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CHAPTER 1

Interpretation of zonal- and time-averaged second
moment terms

1. Basic De�nitions

We will be concerned with terms of the form [xy] ; where x any y represent
any scalar meteorological parameters (e.g., u, v, T, �;etc.). The overbar and the
brackets de�ne the time and zonal averaging operators; i.e.,

(1.1) x =
1

T

Z T

0

xdt

(1.2) [x] =
1

2�

I
xd�

where t is time and � is longitude. Departures from a time average

(1.3) x0 = x� x

will be referred to as transients and departures from a zonal average

(1.4) x� = x� [x]

will be referred to as eddies. Note that by de�nition

(1.5) x0 = 0

and

(1.6) [x�] = 0:

Double averaging operators are redundant, i.e.,

(1.7) x = x

and

(1.8) [[x]] = [x]

The time and zonal averaging operators are commutative, i.e.,

(1.9) [x] = [x] :

In order to visualize these identities, one can imagine x as representing a two-
dimensional "observation matrix" xij where the index i refers to the longitude of a
particular observation and j to its order in the time sequence. The terms in (1.9)
represent averages over all the elements in the matrix. The order of the averaging
(i.e., whether by rows �rst or by columns �rst) is irrelevant.
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iv 1. INTERPRETATION OF ZONAL- AND TIME-AVERAGED SECOND MOMENT TERMS

2. Decomposition of product terms

Time averages of products can be expanded in the form

xy = (x+ x0)(y + y0)

= xy + x0y0 + x0y + xy0

Since x0y = 0 and xy0 = 0 and the double averaging operator on the �rst term is
redundant, it follows that

(1.10) xy = x y + x0y0

where the �rst yerm on the right hand side can be identi�ed with the time mean
and the second term with the transients. In a similar manner it can be shown that

(1.11) [xy] = [x] [y] + [x�y�]

The zonal mean of (1.10)

[xy] = [x y] +
�
x0y0

�
can be expanded by writing x = [x] + x�and y = [y] + y� in the �rst term on the
right hand side. After simplifying the resulting equation, we obtain

(1.12) [xy] = [x] [y] + [x�y�] +
�
x0y0

�
In this formulation, �rst derived by Priestly (1949) the �rst term is identi�ed
with the zonally averaged, time mean circulation and resolves features such as
the climatological-mean Hadley cell. The second term is identi�ed with eddies that
are steady in time and resolves features such as the monsoons. These features have
come to be referred to as "stationary waves" although the term "steady eddies"
would be more consistent with the nomenclature used here.The �nal term gives the
total contribution of the transients.

In an analogous manner, (1.11) can be time averaged and the �rst term on
the right hand side can be expanded in terms of time means and transients and
simpli�ed to obtain

(1.13) [xy] = [x] [y] + [x]
0
[y]

0
+ [x�y�]

In this formulation, �rst derived by Starr and White (1951) the �rst term on the
right hand side is identical to the corresponding term in (1.12). The second term
is the contribution from the transient zonally symmetric circulations and the third
term is the contribution from the eddies. Note that (1.13) can be derived directly
from(1.12) simply by replacing all zonal averages and departures from zonal aver-
ages by time averages and departures from time averages, or alternatively, (1.12)
could be derived from (1.13) by the reverse procedure.

The relationship between(1.12) and (1.13) can be clari�ed by expanding [xy]
as follows. Following Lorenz (1953) we begin by writing

x = [x] + x� + [x]
0
+ x0�

and
y = [y] + y� + [y]

0
+ y0�

where the �rst term on the right hand side refers to the time mean, zonal mean
contribution, the second term to the zonally varying, time mean contribution, the
third term to the time-varying, zonal-mean contribution and the fourth term to the
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transient eddy contribution. After taking the product and averaging over longitude
and time, we obtain, after simpli�cation

(1.14) [xy] = [x] [y] + [x]
0
[y]

0
+ [x�y�] +

�
x0�y0�

�
Note that the �rst three terms on the right hand side of (1.14) are identical to
the terms in (1.12) and/or (1.13).The remaining term is the contribution of the
transient eddies. By combining these three equations in various ways it is evident
that

(1.14)
�
x0y0

�
= [x]

0
[y]

0
+
�
x0�y0�

�
and

(1.15) [x�y�] = [x�y�] +
�
x0�y0�

�
A convenient way of summarizing these relationships is to summarize them in the
matrix

Zonally symmetric Eddy �

Steady [x] [y] [x�y�] [x] [y]

Transient [x]
0
[y]

0 �
x0�y0�

� �
x0y0

�
� [x] [y] [x�y�] [xy]

3. Statistical interpretation

With the exception of the [x] [y] term all the terms in all the above expansions
involve covariances. For example,

�
x0y0

�
is the temporal covariance between x and

y and [x�y�] is the longitudinal covariance between x and y.
The covariance between x and y can be expressed as the product of the corre-

lation coe¢ cient between x and y and the product of the standard deviations of x
and y. For example, the temporal covariance is given by

(1.17) x0y0 = r(x; y)
p
x02
q
y02

amd the longitudinal covariance between x and y is given by

(1.18) [x�y�] = r(x�; y�)
p
x�2
q
y�2

The standard deviations are the same as the r.m.s. amplitudes which can often
be estimated on the basis of inspection of time series or maps. The correlation
coe¢ cient r ranges from �1 to+1: High values of r imply a strong linear dependence
of one upon the other. The square of the correlation coe¢ cient r2 is the fraction
of the variance of one variable that can be explained based on a knowledge of the
other variable. The correlation coe¢ cient r is also the slope of the least squares
best �t regression line on a scatter plot of standardized values of the two variables.

4. Calculation of general circulation statistics

In studies of the general circulation x often corresponds to a scalar variable such
as zonal momentum per unit mass u or relative vorticity � and y to the meridional
wind component v or vertical velocity !: Hence the product of the two corresponds
to the poleward or vertical �ux of a scalar. For the special case x = y, the product
corresponds to the variance of x. In studies that were carried out prior to the 1970s,
the calculations were generally based on station data. In many cases some form of
manual or objective analysis was performed to interpolate the station data onto a
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�eld of regularly spaced gridpoints. For example, the studies of Oort and Ramusson
(1971) and Newell et al. (1972) relied on objective analysis of �elds such as u, v, T ,
u0v0, v0T 0, etc., where all the time-averaged quantities had been computed on the
basis of data from the global network of radiosonde stations. Fields analyzed in this
manner tend to be bland and featureless in data-sparse regions because there is no
way of introducing information into the gaps between stations. Starting in the late
1970s, gridded �elds generated by the data assimilation systems used to initialze
operational numerical weather prediction schemes began to be used extensively in
general circulation studies. For a discussion of these datasets, see the Appendix for
Chapter 8 on the companion web site for the second edition of Wallace and Hobbs.
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CHAPTER 2

The Zonal Momentum Balance

The equation that governs the local time rate of change of zonal wind can be
written in the form

(2.1)
@u

@t
= �u@u

@x
��v @u

@y
��!@u

@p
+
uv tan�

RE
� @�
@x

+ fv + Fx

A complete derivation of this equation is given in Holton (1972) p. 21-281. The
advective terms can be rewritten in the form

�u@u
@x
��v @u

@y
��!@u

@p
= � @

@x
u2� 1

cos�

@

@y
uv cos�� @

@p
u!+u

�
@u

@x
+

1

cos�

@

@y
v cos�+

@!

@p

�
where the term in parentheses vanishes because of the continuity of mass. Substi-
tuting back into (2.1) and making use of the identity

1

cos2 �

@

@y
uv cos2 � =

1

cos�

@

@y
uv cos�� uv tan�

RE

we obtain

(2.2)
@u

@t
= � @

@x
u2 � 1

cos2 �

@

@y
uv cos2 �� @

@p
u! � @�

@x
+ fv + Fx

When we zonally average, the terms �@=@x(u2) and �@�=@x drop out because of
the identity

(2.3)
�
@�

@x

�
=

1

RE cos�

I
@�

@x
dx = 0

Next we expand the [uv] and [u!] terms, making use of (1.11), to obtain
(2.4)
@ [u]

@t
= � 1

cos2 �

@

@y
[u] [v] cos2 �� @

@p
[u] [!]� 1

cos2 �

@

@y
[u�v�] cos2 �� @

@p
[u�!�]+[Fx]

Then we expand the mean meridional motion terms in the form

� 1

cos2 �

@

@y
[u] [v] cos2 � = � [u]

cos�

@

@y
[v] cos�� [v]

cos�

@

@y
[u] cos�

and

� @

@p
[u] [!] = � [u] @

@p
[!]� [!] @

@p
[u]

1Here the equation is written in pressure coordinates and u! tan�=RE and the pressure
coordinate form of 2
w cos� have been neglected because they are are at least two orders of
magnitude smaller than the corresponding terms involving v.

vii



viii 2. THE ZONAL MOMENTUM BALANCE

Substituting back into (2.4) and making use of the zonally averaged continuity
equation in spherical coordinates

(2.5)
1

cos�

@

@y
[v] cos�+

@

@p
[!] = 0

we obtain, after some minor rearranging,
(2.6)
@u

@t
=

�
f � 1

cos�

@

@y
[v] cos�

�
[v]�[!] @ [u]

@p
� 1

cos2 �

@

@y
[u�v�] cos2 �� @

@p
[u�!�]+Fx

As an alternative method of deriving (2.2), we can start with the equation
governing the angular momentum of a �xed, zonally symmetric annulus, bounded
by latitudinal "walls" at y and y+ �y and pressure levels p and p+ �p, as shown in
Fig. 2.1.2 The only processes capable of changing the integrated angular momentum
within the annulus are advection across the boundaries of the annulus and frictional
torques acting within the annulus. Such torques will be assumed to be small unless
the annulus is contiguous with the earth�s surface. The net increase in angular
momentum per unit mass M due to advection across the latitudinal walls is given
by Z Z

y

Mvdxdp�
Z Z

y+�y

Mvdxdp

where the zonal integration is carried out around a complete latitude circle and the
vertical integration is carried out from level p down to p+ �p. Expanding Mv in a
Taylor series expansion in y, and keeping only the linear term, the above expression
can be rewritten as �

�
Z Z

@Mv

@y
dxdp

�
�y

which is an accurate representation, provided that y is su¢ ciently small. Further-
more, if p is su¢ ciently small, this expression can be vertically integrated to obtain�

�
Z Z

@Mv

@y
dx

�
�y�p

or, using (1.2)

�2�RE�y�p
@

@y
[Mv] cos�

In a similar manner, the net increase due to vertical advection across the pressure
surfaces is given by

�2�RE cos��y�p
@

@p
[M!]

The angular momentum balance for the annulus is given by
(2.7)
@

@t

Z Z Z
Mdxdydp = �2�RE�y�p

�
@

@y
[Mv] cos�+ cos�

@

@p
[M!]

�
+

Z Z Z
FxRE cos�

2By using pressure as a vertical coordinate we are implicitly neglecting the divergence asso-
ciated with @=@r in the spherical coordinate system that we are using. It is this e¤ect that leads
to the small term u! tan�=RE in the zonal momentum equation that is neglected in (2.1), as
indicated in the previous footnote.
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Integrating over y and p, using (1.2), and dividing through by 2�RE cos��y�p yields

(2.8)
@ [M ]

@t
= � 1

cos�

@

@y
[Mv] cos�� @

@p
[M!] + [Fx]RE cos�

Repeating the same set of operations that were used in transforming (2.4) into
(2.6), we obtain
(2.9)
@M

@t
= �[v]@[M ]

@y
� [!]@[M ]

@p
� 1

cos�

@

@y
[M�v�] cos�� @

@p
[M�!�] + [Fx]RE cos�

If we substitute
@ [M ]

@t
= RE cos�

@[u]

@t
@[M ]

@y
= RE cos�

�
f � 1

cos�

@

@y
[u] cos�

�
and

@[M ]

@p
= RE cos�

@[u]

@p

into (2.9) and divide through by RE cos� we obtain an expression identical to (2.6).





CHAPTER 3

The total energy balance

1. The zonally averaged thermodynamic energy equation

We begin by writing the First Law of Thermodynamics, as applied to a unit

mass of air, in the form

(3.1) dq = cpdT � �dp
and considering the incremental change over an in�nitesimal time interval dt, which
yields

(3.2)
dT

dt
=
�

cp
! +

Q

cp

The �rst term on the right-hand side of (3.2) represents the rate of change of
temperature due to adiabatic expansion or compression. A typical value of this
term in �C per day is given by �T�p=pm, where �p = !�t is a typical pressure
change over the course of a day following an air parcel and pm is the mean pressure
level along the trajectory. In a typical middle-latitude disturbance, air parcels in
the middle troposphere (pm �500 hPa) undergo vertical displacements on the order
of 100 hPa day�1. Assuming T 250 K, the resulting adiabatic temperature change
is on the order of 15 �C per day.

The second term on the right-hand side of (3.2) represents the e¤ects of dia-
batic heat sources and sinks: absorption of solar radiation, absorption andemission
of longwave radiation, latent heat release, and, in the upper atmosphere, heat ab-
sorbed or liberated in chemical and photochemical reactions. In addition, it is cus-
tomary to include, as a part of the diabatic heating, the heat added to or removed
from the parcel through the exchange of mass between the parcel and its environ-
ment due to unresolved scales of motion such as convective plumes. Throughout
most of the troposphere there tends to be a considerable amount of cancellation
between the various radiative terms so that the net radiative heating rates are less
than 1 �C per day. Latent heat release tends to be concentrated in small regions
in which it may be locally comparable in magnitude to the adiabatic temperature
changes discussed earlier. The convective heating within the mixed layer can also
be locally quite intense, e.g., where cold air blows over much warmer ocean wa-
ter. However, throughout most of the troposphere, the sum of the diabatic heating
terms in (3.2) is much smaller than the adiabatic temperature change term.

Expanding the total derivative and substituting � = RT=p from the equation
of state we obtain

(3.3)
@T

@t
= �u@T

@x
� v @T

@y
� !

�
@T

@p
� �T

p

�
+
Q

cp

xi
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where � = R=cp: The �rst two terms on the right-hand side of (3.3) represent
the horizontal advection, and the third term is the combined e¤ect of adiabatic
compression and vertical advection. When the observed lapse rate is equal to the
dry adiabatic lapse rate, the term in parentheses in (3.3) vanishes. In a stably
strati�ed atmosphere, �@T=@p must be less than in the adiabatic lapse rate, and
thus the term in parentheses must be positive. It follows that sinking motion (or
subsidence) always favors local warming and vice versa: the more stable the lapse
rate, the larger the local rate of temperature increase that results from a given rate
of subsidence.

Making use of the three-dimensional continuity equation, as was done in trans-
forming (2.1) into (2.2), the advective terms in (3.3) can be expressed in �ux form

(3.4)
@T

@t
= � @

@x
uT � 1

cos�

@

@y
vT cos�� @

@p
!T +

�T

p
! +

Q

cp

When we take the zonal average, the �rst term on the right hand side drops out.
Expanding the remaining terms into contributions from mean meridional motions
and eddies yields
(3.5)
@ [T ]

@t
= � 1

cos�

@

@y
[v] [T ] cos�� 1

cos�

@

@y
[v�T �] cos�� @

@p
[!] [T ]� @

@p
[!�T �]+

� [T ]

p
[!]+

�

p
[!�T �]+

[Q]

cp

Using the zonally-averaged, two dimensional continuity equation, as was done in
obtaining (2.6), we can convert the terms involving mean meridional circulations
back to advective form
(3.6)
@ [T ]

@t
= � [v] @ [T ]

@y
�[!]

�
@ [T ]

@p
� � [T ]

p

�
� 1

cos�

@

@y
[v�T �] cos�� @

@p
[!�T �]+

�

p
[!�T �]+

[Q]

cp

On the basis of scale analysis, it can be shown that to �rst order

(3.7)
@ [T ]

@t
' s [!] + P + [Q]

cp

where

(3.8) s �
�
@ [T ]

@p
� � [T ]

p

�
and

(3.9) P � � 1

cos�

@

@y
[v�T �] cos�

2. Transport of moist static energy

The total energy per unit mass of an air parcel is given by I + P +K; where
I = cvT is the internal energy, P = � is the potential energy, and K = 1

2 (u
2 + v2)

is the kinetic energy. In estimating the transports of energy within the atmosphere,
the transport of kinetic energy can be neglected provided that the velocities is much
smaller than the speed of sound (
RT )1=2 ;where 
 = cp=cv = 1:4:

Consider �ow across a plane surface that might have any orientation. The
mass-weight �ux of internal energy is given by

�cvTcndS
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where cn is the velocity component normal to the surface and dS is an alamant of
area on the surface. The work done by the part of the atmosphere upstream of the
surface on the part of the atmosphere downstream of the surface is

pcndS

or (substituting from the equation of state)

�RTcndS

Making use of the identity cv +R = cp; the internal energy �ux and work term can
be combined into the single term

�cpTcndS

Hence, in tracking the meridional or vertical �ux of energy in the general circulation,
sensible heat or enthalpy cpT is used in place of internal energy.

It is convenient to include the latent heat as part of the total energy that air
parcels carry with them as they move through the atmosphere. The latent heat
term is given by Lq; where L is the latent heat of vaporization (2.5 �106 J kg�1 K�1
at 0 C) and q is the speci�c humidity (i.e., the mass of water vapor per unit mass
of air, including the water vapor, expressed as a dimensionless ratio). In practice
it is sometimes convenient to represent the speci�c humidity in units of g/kg, in
which case it should be multiplied by L = 2500 J g�1 K�1.





CHAPTER 4

The hydrologic cycle

1. The atmospheric branch

For a vertical column of the atmosphere we can write

(4.1)
@W

@t
+r �Q = E � P

where W is the mass of water vapor in the column,

(4.2) Q =
1

g

Z p0

0

qVdp

is the vertically-integrated water vapor �ux vector, q is (dimensionless) speci�c
humidity, E is evaporation and P is precipitation, which are assumed to be the
only sources and sinks of water vapor. We ignore the storage of water in the form
of cloud droplets, rain drops, and ice particles.because cloud liquid (and solid)
water content is generally much less than the density of water in the vapor form
except in deep convective clouds, which cover only a snall fraction of the area of
the Earth. The time (e.g., climatological- or seasonal-) mean vertically-integrated
water vapor �ux can be decomposed into contributions from the time mean �elds
and the transient variability within the averaging period; i.e.,

(4.3) Q = QM +QT

where

QM =
1

g

Z p0

0

qVdp

and

QT =
1

g

Z p0

0

q0V0dp

Averaged over periods of a few days or longer, the time rate of change of W is
negligible compared to the other terms in (4.1) so that this equation reduces to the
balance requirement

(4.4) r �Q = E � P
where overbars denote time averages. In the zonal average

(4.5)
1

cos�

@

@y

�
Q
�
cos� =

�
E
�
�
�
P
�

where the zonally-averaged, meridional water vapor transport [Q] can be decom-
posed into contributions from mean meridional circulations and eddies, and time
mean and transuent contributions, as explained in Appendix 1.

The distribution of P has much more horizontal structure than that of E and
in areas of heavy rainfall such as the monsoons and the ITCZ, P >> E. It follows
that in these regions, most of the water that falls as rain is imported by way of

xv
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the moisture �ux convergence term. Water vapor is exported out of regions where
E > P , such as the subtropical dry zones, and into regions of heavy rainfall such
as the ITCZ, the monsoons and the midlatitude storm tracks.

Most of the vertically-integrated water vapor transport occurs within the bound-
ary layer. Hence,

Q � bq bV �p
g

where bq and bV represent vertical averages through the boundary layer and �p is a
typical boundary layer depth.This expression may be simpli�ed further by usin the
identity

r � qV = qr �V +V � rq
and noting that the �rst term tends to be dominant except sometimes near fronts
because r �V=V >> rq=q: Hence,

r �Q � r �V
�
q0�p

g

�
where q0 is a reference value of q, for example, a typical value in the tropical
boundary layer. The qualiiative similarity between the spatial patterns in the �elds
of r � Q and r � V explains why heavy rain belts such as the ITCZ correspond
closely with bands of low level convergence.

2. The land surface branch

The analog of (3.1) for the land surface is

(4.7) P � E = @

@t
Storage+R

where R is the runo¤ in rivers and subsurface aquifers. Rather than being evaluated
locally, the balance in (3.6) is usually averaged over a regious such as a river valley,
bounded either by divide, across which R = 0, or by a coastline. Storage reservoirs
include lakes and ground water. The time rate of storage exhibits large seasonal
variations in response to seasonal variations in precipitation and the tendency for
increased evaporation during the warm season. Combining (4.1) and (4.7), taking
a time average long enough to ensure that the @W=@t term in (4.1) is negligible
yields

(4.8)
@

@t
Storage+R = �r �Q

which shows how the atmospheric water vapor budget drive the land hydrology.
For the special case of a land-locked drainage basin, such as the Great Basin in
the interior of the western United States, R is identically equal to zero and (4.8)
reduces to

(4.9)
@

@t
Storage = �r �Q = P � E

In a land-locked basin, low frequency variations in precipitation can give rise to
large variations in storage, which may be manifested in rising or falling lake levels.
As the storage increases, the evaporation increases in response to the increasing
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areal coverage of lakes. If it is assumed that E is directly proportional to storage,
the, (4.9) can be written

(4.10)
@

@t
Storage = P � k(Storage)

in which case, the storage is perturbed by variations in precipitation, analogous to
Brownian motion, but the linear damping term serves as a negative feedback that
tends to draw the system back toward equilibrium


