Four ways of inferring the MMC

|. direct measurement of [v]

2. vorticity balance [v]=- G ; N
3.total energy balance [@]=- P ;Q

4. eliminating time derivatives in governing equations
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Four ways of inferring the MMC

|. direct measurement of [v] small residual
2. vorticity balance [V]=- G ; P time dependence
. P+0O ..
3.total energy balance [@]=- time dependence
O

4. eliminating time derivatives in governing equations
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Four ways of inferring @ in QG system

|. direct measurement of V-V  small residual

%+\7-Vg

2. vorticity balance v.y--< - time dependence
+g
o =

—+V.-VT
_ ot

3. total energy balance o-= time dependence

4. eliminating time derivatives in governing equations

the omega equation



Lagrangian versus Eulerian MMC
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Lagrangian MMC also referred to as the Brewer-Dobson circulation

Brewer for water vapor Dobson for ozone
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Stokes drift in water waves

wave propagation
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Because of the vertical gradient of wave
amplitude there is a rectified Lagrangian
drift of passive tracers in the direction of

the wave propagation.
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TEM equations

residual MMC

Eliassen-Palm flux

total eddy-forcing of [u]
incl. eddy-induced MMC



TEM (prognostic)equations
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= f[v]*+V-E + F, |

canceling heat flux contributions appear in f[V]* and V - E terms

=olo]*+|[Q]

heat flux contribution implicit in ol®] term

fIvI* indirect influence of diabatic heating

—

V.- E total eddy forcing



residual circulation
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The terms involving the
eddy heat fluxes are
analogous to a correction
for the Stokes drift.



residual circulation

Note that [v]* doesn’t vanish at the
Earth’s surface. Hence, the residual
MMC bears little relation to the real
Lagrangian MMC in the lower
troposphere.



But far above the bottom boundary the residual circulation
does resemble the Lagrangian-mean meridional circulation.

Under steady state conditions

— =
olo]*=[0]
Hence, the residual circulation
< - 4 » - is sometimes referred to as the
C(ﬁ“ng HAimbAtic heatin gW diabatically-driven circulation



The Eliassen-Palm flux
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Eliassen-Palm flux

the signature
of baroclinic waves
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Annual mean EP fluxes |RA

- '
\‘-‘
AAAAAAAAAaqar ™ vvbkiteceerm t

AA&AAA44q444'VVVVVL((‘-‘-"~‘ "

v(<,,,,,Q?TII

ARAAAAAAAG3 77T > ”vf(((?“.?trr"ﬂa

v ,<&,.01‘1ff04‘.‘

AAAAAAAAAAggg S




[u] flux



F= ( [II*V* ]j,—f [v*a*] I_(.)
O

V.E= [uv] f [)*(x*]
| dp ©
V.E:[q*v*]
V.E=G+G*
V-Ezd[u]

d t eddy forcing



Eliassen-Palm flux: another interpretation

E a measure of the flux of wave activity
in the meridional plane

related to the group velocity E =c,A

A = "'1lq]|n ] is a measure of wave activity

77 is the meridional displacement of potential vorticity contours

D is the generation or dissipation of wave activity



JA
Jt

+V-E=D

D=0 E traces the flow of wave activity
from where the eddies have been
to where they are going

0A .

— =0 E traces the flow of wave activity
ot from the region of generation to
the region of dissipation



Edmon, Hoskins and Mcintyre, JAS 1980
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([u] —+ A) =) [u] has decreased  [u] has increased

A has increased A has decreased
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Nakamura and Solomon, Fig. 8
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+V-E=D
Jt
If E)—A:O and D =0
ot

it follows that V- E =0




They call that the non-interaction theorem.
It takes 4 pages of equations to prove it.
But like | said, so what!

Most of the time the EP
fluxes turn equatorward
in or just below it and

T V-E=0
T There is no interaction

between the waves and
the mean flow.




V-E<0 (.(_(—:&
< ) \ R

Easterly tendency induced by the eddies ™~ \ \ \
balanced by the eastward Coriolis force

induced by the diabatic circulation. Both T

are distributed over a wide area and are T

therefore weak. T T

That’s when we get awesome

conversions, but nothing happens
because V.E =0 near the jet.




— The convergence is concentrated within a
V-E<O .
small area and is therefore much stronger
, than the diabatically-induced westerly

acceleration.

But sometimes the fluxes converge into
the jet, producing a sudden warming.



The jet gets zapped!!
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and critical levels?



A critical level is where the doppler-shifted phase speed of a
wave is zero;i.e., where U = C.

We can speak of a critical level, a critical latitude, or a critical line in
the meridional plane along which u = c.

The steering level is a critical level.

For stationary waves the critical line corresponds to the zero isotach.

For baroclinic waves it corresponds roughly to the 10 m/s isotach.
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As waves approach a critical line in the meridional plane, the
period of the air trajectories in the waves approaches infinity
and the motion ceases to be wavelike.
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Waves approach a critical lines in the meridional plane
exponentially and as they do so they become more subject
to dissipation (Newtonian cooling, eddy diffusion).

Recall that

:V*(D*]Z—(Ll—C)[M*V*]

:a)*(l)*]:(u—c)[v*T*]

Hence, the work term approaches zero as the waves approach
the critical line

Waves cannot disperse across a critical line

Under certain conditions waves may be reflected from a critical line



Now we are in a better position to explain why there

are surface westerlies in the extratropics and easterly
“trade winds” in the tropics
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Atmosphere with flow driven by meridional gradient of diabatic heating (left).
The meridional temperature gradient and vertical wind shear strengthen until

baroclinic instability develops in extratropical latitudes. Wave activity disperses

equatorward out of the storm track and zonal momentum is transported
poleward (right).



Climatological-(annual) mean eddy flux of westerly momentum
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NCEP reanalysis data

Dima, Kraucunas and Wallace JAS 2005
Shaded bands indicate extratropical storm tracks.

Note flux of momentum out of the tropics and into the extratropical storm tracks.



sin (Latitude)

I’'m glad you asked.They are the signature of the equatorial
planetary waves.
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vorticity field

after B. J. Hoskins, QIRMS 1983

Wavetrain generated in a barotropic model by flow over a small circular
mountain at 30°N 2, 4, and 6 days after the mountain is “turned on”. Note and

the apparent meridional group velocity, the tilt of the wave axes, and the
implied flux of westerly momentum

Group velocity follows great circle routes around the Earth, through the

antipodal point. Note how the steady state solution depends on the
amount of dissipation.



Cylindrical projection

T 4. vorticity

antipodal point

geopotential height
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E is mainly countergradient, so eddies gain energy from zonal flow.



Role of the heat fluxes on the lower boundary

Pfeffer, |AS, 1992

Eulerian MMC

Case study January 9-14, 1979
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Review Problem
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Hypothetical Eliassen-Palm flux distributions in the meridional plane.
Diagnose the induced MMC and the resulting changes in zonal wind
and temperature.



momentum fluxes

A/

heat fluxes

MMC cells induced by momentum fluxes

© MMC cells induced by heat fluxes



Eddy-induced tendencies
force large departures from
geostrophic balance, resulting
in strong MMC but little net
change in zonal wind or
temperature.

Eddy-induced tendencies
force geostrophic balanced,
tendencies, resulting in a
strong easterly acceleration
where the fluxes converge and
weak MMC.



