Atmospheric Science 582—Winter 2014

Homework 2

- 1. Show that the phase speeds and stability properties of numerical solutions to the forward-backward approximation (4.17)–(4.18) to the linearized shallow-water equations with no mean flow are unchanged if the order in which u and h are updated is reversed by first stepping h forward and then updating u with a backward time difference.
- 2. The linearized one-dimensional Rossby adjustment problem for an atmosphere with no mean wind is governed by the equations

$$\frac{\partial u}{\partial t} - fv + g \frac{\partial h}{\partial x} = 0, \qquad \frac{\partial v}{\partial t} + fu = 0, \qquad \frac{\partial h}{\partial t} + H \frac{\partial u}{\partial x} = 0.$$

Compare the approximate solution to these equations obtained using leapfrog differencing on an unstaggered mesh

$$\delta_{2t}u - fv + g\delta_{2x}h = 0,$$

$$\delta_{2t}v + fu = 0,$$

$$\delta_{2t}h + H\delta_{2x}u = 0$$

with those obtained using forward–backward time-differencing on the staggered mesh shown in Fig. 4.1:

$$\delta_t u_j^{n+\frac{1}{2}} - f v_j^n + g \delta_x h_j^n = 0,$$

$$\delta_t v_j^{n+\frac{1}{2}} + f u_j^{n+1} = 0,$$

$$\delta_t h_{j+\frac{1}{2}}^{n+\frac{1}{2}} + H \delta_x u_{j+\frac{1}{2}}^{n+1} = 0.$$

Define v, at the same points as u. Let the spatial domain be periodic on the interval $0 \le x \le 5000$ km, but show your solutions only in the subdomain $1200 \le x \le 3800$ km. Let $f = 10^{-4} \, \mathrm{s}^{-1}$ and $c = \sqrt{gH} = 10 \, \mathrm{ms}^{-1}$. For initial conditions choose u(x,0) = v(x,0) = 0, and let the height field be given by a slightly smoothed unit-amplitude square wave. Beginning with

$$h(x,0) = \begin{cases} 1 & \text{if } 0 \le 2500 \text{km} \\ -1 & \text{otherwise} \end{cases},$$

obtain a slightly smoothed square wave by four iterative applications of the filter

$$\phi_j^f = \frac{1}{4}(\phi_{j+1} + 2\phi_j + \phi_{j-1})$$

to the pure square wave. Let $\Delta x = 5$ km. Initialize the leapfrog scheme with a single forward step.

- (a) Show solutions for all three fields at the time step closest, but not larger than, $t = 11 \times 10^4$ s (about 30 hr). Use a Courant number $(c\Delta t/\Delta x)$ of 0.9. Discuss the quality of the two solutions. Explain the source of the difference between the two different numerical solutions.
- (b) Recompute both solutions with $c\Delta t/\Delta x = 0.1$. What happens using the smaller Courant number? Why?
- (c) Eliminate the smoothing step from the initialization and discuss the impact on the solution for the simulations with $c\Delta t/\Delta x = 0.9$.

(Note that analytic solutions to this problem are given in Gill, 1982: Atmosphere-Ocean Dynamics Sections 7.2–7.3.)

Due Friday, February 6