.W., and C.M.R. Platt, 1976: Radiation Processes in Meteorology and Climatology. Elsevier.

Sears, F.W., and G.L. Salinger, 1975: Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. Addison-Wesley