Atms 536: Homework 2

1. Virtual temperature — with liquid water. The total density p is the sum of the
densities of dry air pg, water vapor p,, and liquid water p;. Let r, = p,/pgq and
r; = pi/pq be the mixing ratios of water vapor and liquid water respectively, and
define € = R4/ R, as the ratio of the gas constants for dry air and water vapor.

Show that if the virtual temperature

T, _T<1+f”v/€>

1+TU+7‘Z

is used in the equation of state
p = pR4Ty
one obtains the correct total pressure (which is the sum of the partial pressures

exerted by the dry air and the water vapor) for an air parcel containing both water
vapor and liquid droplets.

2. Expressions for Buoyancy. The virtual potential temperature of an air parcel is
defined

91) = Tv(p/pO)iR/va
where T, is the virtual temperature, the gas constant for dry air is denoted by R for
simplicity, ¢, the specific heat of air at constant pressure and pg a constant reference
pressure typically specified as 10° Pascals (1000 mb).

(a) The Exner function pressure is defined

™= (p/po)¥/r.
Show that

1
cpth VT = ;Vp.

Note, for use in (b), that this implies the momentum equations for inviscid airflow
may be written in the form

Dv

Dr + ¢,V = —gk.

(b) Show that after removing a hydrostatically balanced reference state 6,(z) and
7(z) the momentum equations for inviscid flow may be written

/
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+ ¢y, V7' = g?” k. (1)
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(The advantage of this form is that it links virtual potential temperature pertur-
bations directly to buoyancy perturbations without any approximations to the gov-
erning equations.)

In (¢) and (d) below, focus on the dry case, for which 6 = 6,.

(c) Except in the expression for buoyancy itself, one can often assume that the
vertically varying reference state thermodynamic variables are much larger that the
perturbations, i.e.,

0'<0, pf<p pP<D
etc. Under this approximation (1) becomes

Dv
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i + ¢,0Vn = gjk. (2)

Similarly, the vertical momentum equation expressed in terms of p and p becomes

Dv 1 0

— +-Vp =—g—k 3

T A= 3)
Show that the expressions for the buoyancy on the right sides of (2) and (3) are not
equivalent, i.e., that (2) and (3) split the total forcing for the acceleration between
the vertical pressure gradient and buoyancy in different ways.

(d) Nevertheless, in traditional arguments about the buoyancy in rising air parcels,
the buoyancy expressions in (2) and (3) become identical. Why is this?

3. Water loading. There are two different ways to approach the vertical momentum
equation when hydrometeors are present. One approach is to write the momentum
equation for gaseous matter alone and to explicitly include the frictional drag ex-
erted on the gas by falling precipitation. The second approach is to generalize the
expression for virtual temperature to include the non-gaseous components and to
compute buoyancy perturbations in using generalized virtual temperatures. Below
we examine the question: to what extent are these two approaches equivalent?

Let over-bars again denote a reference state that varies only in z and suppose that
there is no liquid water in the reference state (only vapor). As notation for this
problem, let 03 approximate the virtual temperature expression including liquid
water

05 =04 (1+0.61r, — 1))

and let 6, approximate the virtual temperature without accounting for liquid water

By = 04 (1 + 0.61r,) .



The vertical momentum equation treating the acceleration of the gases and the
liquids together via virtual temperature may be written as

Dw — 67T/ 95—55
Dt+cp9662_g< 7- > (4)

The vertical momentum equation treating the acceleration of the gases alone with
a drag term due to the falling liquid droplets may be written as

Dw _ on' 0, — 0,
L R e
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where F' is the frictional drag per unit volume exerted by the falling droplets.

(a) The full virtual temperatures in the pressure-gradient terms in (4) and (5) have
been approximated by their reference-state values (as they sometimes are in numer-
ical models). What is the relation between 6, and 65?

(b) Assuming that all droplets are falling at their terminal velocity, derive an ex-
pression for F.

(c) Use your expression for F' to show that the buoyancy term in (4) and (5) may
be expressed as

Qd(l + .61r, — Hrp — 0,
0, ’

where H is either 1 or _
O
Hd(l + rv)
Discuss the extent to which this represents a signficant difference in the downward
acceleration produced by representative large values fof 7, = 20 gm/kg and r; of 5
gm/kg.

Due Thursday, February 16th.



